सशक्त नियमित आलेख: Difference between revisions

From Vigyanwiki
No edit summary
(text)
Line 3: Line 3:
{{Graph families defined by their automorphisms}}
{{Graph families defined by their automorphisms}}


आलेख सिद्धांत में, एक सशक्त नियमित आलेख (srg) को निम्नानुसार परिभाषित किया गया है। मान लीजिये {{math|1=''G'' = (''V'', ''E'')}}  {{mvar|v}} शीर्ष और डिग्री (आलेख सिद्धांत) {{mvar|k}} के साथ एक [[नियमित ग्राफ|नियमित आलेख]] बनें। {{mvar|G}} को दृढ़ता से नियमित कहा जाता है यदि [[पूर्णांक]] {{math|λ}} और {{math|μ}} इस प्रकार है कि:
आलेख सिद्धांत में, एक सशक्त नियमित आलेख (srg) को निम्नानुसार परिभाषित किया गया है। मान लीजिये {{math|1=''G'' = (''V'', ''E'')}}  {{mvar|v}} शीर्ष और घात (आलेख सिद्धांत) {{mvar|k}} के साथ एक [[नियमित ग्राफ|नियमित आलेख]] बनें। {{mvar|G}} को दृढ़ता से नियमित कहा जाता है यदि [[पूर्णांक]] {{math|λ}} और {{math|μ}} इस प्रकार है कि:


* प्रत्येक दो [[आसन्न शीर्ष]]  {{math|λ}} उभयनिष्ठ प्रतिवैस में है।
* प्रत्येक दो [[आसन्न शीर्ष]]  {{math|λ}} उभयनिष्ठ प्रतिवैस में है।
Line 15: Line 15:
साहित्य में एक दृढ़ता से नियमित आलेख को srg(v, k, λ, μ) दर्शाया जाता है। परंपरा के अनुसार, जो आलेख तुच्छ रूप से परिभाषा को संतुष्ट करते हैं उन्हें विस्तृत अध्ययन और दृढ़ता से नियमित आलेख की सूची से बाहर रखा जाता है। इनमें एक या अधिक समान आकार के पूर्ण आलेख का असंयुक्त संघ सम्मिलित है, <ref>[http://homepages.cwi.nl/~aeb/math/ipm.pdf Brouwer, Andries E; Haemers, Willem H. ''Spectra of Graphs''. p. 101] {{Webarchive|url=https://web.archive.org/web/20120316102909/http://homepages.cwi.nl/~aeb/math/ipm.pdf |date=2012-03-16 }}</ref><ref>Godsil, Chris; Royle, Gordon. ''Algebraic Graph Theory''. Springer-Verlag New York, 2001, p. 218.</ref> और उनके पूरक आलेख, समान आकार के स्वतंत्र सम्मुच्चयों के साथ पूर्ण [[बहुपक्षीय ग्राफ|बहुपक्षीय]] आलेख है।
साहित्य में एक दृढ़ता से नियमित आलेख को srg(v, k, λ, μ) दर्शाया जाता है। परंपरा के अनुसार, जो आलेख तुच्छ रूप से परिभाषा को संतुष्ट करते हैं उन्हें विस्तृत अध्ययन और दृढ़ता से नियमित आलेख की सूची से बाहर रखा जाता है। इनमें एक या अधिक समान आकार के पूर्ण आलेख का असंयुक्त संघ सम्मिलित है, <ref>[http://homepages.cwi.nl/~aeb/math/ipm.pdf Brouwer, Andries E; Haemers, Willem H. ''Spectra of Graphs''. p. 101] {{Webarchive|url=https://web.archive.org/web/20120316102909/http://homepages.cwi.nl/~aeb/math/ipm.pdf |date=2012-03-16 }}</ref><ref>Godsil, Chris; Royle, Gordon. ''Algebraic Graph Theory''. Springer-Verlag New York, 2001, p. 218.</ref> और उनके पूरक आलेख, समान आकार के स्वतंत्र सम्मुच्चयों के साथ पूर्ण [[बहुपक्षीय ग्राफ|बहुपक्षीय]] आलेख है।


[[एंड्रयू ब्रेवर]] और हेंड्रिक वैन माल्डेघम (संदर्भ देखें) [[वर्णक्रमीय ग्राफ सिद्धांत|वर्णक्रमीय आलेख सिद्धांत]] के आधार पर एक दृढ़ता से नियमित आलेख की एक वैकल्पिक लेकिन पूरी तरह से समकक्ष परिभाषा का उपयोग करते हैं: एक दृढ़ता से नियमित आलेख एक परिमित नियमित आलेख है जिसमें बिल्कुल तीन आइगेनवैल्यू होते हैं, जिनमें से केवल एक बराबर होता है। यह स्वचालित रूप से पूरी तरह से जुड़े हुए आलेख (जिनमें केवल दो अलग-अलग आइगेनवैल्यू ​​​​हैं, तीन नहीं) और डिस्कनेक्ट किए गए आलेख (जिनकी डिग्री k की बहुलता विभिन्न जुड़े हुए घटकों की संख्या के बराबर है, को बाहर कर देती है, जो इसलिए होगा) एक से अधिक)। ब्रौवर सहित अधिकांश साहित्य में बड़े स्वदेशी मान को r (बहुलता f के साथ) और छोटे को s (बहुलता g के साथ) के रूप में संदर्भित किया गया है।
[[एंड्रयू ब्रेवर]] और हेंड्रिक वैन माल्डेघम (संदर्भ देखें) [[वर्णक्रमीय ग्राफ सिद्धांत|वर्णक्रमीय आलेख सिद्धांत]] के आधार पर एक दृढ़ता से नियमित आलेख की एक वैकल्पिक लेकिन पूरी तरह से समकक्ष परिभाषा का उपयोग करते हैं: एक दृढ़ता से नियमित आलेख एक परिमित नियमित आलेख है जिसमें बिल्कुल तीन आइगेनवैल्यू होते हैं, जिनमें से केवल एक बराबर होता है। यह स्वचालित रूप से पूरी तरह से जुड़े हुए आलेख (जिनमें केवल दो अलग-अलग आइगेनवैल्यू ​​​​हैं, तीन नहीं) और डिस्कनेक्ट किए गए आलेख (जिनकी घात k की बहुलता विभिन्न जुड़े हुए घटकों की संख्या के बराबर है, को बाहर कर देती है, जो इसलिए होगा) एक से अधिक)। ब्रौवर सहित अधिकांश साहित्य में बड़े स्वदेशी मान को r (बहुलता f के साथ) और छोटे को s (बहुलता g के साथ) के रूप में संदर्भित किया गया है।


