आवर्त 3 तत्व: Difference between revisions
(Created page with "{{Short description|Third row of the periodic table}} {{Periodic table (micro)| title=Period 3 in the periodic table | mark=Na,Mg,Al,Si,P,S,Cl,Ar}} {{Sidebar periodic tabl...") |
No edit summary |
||
Line 2: | Line 2: | ||
{{Periodic table (micro)| title=Period 3 in the [[periodic table]] | mark=Na,Mg,Al,Si,P,S,Cl,Ar}} | {{Periodic table (micro)| title=Period 3 in the [[periodic table]] | mark=Na,Mg,Al,Si,P,S,Cl,Ar}} | ||
{{Sidebar periodic table|expanded=structure }} | {{Sidebar periodic table|expanded=structure }} | ||
रासायनिक तत्वों की [[ आवर्त सारणी |आवर्त सारणी]] की तीसरी पंक्ति (या [[ आवर्त सारणी अवधि |आवर्त सारणी अवधि]]) में अवधि 3 [[ रासायनिक तत्व |रासायनिक तत्व]]ों में से एक है। तत्वों के रासायनिक व्यवहार में आवर्ती (आवधिक) प्रवृत्तियों को चित्रित करने के लिए आवर्त सारणी को पंक्तियों में रखा गया है क्योंकि उनकी परमाणु संख्या बढ़ जाती है:नई पंक्ति शुरू होती है जब आवर्त सारणी एक पंक्ति को छोड़ देती है और रासायनिक व्यवहार दोहराना शुरू हो जाता है, जिसका अर्थ है कि समान व्यवहार वाले तत्व समान लंबवत स्तंभों में आते हैं। तीसरी अवधि में आठ तत्व होते हैं: सोडियम, मैग्नीशियम, एल्यूमीनियम, सिलिकॉन, फास्फोरस, सल्फर, क्लोरीन और आर्गन। पहले दो, सोडियम और मैग्नीशियम, आवर्त सारणी के [[ एस ब्लॉक |S-ब्लॉक]] के सदस्य हैं, जबकि अन्य [[ पी-ब्लॉक |P-ब्लॉक]] के सदस्य हैं। सभी आवर्त 3 तत्व प्रकृति में पाए जाते हैं और इनमें कम से कम एक [[ स्थिर समस्थानिक |स्थिर समस्थानिक]] होता है।<ref><span class="plainlinks">[http://scienceaid.co.uk/chemistry/inorganic/period3.html Period 3 Element] {{Webarchive|url=https://web.archive.org/web/20120729193401/http://scienceaid.co.uk/chemistry/inorganic/period3.html |date=2012-07-29 }}</span> from Scienceaid.co.uk</ref> | |||
== परमाणु संरचना == | == परमाणु संरचना == | ||
परमाणु संरचना के [[ क्वांटम यांत्रिकी ]] विवरण में, यह अवधि | परमाणु संरचना के [[ क्वांटम यांत्रिकी |क्वांटम यांत्रिकी]] विवरण में, यह अवधि तीसरे ({{math|1=''n'' = 3}}) शेल में इलेक्ट्रॉनों के निर्माण से मेल खाती है, विशेष रूप से इसके 3s और 3p उपकोशों को भरती है। 3d उपकोश है, लेकिन—औफ़बौ सिद्धांत के अनुपालन में—यह [[ अवधि 4 तत्व |अवधि 4 तत्व]] तक नहीं भरी जाती है। यह सभी आठ तत्वों को समान सटीक क्रम में 2 तत्वों की अवधि के अनुरूप बनाता है। ऑक्टेट नियम आम तौर पर अवधि 3 पर उसी तरह लागू होता है जैसे अवधि 2 तत्वों के लिए, क्योंकि 3d उपकोश सामान्य रूप से गैर-क्रियाशील होता है। | ||
== तत्व == | == तत्व == | ||
Line 42: | Line 40: | ||
| 18 || style="text-align: center" | Ar || [[p-block]] || [Ne] 3s<sup>2</sup> 3p<sup>6</sup> | | 18 || style="text-align: center" | Ar || [[p-block]] || [Ne] 3s<sup>2</sup> 3p<sup>6</sup> | ||
|} | |} | ||
=== सोडियम === | |||
{{Main|सोडियम}} | |||
