लघुगणकीय अवकलन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Method of mathematical differentiation}} | {{Short description|Method of mathematical differentiation}}[[ गणना ]]में, लघुगणकीय अवकलन एक ऐसी विधि है जिसका उपयोग किसी फलन के [[लघुगणकीय व्युत्पन्न]] को नियोजित करके व्युत्पन्न फलन (गणित) {{math|''f''}} के लिए किया जाता है। ,<ref>{{cite book| title=कैलकुलस का रहस्योद्घाटन| pages=170| first=Steven G.|last=Krantz | publisher=McGraw-Hill Professional| year=2003 | isbn=0-07-139308-0}}</ref> | ||
[[ गणना ]]में, लघुगणकीय | |||
<math display="block">(\ln f)' = \frac{f'}{f} \quad \implies \quad f' = f \cdot (\ln f)'.</math> | <math display="block">(\ln f)' = \frac{f'}{f} \quad \implies \quad f' = f \cdot (\ln f)'.</math> | ||
तकनीक प्रायः उन स्तिथियों में निष्पादित की जाती है जहां फलन के स्थान पर किसी फलन के [[लघुगणक]] को अलग करना आसान होता है। यह सामान्यतः पर उन स्तिथियों में होता है जहां रुचि का कार्य कई भागों के उत्पाद से बना होता है, ताकि एक लघुगणकीय परिवर्तन इसे अलग-अलग हिस्सों के योग में बदल दे (जिसे अलग करना बहुत आसान है)। यह तब भी उपयोगी हो सकता है जब इसे चर या फलन की शक्ति तक बढ़ाए गए फलन पर लागू किया जाता है। लघुगणक | तकनीक प्रायः उन स्तिथियों में निष्पादित की जाती है जहां फलन के स्थान पर किसी फलन के [[लघुगणक]] को अलग करना आसान होता है। यह सामान्यतः पर उन स्तिथियों में होता है जहां रुचि का कार्य कई भागों के उत्पाद से बना होता है, ताकि एक लघुगणकीय परिवर्तन इसे अलग-अलग हिस्सों के योग में बदल दे (जिसे अलग करना बहुत आसान है)। यह तब भी उपयोगी हो सकता है जब इसे चर या फलन की शक्ति तक बढ़ाए गए फलन पर लागू किया जाता है। लघुगणक अवकलन उत्पादों को योगों में और विभाजनों को घटावों में बदलने के लिए [[श्रृंखला नियम]] के साथ-साथ लघुगणक के गुणों (विशेष रूप से, [[प्राकृतिक]] लघुगणक, या आधार [[ई (गणित)]] के लघुगणक) पर निर्भर करता है। <ref>{{cite book| title=गोल्डन डिफरेंशियल कैलकुलस| pages=282|author=N.P. Bali| publisher=Firewall Media | year=2005 | isbn=81-7008-152-1}}</ref><ref name="Bird">{{cite book|title=उच्च इंजीनियरिंग गणित| first=John|last=Bird|pages=324 | publisher=Newnes |year=2006 | isbn=0-7506-8152-7}}</ref> सिद्धांत को, कम से कम आंशिक रूप से, लगभग सभी भिन्न-भिन्न कार्यों के अवकलन में लागू किया जा सकता है, बशर्ते कि ये कार्य गैर-शून्य हों। | ||
==अवलोकन== | ==अवलोकन== | ||
Line 25: | Line 21: | ||
===उत्पाद=== | ===उत्पाद=== | ||
{{Main|उत्पाद नियम}} | {{Main|उत्पाद नियम}} | ||
एक प्राकृतिक लघुगणक दो कार्यों के उत्पाद पर लागू किया जाता है | एक प्राकृतिक लघुगणक दो कार्यों के उत्पाद पर लागू किया जाता है | ||
<math display="block">f(x) = g(x) h(x)</math> | <math display="block">f(x) = g(x) h(x)</math> | ||
उत्पाद को योग में बदलने के लिए | उत्पाद को योग में बदलने के लिए | ||
<math display="block">\ln(f(x))=\ln(g(x)h(x)) = \ln(g(x)) + \ln(h(x)). </math> | <math display="block">\ln(f(x))=\ln(g(x)h(x)) = \ln(g(x)) + \ln(h(x)). </math> | ||
अवकलन नियमों में श्रृंखला नियम और योग नियम को लागू करके अवकलन करने से परिणाम प्राप्त होते हैं | |||
<math display="block">\frac{f'(x)}{f(x)} = \frac{g'(x)}{g(x)} + \frac{h'(x)}{h(x)},</math> | <math display="block">\frac{f'(x)}{f(x)} = \frac{g'(x)}{g(x)} + \frac{h'(x)}{h(x)},</math> | ||
और, पुनर्व्यवस्थित करने के बाद, निम्न प्रतिफल मिलता है <ref>{{cite book | title=डिफरेंशियल कैलकुलस पर एक प्राथमिक ग्रंथ| first=Benjamin|last=Williamson | publisher=BiblioBazaar, LLC | year=2008 | pages=25–26 | isbn=978-0-559-47577-1}}</ref> | और, पुनर्व्यवस्थित करने के बाद, निम्न प्रतिफल मिलता है <ref>{{cite book | title=डिफरेंशियल कैलकुलस पर एक प्राथमिक ग्रंथ| first=Benjamin|last=Williamson | publisher=BiblioBazaar, LLC | year=2008 | pages=25–26 | isbn=978-0-559-47577-1}}</ref> | ||