==इतिहास==
==इतिहास==
Line 25: Line 25:
* [[क्लेब्स ग्राफ|क्लेब्स आलेख]] srg(16, 5, 0, 2) है।
* [[क्लेब्स ग्राफ|क्लेब्स आलेख]] srg(16, 5, 0, 2) है।
* [[श्रीखंडे ग्राफ|श्रीखंडे आलेख]]  srg(16, 6, 2, 2) है जो [[दूरी-संक्रमणीय ग्राफ|दूरी-संक्रमणीय आलेख]] नहीं है।
* [[श्रीखंडे ग्राफ|श्रीखंडे आलेख]]  srg(16, 6, 2, 2) है जो [[दूरी-संक्रमणीय ग्राफ|दूरी-संक्रमणीय आलेख]] नहीं है।
* n × n वर्ग रूक का आलेख, यानी, एक संतुलित पूर्ण [[द्विदलीय ग्राफ|द्विदलीय आलेख]] K<sub>''n'',''n''</sub> का रेखा आलेख, एक  srg(''n''<sup>2</sup>, 2''n'' − 2, ''n'' − 2, 2) है<sup>2</sup>, 2n − 2, n − 2, 2). के लिए पैरामीटर {{nowrap|''n'' {{=}} 4}} श्रीखंडे आलेख से मेल खाता है, लेकिन दोनों आलेख समरूपी नहीं हैं।
* n × n वर्ग रूक का आलेख, यानी, एक संतुलित पूर्ण [[द्विदलीय ग्राफ|द्विदलीय आलेख]] K<sub>''n'',''n''</sub> का रेखा आलेख, एक  srg(''n''<sup>2</sup>, 2''n'' − 2, ''n'' − 2, 2) है<sup>2</sup>, 2n − 2, n − 2, 2). के लिए मापदण्ड {{nowrap|''n'' {{=}} 4}} श्रीखंडे आलेख से मेल खाता है, लेकिन दोनों आलेख समरूपी नहीं हैं।
* पूर्ण आलेख K<sub>n</sub> का रेखा आलेख एक <math display="inline">\operatorname{srg}\left(\binom{n}{2}, 2(n - 2), n - 2, 4\right)</math>.
* पूर्ण आलेख K<sub>n</sub> का रेखा आलेख एक <math display="inline">\operatorname{srg}\left(\binom{n}{2}, 2(n - 2), n - 2, 4\right)</math>.
* [[चांग रेखांकन]] srg(28, 12, 6, 4) हैं, K<sub>8</sub> के लाइन आलेख के समान, लेकिन ये चार आलेख समरूपी नहीं हैं।
* [[चांग रेखांकन]] srg(28, 12, 6, 4) हैं, K<sub>8</sub> के लाइन आलेख के समान, लेकिन ये चार आलेख समरूपी नहीं हैं।
Line 55: Line 55:


===[[त्रिकोण-मुक्त ग्राफ़|त्रिकोण-मुक्त आलेख]]===
===[[त्रिकोण-मुक्त ग्राफ़|त्रिकोण-मुक्त आलेख]]===
λ=0 वाले दृढ़'''तापूर्वक नियमित आलेख त्रिकोण-'''मुक्त आलेख हैं। 3 से कम शीर्षों पर पूर्ण आलेख और सभी पूर्ण द्विदलीय आलेख के अलावा, पहले सूचीबद्ध सात (पेंटागन, पीटरसन, क्लेबश, हॉफमैन-सिंगलटन, गेविर्ट्ज़, मेस्नर-एम22, और हिगमैन-सिम्स) ही एकमात्र ज्ञात हैं।
λ=0 वाले दृढ़तापूर्वक नियमित आलेख त्रिकोण-मुक्त आलेख हैं। 3 से कम शीर्षों पर पूर्ण आलेख और सभी पूर्ण द्विदलीय आलेख के अतिरिक्त, पहले सूचीबद्ध सात (पेंटागन, पीटरसन, क्लेबश, हॉफमैन-सिंगलटन, गेविर्ट्ज़, मेस्नर-एम22, और हिगमैन-सिम्स) ही एकमात्र ज्ञात हैं।


===जियोडेटिक आलेख===
===भूगणितीय आलेख===
प्रत्येक दृढ़तापूर्वक नियमित आलेख के साथ <math>\mu = 1</math> एक [[ भूगणितीय ग्राफ | भूगणितीय आलेख]] है, एक ऐसा आलेख जिसमें प्रत्येक दो शीर्षों पर एक अद्वितीय लघुतम पथ समस्या होती है।<ref name=bb>{{citation
प्रत्येक दृढ़तापूर्वक नियमित आलेख के साथ <math>\mu = 1</math> एक [[ भूगणितीय ग्राफ |भूगणितीय आलेख]] है, एक ऐसा आलेख जिसमें प्रत्येक दो शीर्षों पर एक अद्वितीय लघुतम पथ समस्या होती है। <ref name=bb>{{citation
  | last1 = Blokhuis | first1 = A.
  | last1 = Blokhuis | first1 = A.
  | last2 = Brouwer | first2 = A. E. | authorlink = Andries Brouwer
  | last2 = Brouwer | first2 = A. E. | authorlink = Andries Brouwer
Line 70: Line 70:
  | year = 1988
  | year = 1988
| s2cid = 189890651
| s2cid = 189890651
  }}</ref> एकमात्र ज्ञात दृढ़ता से नियमित आलेख के साथ <math>\mu = 1</math> वे कहाँ हैं <math>\lambda</math> 0 है, इसलिए त्रिकोण-मुक्त भी है। इन्हें मूर आलेख कहा जाता है और ये #हॉफमैन-सिंगलटन प्रमेय हैं। मापदंडों के अन्य संयोजन जैसे (400, 21, 2, 1) को अभी तक खारिज नहीं किया गया है। उन संपत्तियों पर चल रहे शोध के बावजूद, जिनके साथ एक दृढ़ता से नियमित आलेख है <math>\mu=1</math> होगा,<ref>{{citation
  }}</ref> एकमात्र ज्ञात दृढ़ता से नियमित आलेख के साथ <math>\mu = 1</math> कहाँ हैं जहाँ <math>\lambda</math> 0 है, इसलिए यह त्रिकोण-मुक्त भी है। इन्हें मूर आलेख कहा जाता है और ये हॉफमैन-सिंगलटन प्रमेय हैं। मापदंडों के अन्य संयोजन जैसे (400, 21, 2, 1) को अभी तक अस्वीकृत नहीं किया गया है। उन विशेषताओं पर चल रहे शोध के बाद भी, जिनके साथ एक दृढ़ता से नियमित आलेख <math>\mu=1</math> होगा, <ref>{{citation
  | last1 = Deutsch | first1 = J.
  | last1 = Deutsch | first1 = J.
  | last2 = Fisher | first2 = P. H.
  | last2 = Fisher | first2 = P. H.
Line 91: Line 91:
  | volume = 410
  | volume = 410
  | year = 2006
  | year = 2006
}}</ref> यह ज्ञात नहीं है कि क्या और भी अस्तित्व में हैं या उनकी संख्या सीमित है या नहीं।<ref name=bb/>केवल प्रारंभिक परिणाम ही ज्ञात है, वह <math>\lambda</math> ऐसे आलेख के लिए 1 नहीं हो सकता.
}}</ref> यह ज्ञात नहीं है कि क्या और भी अस्तित्व में हैं या उनकी संख्या सीमित है या नहीं। <ref name=bb/> केवल प्रारंभिक परिणाम ही ज्ञात है, वह <math>\lambda</math> ऐसे आलेख के लिए 1 नहीं हो सकता।