सोडियम (प्रतीक '''Na''') नरम, चांदी-सफेद, अत्यधिक प्रतिक्रियाशील धातु है और क्षार धातुओं का सदस्य है; इसका एकमात्र स्थिर समस्थानिक है <sup>23</sup>'''Na है'''. यह प्रचुर तत्व है जो कई खनिजों जैसे [[ स्फतीय |स्फतीय]], [[ सोडालाइट |सोडालाइट]] और [[ सेंधा नमक |सेंधा नमक]] में मौजूद है। सोडियम के कई लवण पानी में अत्यधिक घुलनशील होते हैं और इस प्रकार पृथ्वी के जल निकायों में महत्वपूर्ण मात्रा में मौजूद होते हैं, जो महासागरों में [[ सोडियम क्लोराइड |सोडियम क्लोराइड]] के रूप में प्रचुर मात्रा में होते हैं। | |||
कई सोडियम यौगिक उपयोगी होते हैं, जैसे कि [[ साबुन |साबुन]] बनाने के लिए [[ सोडियम हाइड्रॉक्साइड |सोडियम हाइड्रॉक्साइड]] (लाइ), और सोडियम क्लोराइड डाइसिंग एजेंट और पोषक तत्व के रूप में उपयोग के लिए। वही [[ आयन |आयन]] भी कई खनिजों का एक घटक है, जैसे [[ सोडियम नाइट्रेट |सोडियम नाइट्रेट]]। | |||
मुक्त धातु, तात्त्विक सोडियम, प्रकृति में नहीं होता है लेकिन इसे सोडियम यौगिकों से तैयार किया जाना चाहिए। तात्त्विक सोडियम को पहली बार [[ हम्फ्री डेवी |हम्फ्री डेवी]] ने 1807 में सोडियम हाइड्रॉक्साइड के [[ इलेक्ट्रोलीज़ |इलेक्ट्रोलीज़]] द्वारा अलग किया था। | |||
=== मैग्नीशियम === | |||
{{Main|मैग्नीशियम}} | |||
मैग्नीशियम (प्रतीक '''Mg''') क्षारीय पृथ्वी धातु है और इसकी सामान्य ऑक्सीकरण संख्या +2 है। यह पृथ्वी की पपड़ी में रासायनिक तत्वों में आठवीं सबसे अधिक प्रचुरता है<ref name="Abundance">{{cite web |first=L. Bruce |last=Railsback |title=बहुतायत और पृथ्वी की महाद्वीपीय परत में सबसे प्रचुर मात्रा में तत्वों का रूप|access-date=2008-02-15 |url=http://railsback.org/Fundamentals/ElementalAbundanceTableP.pdf |website=Some Fundamentals of Mineralogy and Geochemistry |archive-date=2011-09-27 |archive-url=https://web.archive.org/web/20110927064201/http://www.gly.uga.edu/railsback/Fundamentals/ElementalAbundanceTableP.pdf |url-status=live }}</ref> और समग्र रूप से ज्ञात ब्रह्मांड में नौवां।<ref>{{Housecroft3rd|pages=305–306}}</ref><ref>{{cite book|last=Ash|first=Russell|title=सब कुछ 2006 के शीर्ष 10: सूचियों की अंतिम पुस्तक|publisher=Dk Pub|year=2005|url=http://plymouthlibrary.org/faqelements.htm|isbn=0-7566-1321-3|url-status=dead|archive-url=https://web.archive.org/web/20100210170504/http://plymouthlibrary.org/faqelements.htm|archive-date=2010-02-10}}</ref> मैग्नीशियम पृथ्वी पर (लोहे, ऑक्सीजन और सिलिकॉन के बाद) चौथा सबसे आम तत्व है, जो ग्रह के द्रव्यमान का 13% और ग्रह के [[ मेंटल (भूविज्ञान) |मेंटल (भूविज्ञान)]] का एक बड़ा अंश बनाता है। यह अपेक्षाकृत प्रचुर मात्रा में है क्योंकि यह [[ सुपरनोवा |सुपरनोवा]] सितारों में कार्बन में तीन हीलियम नाभिक के क्रमिक परिवर्धन द्वारा आसानी से निर्मित होता है (जो बदले में तीन हीलियम नाभिक से बनता है)। पानी में मैग्नीशियम आयन की उच्च [[ घुलनशीलता |घुलनशीलता]] के कारण, यह [[ समुद्री जल |समुद्री जल]] में घुलने वाला तीसरा सबसे प्रचुर तत्व है।