Line 42: | Line 39: | ||
भाग को घटाव में बदलना | भाग को घटाव में बदलना | ||
<math display="block">\ln(f(x)) = \ln\left(\frac{g(x)}{h(x)}\right) = \ln(g(x)) - \ln(h(x))</math> | <math display="block">\ln(f(x)) = \ln\left(\frac{g(x)}{h(x)}\right) = \ln(g(x)) - \ln(h(x))</math> | ||
अवकलन नियमों में श्रृंखला नियम और योग नियम को लागू करके अवकलन करने से परिणाम प्राप्त होते हैं | |||
<math display="block">\frac{f'(x)}{f(x)} = \frac{g'(x)}{g(x)} - \frac{h'(x)}{h(x)},</math> | <math display="block">\frac{f'(x)}{f(x)} = \frac{g'(x)}{g(x)} - \frac{h'(x)}{h(x)},</math> | ||
और, पुनर्व्यवस्थित करने के बाद, निम्न प्रतिफल मिलती है | और, पुनर्व्यवस्थित करने के बाद, निम्न प्रतिफल मिलती है | ||
Line 54: | Line 51: | ||
प्राकृतिक लघुगणक घातांक को निम्न उत्पाद में बदल देता है | प्राकृतिक लघुगणक घातांक को निम्न उत्पाद में बदल देता है | ||
<math display="block">\ln(f(x)) = \ln\left(g(x)^{h(x)}\right) = h(x) \ln(g(x))</math> | <math display="block">\ln(f(x)) = \ln\left(g(x)^{h(x)}\right) = h(x) \ln(g(x))</math> | ||
अवकलन नियमों में श्रृंखला नियम और योग नियम को लागू करके अवकलन करने से परिणाम प्राप्त होते हैं | |||
<math display="block">\frac{f'(x)}{f(x)} = h'(x) \ln(g(x)) + h(x) \frac{g'(x)}{g(x)},</math> | <math display="block">\frac{f'(x)}{f(x)} = h'(x) \ln(g(x)) + h(x) \frac{g'(x)}{g(x)},</math> | ||
और, पुनर्व्यवस्थित करने के बाद, प्रतिफल मिलती है | और, पुनर्व्यवस्थित करने के बाद, प्रतिफल मिलती है | ||
Line 85: | Line 82: | ||
{{Calculus topics}} | {{Calculus topics}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Collapse templates]] | [[Category:Collapse templates]] |
Revision as of 11:48, 12 September 2023
गणना में, लघुगणकीय अवकलन एक ऐसी विधि है जिसका उपयोग किसी फलन के लघुगणकीय व्युत्पन्न को नियोजित करके व्युत्पन्न फलन (गणित) f के लिए किया जाता है। ,[1]
अवलोकन
विधि का उपयोग इसलिए किया जाता है क्योंकि लघुगणक के गुण विभेदित किए जाने वाले जटिल कार्यों को शीघ्रता से सरल बनाने के लिए मार्ग प्रदान करते हैं। [4] दोनों पक्षों पर प्राकृतिक लघुगणक लेने के बाद और प्रारंभिक भेदभाव से पहले इन गुणों में क्रमभंग किया जा सकता है। सबसे अधिक उपयोग किये जाने वाले लघुगणक नियम निम्न हैं [3]
उच्च क्रम व्युत्पन्न
फा डि ब्रूनो के सूत्र का उपयोग करते हुए, n-वें क्रम का लघुगणकीय व्युत्पन्न निम्न है,
अनुप्रयोग
उत्पाद
एक प्राकृतिक लघुगणक दो कार्यों के उत्पाद पर लागू किया जाता है
उद्धरण
एक प्राकृतिक लघुगणक दो कार्यों के भागफल पर लागू किया जाता है
क्रियात्मक घातांक
प्रपत्र के एक फलन के लिए
सामान्य स्तिथि
गुणन उत्कृष्ठ पाई संकेत पद्धति का उपयोग करते हुए, आइए
प्राकृतिक लघुगणक के अनुप्रयोग का परिणाम (उत्कृष्ठ सिग्मा संकेत पद्धति के साथ) होता है
यह भी देखें
- डार्बौक्स व्युत्पन्न
- व्युत्पन्न का सामान्यीकरण
- लाई ग्रुप
- लघुगणक विषयों की सूची
- लघुगणकीय पहचानों की सूची
- मौरर-कार्टन फॉर्म
टिप्पणियाँ
- ↑ Krantz, Steven G. (2003). कैलकुलस का रहस्योद्घाटन. McGraw-Hill Professional. p. 170. ISBN 0-07-139308-0.
- ↑ N.P. Bali (2005). गोल्डन डिफरेंशियल कैलकुलस. Firewall Media. p. 282. ISBN 81-7008-152-1.
- ↑ 3.0 3.1 Bird, John (2006). उच्च इंजीनियरिंग गणित. Newnes. p. 324. ISBN 0-7506-8152-7.
- ↑ Blank, Brian E. (2006). कैलकुलस, एकल चर. Springer. p. 457. ISBN 1-931914-59-1.
- ↑ Williamson, Benjamin (2008). डिफरेंशियल कैलकुलस पर एक प्राथमिक ग्रंथ. BiblioBazaar, LLC. pp. 25–26. ISBN 978-0-559-47577-1.