==दृढ़ता से नियमित आलेख के बीजगणितीय गुण==
==दृढ़ता से नियमित आलेख के बीजगणितीय गुण==


===पैरामीटरों के बीच बुनियादी संबंध===
===मापदण्ड के बीच बुनियादी संबंध===
srg(v, k, λ, μ) में चार पैरामीटर स्वतंत्र नहीं हैं। उन्हें निम्नलिखित संबंध का पालन करना होगा:
srg(v, k, λ, μ) में चार मापदण्ड स्वतंत्र नहीं हैं। उन्हें निम्नलिखित संबंध का पालन करना होगा:
:<math>(v - k - 1)\mu = k(k - \lambda - 1)</math>
:<math>(v - k - 1)\mu = k(k - \lambda - 1)</math>
उपरोक्त संबंध निम्नलिखित गणना तर्क के माध्यम से प्राप्त किया गया है:
उपरोक्त संबंध निम्नलिखित गणना तर्क के माध्यम से प्राप्त किया गया है:
# आलेख के शीर्षों को तीन स्तरों में स्थित होने की कल्पना करें। स्तर 0 में किसी भी शीर्ष को मूल के रूप में चुनें। फिर इसके k प्रतिवैस स्तर 1 में हैं, और अन्य सभी शीर्ष स्तर 2 में हैं।
# आलेख के शीर्षों को तीन स्तरों में स्थित होने की कल्पना करें। स्तर 0 में किसी भी शीर्ष को मूल के रूप में चुनें। फिर इसके k प्रतिवैस स्तर 1 में हैं, और अन्य सभी शीर्ष स्तर 2 में हैं।
# लेवल 1 में शीर्ष सीधे जड़ से जुड़े होते हैं, इसलिए उनमें जड़ के साथ अन्य प्रतिवैस समान होने चाहिए, और ये सामान्य प्रतिवैस भी स्तर 1 में होने चाहिए। चूंकि प्रत्येक शीर्ष की डिग्री k है, इसलिए वहां हैं <math>k - \lambda - 1</math> स्तर 2 में शीर्षों से जुड़ने के लिए प्रत्येक स्तर 1 नोड के किनारे शेष हैं। इसलिए, वहाँ हैं <math>k (k - \lambda - 1)</math> लेवल 1 और लेवल 2 के बीच का किनारा।
# स्तर 1 में शीर्ष सीधे जड़ से जुड़े होते हैं, इसलिए उनमें जड़ के साथ अन्य प्रतिवैस समान होने चाहिए, और ये सामान्य प्रतिवैस भी स्तर 1 में होने चाहिए। चूंकि प्रत्येक शीर्ष की घात k है, इसलिए वहां <math>k - \lambda - 1</math> स्तर 2 में शीर्षों से जुड़ने के लिए प्रत्येक स्तर 1 नोड के किनारे शेष हैं। इसलिए, वहाँ <math>k (k - \lambda - 1)</math> स्तर 1 और स्तर 2 के बीच का किनारा है।
# स्तर 2 में शीर्ष सीधे जड़ से जुड़े नहीं हैं, इसलिए उनके मूल के साथ μ सामान्य प्रतिवैस होने चाहिए, और ये सभी सामान्य प्रतिवैस स्तर 1 में होने चाहिए। <math>(v - k - 1)</math> स्तर 2 में शीर्ष, और प्रत्येक स्तर 1 में μ शीर्षों से जुड़ा है। इसलिए स्तर 1 और स्तर 2 के बीच किनारों की संख्या है <math>(v - k - 1)\mu</math>.
# स्तर 2 में शीर्ष सीधे जड़ से जुड़े नहीं हैं, इसलिए उनके मूल के साथ μ सामान्य प्रतिवैस होने चाहिए, और ये सभी सामान्य प्रतिवैस स्तर 1 में होने चाहिए। <math>(v - k - 1)</math> स्तर 2 में शीर्ष, और प्रत्येक स्तर 1 में μ शीर्षों से जुड़ा है। इसलिए स्तर 1 और स्तर 2 के बीच किनारों की संख्या <math>(v - k - 1)\mu</math> है।
# लेवल 1 और लेवल 2 के बीच किनारों के लिए दो अभिव्यक्तियों को बराबर करने पर, संबंध इस प्रकार है।
# स्तर 1 और स्तर 2 के बीच किनारों के लिए दो अभिव्यक्तियों को बराबर करने पर, संबंध इस प्रकार है।


===आसन्नता मैट्रिक्स समीकरण===
===आसन्नता आव्यूह समीकरण===
आइए मैं पहचान मैट्रिक्स को निरूपित करता हूं और जे को ऑर्डर वी के दोनों मैट्रिक्स को निरूपित करने देता हूं। दृढ़ता से नियमित आलेख का आसन्न [[लोगों का मैट्रिक्स]] समीकरणों को संतुष्ट करता है।
मान लीजिए I पहचान आव्यूह को दर्शाता है और J को इकाई के आव्यूह को दर्शाता है। दृढ़ता से नियमित आलेख का [[लोगों का मैट्रिक्स|आसन्नता आव्यूह]] समीकरणों को संतुष्ट करता है।


पहला:
पहला:
:<math>AJ = JA = kJ,</math>
:<math>AJ = JA = kJ,</math>
जो नियमितता की आवश्यकता का पुनर्कथन है। इससे पता चलता है कि k सभी eigenvector के साथ आसन्न मैट्रिक्स का एक eigenvalue है।
जो नियमितता की आवश्यकता का पुनर्कथन है। इससे पता चलता है कि k सभी आइजन्वेक्टर के साथ आसन्न आव्यूह का एक आइजेनवैल्यू है।