<ref>{{cite news|url=http://www.seafriends.org.nz/oceano/seawater.htm#composition|title=समुद्री जल की रासायनिक संरचना|author=Anthoni, J Floor|year=2006}}</ref> मुक्त तत्व (धातु) पृथ्वी पर स्वाभाविक रूप से नहीं पाया जाता है, क्योंकि यह अत्यधिक प्रतिक्रियाशील है (हालांकि एक बार उत्पादित होने पर, यह ऑक्साइड की एक पतली परत में लेपित होता है [देखें निष्क्रियता], जो आंशिक रूप से इस प्रतिक्रियाशीलता को छुपाता है)। मुक्त धातु एक विशिष्ट चमकदार सफेद रोशनी के साथ जलती है, जिससे यह फ्लेयर्स में एक उपयोगी घटक बन जाती है। धातु अब मुख्य रूप से [[ नमकीन |नमकीन]] से प्राप्त [[ उदार |उदार]] लवण के इलेक्ट्रोलिसिस द्वारा प्राप्त की जाती है। व्यावसायिक रूप से, धातु के लिए मुख्य उपयोग [[ अल्युमीनियम |अल्युमीनियम]]-मैग्नीशियम [[ मिश्र धातु |मिश्र धातु]] बनाने के लिए एक मिश्र धातु एजेंट के रूप में होता है, जिसे कभी-कभी मैग्नीशियम या मैग्नीशियम कहा जाता है। चूंकि मैग्नीशियम एल्यूमीनियम की तुलना में कम घना होता है, इसलिए इन मिश्र धातुओं को उनके सापेक्ष हल्कापन और ताकत के लिए बेशकीमती माना जाता है। | |||
मैग्नीशियम (प्रतीक ' | |||
मुक्त तत्व (धातु) पृथ्वी पर स्वाभाविक रूप से नहीं पाया जाता है, क्योंकि यह अत्यधिक प्रतिक्रियाशील है (हालांकि एक बार उत्पादित होने पर, यह ऑक्साइड की एक पतली परत में लेपित होता है [देखें | |||
मैग्नीशियम आयन स्वाद | मैग्नीशियम आयन स्वाद में खट्टे होते हैं, और कम सांद्रता में ताजे खनिज पानी को प्राकृतिक तीखापन प्रदान करने में मदद करते हैं। | ||
=== एल्यूमिनियम === | === एल्यूमिनियम === | ||
{{Main| | {{Main|एल्यूमिनियम}} | ||
एल्युमिनियम (प्रतीक ' | |||
एल्युमिनियम (प्रतीक '''Al''') रासायनिक तत्वों के [[ बोरॉन समूह |बोरॉन समूह]] का सफेद सदस्य (चांदी) है और कुछ रसायनज्ञों द्वारा पोस्ट-संक्रमण के रूप में वर्गीकृत [[ पी-ब्लॉक धातु |P-ब्लॉक धातु]] है।<ref name=Huheey>Huheey JE, Keiter EA & Keiter RL 1993, ''Principles of Structure & Reactivity,'' 4th ed., HarperCollins College Publishers, {{ISBN|0-06-042995-X}}, p. 28</ref> यह सामान्य परिस्थितियों में पानी में घुलनशील नहीं है। एल्युमिनियम, पृथ्वी की पपड़ी में तीसरा सबसे प्रचुर तत्व ([[ ऑक्सीजन |ऑक्सीजन]] और [[ सिलिकॉन |सिलिकॉन]] के बाद) सबसे प्रचुर मात्रा में धातु है। यह पृथ्वी की ठोस सतह के वजन से लगभग 8% बनता है। एल्युमिनियम धातु रासायनिक रूप से बहुत अधिक प्रतिक्रियाशील है जो मूल रूप से उत्पन्न नहीं होती है। इसके बजाय, यह 270 से अधिक विभिन्न [[ खनिज |खनिज]]ों में मिला हुआ पाया जाता है।<ref>{{cite web|publisher=Science is Fun|author=Shakhashiri, Bassam Z.|url=http://scifun.chem.wisc.edu/chemweek/Aluminum/ALUMINUM.html|title=सप्ताह का रसायन: एल्युमिनियम|access-date=2007-08-28|archive-url=https://web.archive.org/web/20070906175512/http://scifun.chem.wisc.edu/CHEMWEEK/Aluminum/ALUMINUM.html|archive-date=2007-09-06|url-status=dead}}</ref> एल्युमिनियम का मुख्य [[ अयस्क |अयस्क]] [[ बाक्साइट |बाक्साइट]] है। | |||