दूसरा:
दूसरा:
:<math>A^2 = kI + \lambda{A} + \mu(J - I - A)</math>
:<math>A^2 = kI + \lambda{A} + \mu(J - I - A)</math>
जो सशक्त नियमितता को व्यक्त करता है। बायीं ओर का ij-वां तत्व i से j तक दो-चरणीय पथों की संख्या देता है। दायीं ओर का पहला पद i से वापस i तक दो-चरणीय पथों की संख्या देता है, अर्थात् k किनारे बाहर और वापस अंदर। दूसरा पद दो-चरणीय पथों की संख्या देता है जब i और j सीधे जुड़े होते हैं। जब i और j जुड़े नहीं होते हैं तो तीसरा पद संगत मान देता है। चूंकि तीन मामले [[परस्पर अनन्य]] और सामूहिक रूप से संपूर्ण हैं, इसलिए सरल योगात्मक समानता इस प्रकार है।
जो सशक्त नियमितता को व्यक्त करता है। बायीं ओर का ij-वां तत्व i से j तक दो-चरणीय पथों की संख्या देता है। दायीं ओर का पहला पद i से वापस i तक दो-चरणीय पथों की संख्या देता है। दूसरा पद दो-चरणीय पथों की संख्या देता है जब i और j सीधे जुड़े होते हैं। जब i और j जुड़े नहीं होते हैं तो तीसरा पद संगत मान '''देता है। चूंकि तीन माम'''ले [[परस्पर अनन्य]] और सामूहिक रूप से संपूर्ण हैं, इसलिए सरल योगात्मक समानता इस प्रकार है।


इसके विपरीत, एक आलेख जिसका आसन्न मैट्रिक्स उपरोक्त दोनों शर्तों को पूरा करता है और जो पूर्ण या शून्य आलेख नहीं है, एक दृढ़ता से नियमित आलेख है।<ref>{{citation|first1=P.J.|last1=Cameron|first2=J.H.|last2=van Lint|title=Designs, Graphs, Codes and their Links|publisher=Cambridge University Press|series=London Mathematical Society Student Texts 22|year=1991|isbn=978-0-521-42385-4|page=[https://archive.org/details/designsgraphscod0000came/page/37 37]|url=https://archive.org/details/designsgraphscod0000came/page/37}}</ref>
इसके विपरीत, एक आलेख जिसका आसन्न आव्यूह उपरोक्त दोनों शर्तों को पूरा करता है और जो पूर्ण या शून्य आलेख नहीं है, एक दृढ़ता से नियमित आलेख है।<ref>{{citation|first1=P.J.|last1=Cameron|first2=J.H.|last2=van Lint|title=Designs, Graphs, Codes and their Links|publisher=Cambridge University Press|series=London Mathematical Society Student Texts 22|year=1991|isbn=978-0-521-42385-4|page=[https://archive.org/details/designsgraphscod0000came/page/37 37]|url=https://archive.org/details/designsgraphscod0000came/page/37}}</ref>




===आइजेनवैल्यू और आलेख स्पेक्ट्रम===
===आइजेनवैल्यू और आलेख स्पेक्ट्रम===
चूँकि आसन्न मैट्रिक्स A सममित है, यह उस [[ऑर्थोगोनल आधार]] का अनुसरण करता है। हमने पहले ही ऊपर एक आइजनवेक्टर देखा है जो आइगेनवैल्यू k के अनुरूप सभी से बना है। इसलिए अन्य eigenvectors x को सभी को संतुष्ट करना होगा <math>Jx = 0</math> जहां J पहले की तरह ऑल-वन्स मैट्रिक्स है। पहले से स्थापित समीकरण लें:
चूँकि आसन्न आव्यूह A सममित है, यह उस [[ऑर्थोगोनल आधार]] का अनुसरण करता है। हमने पहले ही ऊपर एक आइजनवेक्टर देखा है जो आइगेनवैल्यू k के अनुरूप सभी से बना है। इसलिए अन्य आइजन्वेक्टरs x को सभी को संतुष्ट करना होगा <math>Jx = 0</math> जहां J पहले की तरह ऑल-वन्स आव्यूह है। पहले से स्थापित समीकरण लें:
:<math>A^2 = kI + \lambda{A} + \mu(J - I - A)</math>
:<math>A^2 = kI + \lambda{A} + \mu(J - I - A)</math>
और उपरोक्त समीकरण को eigenvector x से गुणा करें:
और उपरोक्त समीकरण को आइजन्वेक्टर x से गुणा करें:
:<math>A^2 x = kIx + \lambda{A}x + \mu(J - I - A)x</math>
:<math>A^2 x = kIx + \lambda{A}x + \mu(J - I - A)x</math>
संगत eigenvalue p को कॉल करें (भ्रमित न हों)। <math>\lambda</math> आलेख पैरामीटर) और स्थानापन्न <math>Ax = px</math>, <math>Jx = 0</math> और <math>Ix = x</math>:
संगत आइजेनवैल्यू p को कॉल करें (भ्रमित न हों)। <math>\lambda</math> आलेख मापदण्ड) और स्थानापन्न <math>Ax = px</math>, <math>Jx = 0</math> और <math>Ix = x</math>:
:<math>p^2 x = kx + \lambda p x - \mu x - \mu p x</math>
:<math>p^2 x = kx + \lambda p x - \mu x - \mu p x</math>
x को हटाएँ और द्विघात प्राप्त करने के लिए पुनर्व्यवस्थित करें:
x को हटाएँ और द्विघात प्राप्त करने के लिए पुनर्व्यवस्थित करें:
:<math>p^2 + (\mu - \lambda ) p - (k - \mu) = 0</math>
:<math>p^2 + (\mu - \lambda ) p - (k - \mu) = 0</math>
इससे दो अतिरिक्त आइगेनवैल्यू ​​मिलते हैं <math>\frac{1}{2}\left[(\lambda - \mu) \pm \sqrt{(\lambda - \mu)^2 + 4(k - \mu)}\,\right]</math>. इस प्रकार एक दृढ़ता से नियमित मैट्रिक्स के लिए बिल्कुल तीन आइगेनवैल्यू ​​​​हैं।
इससे दो अतिरिक्त आइगेनवैल्यू ​​मिलते हैं <math>\frac{1}{2}\left[(\lambda - \mu) \pm \sqrt{(\lambda - \mu)^2 + 4(k - \mu)}\,\right]</math>. इस प्रकार एक दृढ़ता से नियमित आव्यूह के लिए बिल्कुल तीन आइगेनवैल्यू ​​​​हैं।


इसके विपरीत, केवल तीन आइगेनवैल्यू ​​​​के साथ जुड़ा हुआ नियमित आलेख दृढ़ता से नियमित होता है।<ref>Godsil, Chris; Royle, Gordon. ''Algebraic Graph Theory''. Springer-Verlag, New York, 2001, Lemma 10.2.1.</ref>
इसके विपरीत, केवल तीन आइगेनवैल्यू ​​​​के साथ जुड़ा हुआ नियमित आलेख दृढ़ता से नियमित होता है।<ref>Godsil, Chris; Royle, Gordon. ''Algebraic Graph Theory''. Springer-Verlag, New York, 2001, Lemma 10.2.1.</ref>
अधिकांश दृढ़तापूर्वक नियमित आलेख साहित्य में शब्दावली का पालन करते हुए, बड़े eigenvalue को बहुलता f के साथ r कहा जाता है और छोटे को बहुलता g के साथ s कहा जाता है।
अधिकांश दृढ़तापूर्वक नियमित आलेख साहित्य में शब्दावली का पालन करते हुए, बड़े आइजेनवैल्यू को बहुलता f के साथ r कहा जाता है और छोटे को बहुलता g के साथ s कहा जाता है।


चूँकि सभी आइगेनवैल्यू ​​​​का योग [[ट्रेस (रैखिक बीजगणित)]] है, जो इस मामले में शून्य है, संबंधित गुणन f और g की गणना की जा सकती है:
चूँकि सभी आइगेनवैल्यू ​​​​का योग [[ट्रेस (रैखिक बीजगणित)]] है, जो इस मामले में शून्य है, संबंधित गुणन f और g की गणना की जा सकती है:
Line 141: Line 141:
जिसके लिए सशक्त रूप से नियमित आलेख <math>2k + (v - 1)(\lambda - \mu) \ne 0</math> असमान बहुलता वाले पूर्णांक आइगेनवैल्यू ​​​​हैं।
जिसके लिए सशक्त रूप से नियमित आलेख <math>2k + (v - 1)(\lambda - \mu) \ne 0</math> असमान बहुलता वाले पूर्णांक आइगेनवैल्यू ​​​​हैं।


जिसके लिए सशक्त रूप से नियमित आलेख <math>2k + (v - 1)(\lambda - \mu) = 0</math> सममित [[सम्मेलन मैट्रिक्स]] के साथ उनके संबंध के कारण [[सम्मेलन ग्राफ|सम्मेलन]] आलेख कहा जाता है। उनके पैरामीटर कम हो जाते हैं
जिसके लिए सशक्त रूप से नियमित आलेख <math>2k + (v - 1)(\lambda - \mu) = 0</math> सममित [[सम्मेलन मैट्रिक्स|सम्मेलन आव्यूह]] के साथ उनके संबंध के कारण [[सम्मेलन ग्राफ|सम्मेलन]] आलेख कहा जाता है। उनके मापदण्ड कम हो जाते हैं
: <math>\operatorname{srg}\left(v, \frac{1}{2}(v - 1), \frac{1}{4}(v - 5), \frac{1}{4}(v - 1)\right).</math>
: <math>\operatorname{srg}\left(v, \frac{1}{2}(v - 1), \frac{1}{4}(v - 5), \frac{1}{4}(v - 1)\right).</math>
उनके स्वदेशी मूल्य हैं <math>r =\frac{-1 + \sqrt{v}}{2}</math> और <math>s = \frac{-1 - \sqrt{v}}{2}</math>, दोनों की बहुलता बराबर है <math>\frac{v-1}{2}</math>. इसके अलावा, इस मामले में, v को ब्रुक-राइसर-चौला प्रमेय से संबंधित दो वर्गों के योग के बराबर होना चाहिए।
उनके स्वदेशी मूल्य हैं <math>r =\frac{-1 + \sqrt{v}}{2}</math> और <math>s = \frac{-1 - \sqrt{v}}{2}</math>, दोनों की बहुलता बराबर है <math>\frac{v-1}{2}</math>. इसके अतिरिक्त, इस मामले में, v को ब्रुक-राइसर-चौला प्रमेय से संबंधित दो वर्गों के योग के बराबर होना चाहिए।


आइगेनवैल्यू ​​​​और उनकी बहुलता के आगे गुण हैं:
आइगेनवैल्यू ​​​​और उनकी बहुलता के आगे गुण हैं:
Line 163: Line 163:
जो पूर्णांक होना चाहिए.
जो पूर्णांक होना चाहिए.


1960 में, एलन जे. हॉफमैन और रॉबर्ट सिंगलटन ने [[मूर ग्राफ|मूर]] आलेख पर लागू होने पर उन अभिव्यक्तियों की जांच की, जिनमें λ = 0 और μ = 1 है। ऐसे आलेख त्रिकोण से मुक्त हैं (अन्यथा λ शून्य से अधिक होगा) और चतुर्भुज (अन्यथा μ 1 से अधिक होगा) , इसलिए उनकी परिधि (सबसे छोटी चक्र लंबाई) 5 है। समीकरण में λ और μ के मानों को प्रतिस्थापित करना <math>(v - k - 1)\mu = k(k - \lambda - 1)</math>, यह देखा जा सकता है <math>v = k^2 + 1</math>, और eigenvalue बहुलताएँ कम हो जाती हैं
1960 में, एलन जे. हॉफमैन और रॉबर्ट सिंगलटन ने [[मूर ग्राफ|मूर]] आलेख पर लागू होने पर उन अभिव्यक्तियों की जांच की, जिनमें λ = 0 और μ = 1 है। ऐसे आलेख त्रिकोण से मुक्त हैं (अन्यथा λ शून्य से अधिक होगा) और चतुर्भुज (अन्यथा μ 1 से अधिक होगा) , इसलिए उनकी परिधि (सबसे छोटी चक्र लंबाई) 5 है। समीकरण में λ और μ के मानों को प्रतिस्थापित करना <math>(v - k - 1)\mu = k(k - \lambda - 1)</math>, यह देखा जा सकता है <math>v = k^2 + 1</math>, और आइजेनवैल्यू बहुलताएँ कम हो जाती हैं
:<math>M_{\pm} = \frac{1}{2}\left[k^2 \pm \frac{2k - k^2}{\sqrt{4k - 3}}\right]</math>
:<math>M_{\pm} = \frac{1}{2}\left[k^2 \pm \frac{2k - k^2}{\sqrt{4k - 3}}\right]</math>
गुणनखंडों के पूर्णांक होने के लिए, मात्रा <math>\frac{2k - k^2}{\sqrt{4k - 3}}</math> तर्कसंगत होना चाहिए, इसलिए या तो अंश <math>2k - k^2</math> शून्य या हर है <math>\sqrt{4k - 3}</math> एक पूर्णांक है.
गुणनखंडों के पूर्णांक होने के लिए, मात्रा <math>\frac{2k - k^2}{\sqrt{4k - 3}}</math> तर्कसंगत होना चाहिए, इसलिए या तो अंश <math>2k - k^2</math> शून्य या हर है <math>\sqrt{4k - 3}</math> एक पूर्णांक है.
Line 199: Line 199:
==यह भी देखें==
==यह भी देखें==
* [[आंशिक ज्यामिति]]
* [[आंशिक ज्यामिति]]
* [[सीडेल आसन्नता मैट्रिक्स]]
* [[सीडेल आसन्नता मैट्रिक्स|सीडेल आसन्नता आव्यूह]]
* [[दो-ग्राफ|दो-आलेख]]
* [[दो-ग्राफ|दो-आलेख]]