एल्युमिनियम धातु के कम [[ घनत्व ]] और | एल्युमिनियम धातु के कम [[ घनत्व |घनत्व]] और निष्क्रियता की घटना के कारण [[ जंग |जंग]] का विरोध करने की क्षमता के लिए उल्लेखनीय है। एल्यूमीनियम और इसके [[ एल्यूमीनियम मिश्र धातु |एल्यूमीनियम मिश्र धातु]] से बने संरचनात्मक घटक [[ एयरोस्पेस |एयरोस्पेस]] उद्योग के लिए महत्वपूर्ण हैं और परिवहन और संरचनात्मक सामग्री के अन्य क्षेत्रों में महत्वपूर्ण हैं। एल्यूमीनियम के सबसे उपयोगी यौगिक, कम से कम वजन के आधार पर, ऑक्साइड और सल्फेट होते हैं। | ||
=== सिलिकॉन === | === सिलिकॉन === | ||
{{Main| | {{Main|सिलिकॉन}} | ||
सिलिकॉन (प्रतीक ' | |||
सिलिकॉन (प्रतीक '''Si''') [[ कार्बन |कार्बन]] समूह (समूह 14 [[ धातु के रूप-रंग का एक अधातु पदार्थ |धातु के रूप-रंग का एक अधातु पदार्थ]]) है| यह अपने रासायनिक एनालॉग कार्बन की तुलना में कम प्रतिक्रियाशील है, आवर्त सारणी में सीधे इसके ऊपर अधातु है, लेकिन [[ जर्मेनियम |जर्मेनियम]] की तुलना में अधिक प्रतिक्रियाशील है, जो सीधे तालिका में इसके नीचे धातु है। सिलिकॉन के चरित्र के बारे में विवाद इसकी खोज से दिनांकित है: सिलिकॉन को पहली बार 1824 में शुद्ध रूप में तैयार किया गया था और इसे सिलिकियम नाम दिया गया था ({{lang-la|silicis}}, चकमक पत्थर), धातु का सुझाव देने के लिए -ium शब्द के अंत के साथ। हालांकि, इसका अंतिम नाम, 1831 में सुझाया गया, रासायनिक रूप से कार्बन और बोरॉन के अधिक समान तत्वों को दर्शाता है। | |||
ब्रह्मांड में रासायनिक तत्वों | ब्रह्मांड में रासायनिक तत्वों के द्रव्यमान के अनुसार सिलिकॉन आठवां सबसे अधिक प्रचुरता में है, लेकिन प्रकृति में शुद्ध मुक्त तत्व के रूप में बहुत कम ही होता है। यह सबसे व्यापक रूप से [[ धूल |धूल]], [[ रेत |रेत]], ग्रह और [[ ग्रहों |ग्रहों]] में [[ सिलिकॉन डाइऑक्साइड |सिलिकॉन डाइऑक्साइड]] (सिलिका) या [[ सिलिकेट |सिलिकेट]] के विभिन्न रूपों के रूप में वितरित किया जाता है। पृथ्वी की पपड़ी का 90% से अधिक [[ सिलिकेट खनिज |सिलिकेट खनिज]]ों से बना है, जो ऑक्सीजन के बाद सिलिकॉन को पृथ्वी की पपड़ी (लगभग 28% द्रव्यमान) में दूसरा सबसे प्रचुर तत्व बनाता है।<ref>Nave, R. [http://hyperphysics.phy-astr.gsu.edu/hbase/tables/elabund.html Abundances of the Elements in the Earth's Crust], Georgia State University</ref> अधिकांश [[ सिलिकॉन |सिलिकॉन]] का उपयोग व्यावसायिक रूप से अलग किए बिना किया जाता है, और वास्तव में प्रकृति से यौगिकों के बहुत कम प्रसंस्करण के साथ इनमें मिट्टी, सिलिका रेत और पत्थर का प्रत्यक्ष औद्योगिक भवन उपयोग शामिल है। सिरेमिक [[ ईंट |ईंट]] में सिलिका का उपयोग किया जाता है। सिलिकेट [[ मोर्टार (चिनाई) |मोर्टार (चिनाई)]] और [[ प्लास्टर |प्लास्टर]] के लिए [[ पोर्टलैंड सीमेंट |पोर्टलैंड सीमेंट]] में जाता है, और [[ ठोस |ठोस]] बनाने के लिए सिलिका रेत और बजरी के साथ मिलाया जाता है। सिलिकेट [[ चीनी मिट्टी |चीनी मिट्टी]] के बरतन जैसे व्हाइटवेयर सिरेमिक में और पारंपरिक [[ क्वार्ट्ज |क्वार्ट्ज]]-आधारित [[ सोडा लाइम गिलास |सोडा लाइम गिलास]] में भी होते हैं। [[ सिलिकन कार्बाइड |सिलिकन कार्बाइड]] जैसे अधिक आधुनिक सिलिकॉन यौगिक अपघर्षक और उच्च शक्ति वाले सिरेमिक बनाते हैं। सिलिकॉन सर्वव्यापी सिंथेटिक सिलिकॉन-आधारित पॉलिमर का आधार है जिसे सिलिकोन कहा जाता है। | ||