Revision as of 22:06, 13 August 2023

क्रम 13 का पीला आलेख, मापदंडों के साथ एक दृढ़ता से नियमित आलेख srg(13,6,2,3).
Graph families defined by their automorphisms
distance-transitive distance-regular strongly regular
symmetric (arc-transitive) [[symmetric graph|t-transitive, t ≥ 2]] skew-symmetric
(if connected)
vertex- and edge-transitive
edge-transitive and regular edge-transitive
vertex-transitive regular (if bipartite)
biregular
Cayley graph zero-symmetric asymmetric

आलेख सिद्धांत में, एक सशक्त नियमित आलेख (srg) को निम्नानुसार परिभाषित किया गया है। मान लीजिये G = (V, E) v शीर्ष और घात (आलेख सिद्धांत) k के साथ एक नियमित आलेख बनें। G को दृढ़ता से नियमित कहा जाता है यदि पूर्णांक λ और μ इस प्रकार है कि:

  • प्रत्येक दो आसन्न शीर्ष λ उभयनिष्ठ प्रतिवैस में है।
  • प्रत्येक दो गैर-आसन्न शीर्षों μ उभयनिष्ठ प्रतिवैस में होता है।

एक srg(v, k, λ, μ) का पूरक भी दृढ़ता से नियमित है। एक srg(v, vk − 1, v − 2 − 2k + μ, v − 2k + λ) है।

जब भी μ गैर-शून्य होता है तो एक दृढ़ता से नियमित आलेख व्यास 2 के साथ एक दूरी-नियमित आलेख होता है। जब भी यह स्थानीय रूप से रैखिक आलेख λ = 1 होता है।

व्युत्पत्ति

साहित्य में एक दृढ़ता से नियमित आलेख को srg(v, k, λ, μ) दर्शाया जाता है। परंपरा के अनुसार, जो आलेख तुच्छ रूप से परिभाषा को संतुष्ट करते हैं उन्हें विस्तृत अध्ययन और दृढ़ता से नियमित आलेख की सूची से बाहर रखा जाता है। इनमें एक या अधिक समान आकार के पूर्ण आलेख का असंयुक्त संघ सम्मिलित है, [1][2] और उनके पूरक आलेख, समान आकार के स्वतंत्र सम्मुच्चयों के साथ पूर्ण बहुपक्षीय आलेख है।

एंड्रयू ब्रेवर और हेंड्रिक वैन माल्डेघम (संदर्भ देखें) वर्णक्रमीय आलेख सिद्धांत के आधार पर एक दृढ़ता से नियमित आलेख की एक वैकल्पिक लेकिन पूरी तरह से समकक्ष परिभाषा का उपयोग करते हैं: एक दृढ़ता से नियमित आलेख एक परिमित नियमित आलेख है जिसमें बिल्कुल तीन आइगेनवैल्यू होते हैं, जिनमें से केवल एक बराबर होता है। यह स्वचालित रूप से पूरी तरह से जुड़े हुए आलेख (जिनमें केवल दो अलग-अलग आइगेनवैल्यू ​​​​हैं, तीन नहीं) और डिस्कनेक्ट किए गए आलेख (जिनकी घात k की बहुलता विभिन्न जुड़े हुए घटकों की संख्या के बराबर है, को बाहर कर देती है, जो इसलिए होगा) एक से अधिक)। ब्रौवर सहित अधिकांश साहित्य में बड़े स्वदेशी मान को r (बहुलता f के साथ) और छोटे को s (बहुलता g के साथ) के रूप में संदर्भित किया गया है।

इतिहास

1963 में राज चंद्र बोस द्वारा सशक्त रूप से नियमित आलेख प्रस्तुत किए गए। [3] उन्होंने 1950 के दशक में वर्णक्रमीय आलेख सिद्धांत के तत्कालीन नए क्षेत्र में पहले के काम को आगे बढ़ाया।

उदाहरण

  • क्रम q का पैली आलेख srg(q, (q − 1)/2, (q − 5)/4, (q − 1)/4) है। सबसे छोटा पैली आलेख, q = 5, 5-चक्र (ऊपर) के साथ है।
  • चाप-संक्रमणीय आलेख दृढ़ता से नियमित हैं।

एक दृढ़ता से नियमित आलेख को आदिम कहा जाता है यदि आलेख और उसके पूरक दोनों जुड़े हुए हैं। उपरोक्त सभी आलेख μ = 0 या λ = k अन्यथा आदिम हैं।

कॉनवे की 99-आलेख समस्या एक srg (99, 14, 1, 2) के निर्माण के लिए कहती है। यह अज्ञात है कि क्या इन मापदंडों वाला कोई आलेख उपस्थित है, और जॉन हॉर्टन कॉनवे ने इस समस्या के समाधान के लिए $1000 के पुरस्कार की प्रस्तुतकश की।[5]


त्रिकोण-मुक्त आलेख

λ=0 वाले दृढ़तापूर्वक नियमित आलेख त्रिकोण-मुक्त आलेख हैं। 3 से कम शीर्षों पर पूर्ण आलेख और सभी पूर्ण द्विदलीय आलेख के अतिरिक्त, पहले सूचीबद्ध सात (पेंटागन, पीटरसन, क्लेबश, हॉफमैन-सिंगलटन, गेविर्ट्ज़, मेस्नर-एम22, और हिगमैन-सिम्स) ही एकमात्र ज्ञात हैं।

भूगणितीय आलेख

प्रत्येक दृढ़तापूर्वक नियमित आलेख के साथ एक भूगणितीय आलेख है, एक ऐसा आलेख जिसमें प्रत्येक दो शीर्षों पर एक अद्वितीय लघुतम पथ समस्या होती है। [6] एकमात्र ज्ञात दृढ़ता से नियमित आलेख के साथ कहाँ हैं जहाँ 0 है, इसलिए यह त्रिकोण-मुक्त भी है। इन्हें मूर आलेख कहा जाता है और ये हॉफमैन-सिंगलटन प्रमेय हैं। मापदंडों के अन्य संयोजन जैसे (400, 21, 2, 1) को अभी तक अस्वीकृत नहीं किया गया है। उन विशेषताओं पर चल रहे शोध के बाद भी, जिनके साथ एक दृढ़ता से नियमित आलेख होगा, [7][8] यह ज्ञात नहीं है कि क्या और भी अस्तित्व में हैं या उनकी संख्या सीमित है या नहीं। [6] केवल प्रारंभिक परिणाम ही ज्ञात है, वह ऐसे आलेख के लिए 1 नहीं हो सकता।

दृढ़ता से नियमित आलेख के बीजगणितीय गुण

मापदण्ड के बीच बुनियादी संबंध

srg(v, k, λ, μ) में चार मापदण्ड स्वतंत्र नहीं हैं। उन्हें निम्नलिखित संबंध का पालन करना होगा:

उपरोक्त संबंध निम्नलिखित गणना तर्क के माध्यम से प्राप्त किया गया है:

  1. आलेख के शीर्षों को तीन स्तरों में स्थित होने की कल्पना करें। स्तर 0 में किसी भी शीर्ष को मूल के रूप में चुनें। फिर इसके k प्रतिवैस स्तर 1 में हैं, और अन्य सभी शीर्ष स्तर 2 में हैं।
  2. स्तर 1 में शीर्ष सीधे जड़ से जुड़े होते हैं, इसलिए उनमें जड़ के साथ अन्य प्रतिवैस समान होने चाहिए, और ये सामान्य प्रतिवैस भी स्तर 1 में होने चाहिए। चूंकि प्रत्येक शीर्ष की घात k है, इसलिए वहां स्तर 2 में शीर्षों से जुड़ने के लिए प्रत्येक स्तर 1 नोड के किनारे शेष हैं। इसलिए, वहाँ स्तर 1 और स्तर 2 के बीच का किनारा है।
  3. स्तर 2 में शीर्ष सीधे जड़ से जुड़े नहीं हैं, इसलिए उनके मूल के साथ μ सामान्य प्रतिवैस होने चाहिए, और ये सभी सामान्य प्रतिवैस स्तर 1 में होने चाहिए। स्तर 2 में शीर्ष, और प्रत्येक स्तर 1 में μ शीर्षों से जुड़ा है। इसलिए स्तर 1 और स्तर 2 के बीच किनारों की संख्या है।
  4. स्तर 1 और स्तर 2 के बीच किनारों के लिए दो अभिव्यक्तियों को बराबर करने पर, संबंध इस प्रकार है।

आसन्नता आव्यूह समीकरण

मान लीजिए I पहचान आव्यूह को दर्शाता है और J को इकाई के आव्यूह को दर्शाता है। दृढ़ता से नियमित आलेख का आसन्नता आव्यूह समीकरणों को संतुष्ट करता है।

पहला:

जो नियमितता की आवश्यकता का पुनर्कथन है। इससे पता चलता है कि k सभी आइजन्वेक्टर के साथ आसन्न आव्यूह का एक आइजेनवैल्यू है।

दूसरा:

जो सशक्त नियमितता को व्यक्त करता है। बायीं ओर का ij-वां तत्व i से j तक दो-चरणीय पथों की संख्या देता है। दायीं ओर का पहला पद i से वापस i तक दो-चरणीय पथों की संख्या देता है। दूसरा पद दो-चरणीय पथों की संख्या देता है जब i और j सीधे जुड़े होते हैं। जब i और j जुड़े नहीं होते हैं तो तीसरा पद संगत मान देता है। चूंकि तीन मामले परस्पर अनन्य और सामूहिक रूप से संपूर्ण हैं, इसलिए सरल योगात्मक समानता इस प्रकार है।

इसके विपरीत, एक आलेख जिसका आसन्न आव्यूह उपरोक्त दोनों शर्तों को पूरा करता है और जो पूर्ण या शून्य आलेख नहीं है, एक दृढ़ता से नियमित आलेख है।[9]


आइजेनवैल्यू और आलेख स्पेक्ट्रम

चूँकि आसन्न आव्यूह A सममित है, यह उस ऑर्थोगोनल आधार का अनुसरण करता है। हमने पहले ही ऊपर एक आइजनवेक्टर देखा है जो आइगेनवैल्यू k के अनुरूप सभी से बना है। इसलिए अन्य आइजन्वेक्टरs x को सभी को संतुष्ट करना होगा जहां J पहले की तरह ऑल-वन्स आव्यूह है। पहले से स्थापित समीकरण लें:

और उपरोक्त समीकरण को आइजन्वेक्टर x से गुणा करें:

संगत आइजेनवैल्यू p को कॉल करें (भ्रमित न हों)। आलेख मापदण्ड) और स्थानापन्न , और :

x को हटाएँ और द्विघात प्राप्त करने के लिए पुनर्व्यवस्थित करें:

इससे दो अतिरिक्त आइगेनवैल्यू ​​मिलते हैं . इस प्रकार एक दृढ़ता से नियमित आव्यूह के लिए बिल्कुल तीन आइगेनवैल्यू ​​​​हैं।

इसके विपरीत, केवल तीन आइगेनवैल्यू ​​​​के साथ जुड़ा हुआ नियमित आलेख दृढ़ता से नियमित होता है।[10] अधिकांश दृढ़तापूर्वक नियमित आलेख साहित्य में शब्दावली का पालन करते हुए, बड़े आइजेनवैल्यू को बहुलता f के साथ r कहा जाता है और छोटे को बहुलता g के साथ s कहा जाता है।

चूँकि सभी आइगेनवैल्यू ​​​​का योग ट्रेस (रैखिक बीजगणित) है, जो इस मामले में शून्य है, संबंधित गुणन f और g की गणना की जा सकती है:

  • Eigenvalue k में बहुलता (गणित) 1 है।
  • आइजेनवैल्यू बहुलता है .
  • आइजेनवैल्यू बहुलता है .

चूँकि बहुलताएँ पूर्णांक होनी चाहिए, उनकी अभिव्यक्तियाँ v, k, μ, और λ के मानों पर और बाधाएँ प्रदान करती हैं।

जिसके लिए सशक्त रूप से नियमित आलेख असमान बहुलता वाले पूर्णांक आइगेनवैल्यू ​​​​हैं।

जिसके लिए सशक्त रूप से नियमित आलेख सममित सम्मेलन आव्यूह के साथ उनके संबंध के कारण सम्मेलन आलेख कहा जाता है। उनके मापदण्ड कम हो जाते हैं

उनके स्वदेशी मूल्य हैं और , दोनों की बहुलता बराबर है . इसके अतिरिक्त, इस मामले में, v को ब्रुक-राइसर-चौला प्रमेय से संबंधित दो वर्गों के योग के बराबर होना चाहिए।

आइगेनवैल्यू ​​​​और उनकी बहुलता के आगे गुण हैं:

  • , इसलिए
  • एक दिया गया srg(v, k, λ, μ) आइगेनवैल्यू ​​r और s के साथ, यह पूरक है srg(v, vk − 1, v − 2 − 2k + μ, v − 2k + λ) के आइगेनवैल्यू ​​-1-s और -1-r हैं।
  • बहुलता के लिए वैकल्पिक समीकरण हैं और
  • फ़्रेम भागफल स्थिति: . एक परिणाम के रूप में, अगर और केवल अगर किसी क्रम में.
  • केरिन स्थितियाँ: और
  • पूर्ण बाध्य: और .
  • पंजा बँधा हुआ: यदि , तब या .

यदि मापदंडों के किसी भी सेट के लिए उपरोक्त शर्तों का उल्लंघन किया जाता है, तो उन मापदंडों के लिए कोई दृढ़ता से नियमित आलेख उपस्थित नहीं है। ब्रौवर ने अस्तित्व या गैर-अस्तित्व की ऐसी सूचियां संकलित की हैं यहां गैर-अस्तित्व के कारणों के साथ, यदि कोई हो।

हॉफमैन-सिंगलटन प्रमेय

जैसा कि ऊपर उल्लेख किया गया है, आइगेनवैल्यू ​​​​की बहुलताएँ द्वारा दी गई हैं

जो पूर्णांक होना चाहिए.

1960 में, एलन जे. हॉफमैन और रॉबर्ट सिंगलटन ने मूर आलेख पर लागू होने पर उन अभिव्यक्तियों की जांच की, जिनमें λ = 0 और μ = 1 है। ऐसे आलेख त्रिकोण से मुक्त हैं (अन्यथा λ शून्य से अधिक होगा) और चतुर्भुज (अन्यथा μ 1 से अधिक होगा) , इसलिए उनकी परिधि (सबसे छोटी चक्र लंबाई) 5 है। समीकरण में λ और μ के मानों को प्रतिस्थापित करना , यह देखा जा सकता है , और आइजेनवैल्यू बहुलताएँ कम हो जाती हैं

गुणनखंडों के पूर्णांक होने के लिए, मात्रा तर्कसंगत होना चाहिए, इसलिए या तो अंश शून्य या हर है एक पूर्णांक है.

यदि अंश शून्य है, संभावनाएँ हैं:

  • k = 0 और v = 1 एक शीर्ष और बिना किनारों वाला एक तुच्छ आलेख उत्पन्न करता है, और
  • k = 2 और v = 5 से 5-शीर्ष चक्र आलेख प्राप्त होता है , उभयनिष्ठतौर पर एक नियमित पंचकोण के रूप में खींचा जाता है।

यदि हर तो, एक पूर्णांक t है एक पूर्ण वर्ग है , इसलिए . प्रतिस्थापन:

चूँकि दोनों पक्ष पूर्णांक हैं, एक पूर्णांक होना चाहिए, इसलिए t, अर्थात् 15 का एक गुणनखंड है , इसलिए . के बदले में:

  • k = 1 और v = 2 एक किनारे से जुड़े दो शीर्षों का एक तुच्छ आलेख प्राप्त करता है,
  • k = 3 और v = 10 पीटरसन आलेख प्राप्त करता है,
  • k = 7 और v = 50 हॉफमैन-सिंगलटन आलेख प्राप्त करता है, जिसे हॉफमैन और सिंगलटन ने इस विश्लेषण के दौरान खोजा था, और
  • k = 57 और v = 3250 एक प्रसिद्ध आलेख की भविष्यवाणी करता है जिसे 1960 के बाद से न तो खोजा गया है, न ही इसके अस्तित्व को अस्वीकृत किया गया है।[11]

हॉफमैन-सिंगलटन प्रमेय में कहा गया है कि ऊपर सूचीबद्ध आलेख को छोड़कर कोई भी नियमित रूप से नियमित परिधि-5 मूर आलेख नहीं हैं।

यह भी देखें

टिप्पणियाँ

  1. Brouwer, Andries E; Haemers, Willem H. Spectra of Graphs. p. 101 Archived 2012-03-16 at the Wayback Machine
  2. Godsil, Chris; Royle, Gordon. Algebraic Graph Theory. Springer-Verlag New York, 2001, p. 218.
  3. https://projecteuclid.org/euclid.pjm/1103035734, R. C. Bose, Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. Math 13 (1963) 389–419. (p. 122)
  4. Weisstein, Eric W., "Schläfli graph", MathWorld
  5. Conway, John H., Five $1,000 Problems (Update 2017) (PDF), Online Encyclopedia of Integer Sequences, retrieved 2019-02-12
  6. 6.0 6.1 Blokhuis, A.; Brouwer, A. E. (1988), "Geodetic graphs of diameter two", Geometriae Dedicata, 25 (1–3): 527–533, doi:10.1007/BF00191941, MR 0925851, S2CID 189890651
  7. Deutsch, J.; Fisher, P. H. (2001), "On strongly regular graphs with ", European Journal of Combinatorics, 22 (3): 303–306, doi:10.1006/eujc.2000.0472, MR 1822718
  8. Belousov, I. N.; Makhnev, A. A. (2006), "On strongly regular graphs with and their automorphisms", Doklady Akademii Nauk, 410 (2): 151–155, MR 2455371
  9. Cameron, P.J.; van Lint, J.H. (1991), Designs, Graphs, Codes and their Links, London Mathematical Society Student Texts 22, Cambridge University Press, p. 37, ISBN 978-0-521-42385-4
  10. Godsil, Chris; Royle, Gordon. Algebraic Graph Theory. Springer-Verlag, New York, 2001, Lemma 10.2.1.
  11. Dalfó, C. (2019), "A survey on the missing Moore graph", Linear Algebra and Its Applications, 569: 1–14, doi:10.1016/j.laa.2018.12.035, hdl:2117/127212, MR 3901732, S2CID 126689579


संदर्भ


बाहरी संबंध