अधिकांश [[ सिलिकॉन ]] का उपयोग व्यावसायिक रूप से अलग किए बिना किया जाता है, और वास्तव में | |||
आधुनिक विश्व अर्थव्यवस्था पर | आधुनिक विश्व अर्थव्यवस्था पर अयौगिकसिलिकॉन का भी बड़ा प्रभाव पड़ता है। यद्यपि अधिकांश मुक्त सिलिकॉन का उपयोग स्टील रिफाइनिंग, एल्यूमीनियम-कास्टिंग और ठीक रासायनिक उद्योगों (अक्सर [[ धुआँ लगायी हुई सिलिका |धुआँ लगायी हुई सिलिका]] बनाने के लिए) में किया जाता है, अर्धचालक इलेक्ट्रॉनिक्स (<10%) में उपयोग किए जाने वाले अत्यधिक शुद्ध सिलिकॉन का अपेक्षाकृत छोटा हिस्सा शायद अधिक महत्वपूर्ण है। एकीकृत परिपथों में सिलिकॉन के व्यापक उपयोग के कारण, अधिकांश कंप्यूटरों का आधार, आधुनिक तकनीक का एक बड़ा हिस्सा इस पर निर्भर करता है। | ||
=== फास्फोरस === | === फास्फोरस === | ||
{{Main| | {{Main|फास्फोरस}} | ||
फॉस्फोरस (प्रतीक '''P''') [[ पिक्टोजेन |पिक्टोजेन]] का वैलेंसी (रसायन विज्ञान) [[ अधातु |अधातु]] है, खनिज के रूप में फास्फोरस लगभग हमेशा अपने अधिकतम ऑक्सीकृत ([[ पेंटावलेंट |पेंटावलेंट]]) अवस्था में अकार्बनिक [[ फॉस्फेट खनिज |फॉस्फेट खनिज]]ों के रूप में मौजूद होता है। अयौगिक फास्फोरस दो प्रमुख रूपों में मौजूद है -[[ सफेद फास्फोरस |सफेद फास्फोरस]] और [[ लाल फास्फोरस |लाल फास्फोरस]] - लेकिन इसकी उच्च प्रतिक्रियाशीलता के कारण, फास्फोरस पृथ्वी पर कभी भी मुक्त तत्व के रूप में नहीं पाया जाता है। | |||
उत्पादित होने वाले अयौगिक फास्फोरस का पहला रूप (1669 में सफेद फास्फोरस) ऑक्सीजन के संपर्क में एक फीकी चमक का उत्सर्जन करता है - इसलिए इसका नाम ग्रीक पौराणिक कथाओं से {{lang|el|Φωσφόρος}} दिया गया है, जिसका अर्थ है - प्रकाश-वाहक (लैटिन [[ लूसिफ़ेर |लूसिफ़ेर]]), [[ संध्या का तारा |संध्या का तारा]], [[ शुक्र |शुक्र]] ग्रह। यद्यपि [[ स्फुरदीप्ति |स्फुरदीप्ति]] शब्द, जिसका अर्थ है रोशनी के बाद चमक, फास्फोरस की इस संपत्ति से निकला है, फास्फोरस की चमक सफेद (लेकिन लाल नहीं) फास्फोरस के ऑक्सीकरण से उत्पन्न होती है और इसे [[ chemiluminescence |रासायनिक संदीप्ति]] कहा जाना चाहिए। यह अष्टक नियम के स्थिर अपवादों को आसानी से उत्पन्न करने वाला सबसे हल्का तत्व भी है। | |||
अधिकांश फास्फोरस यौगिकों का उपयोग उर्वरकों के रूप में किया जाता है। अन्य अनुप्रयोगों में [[ डिटर्जेंट |डिटर्जेंट]], [[ कीटनाशक |कीटनाशक]]ों और [[ तंत्रिका एजेंट |तंत्रिका एजेंट]]ों और माचिस में ऑर्गनोफॉस्फोरस यौगिकों की भूमिका शामिल है।<ref>Herbert Diskowski, Thomas Hofmann "Phosphorus" in Ullmann's Encyclopedia of Industrial Chemistry 2005, Wiley-VCH, Weinheim. {{DOI|10.1002/14356007.a19_505}}</ref> | |||
=== सल्फर === | |||
{{Main|सल्फर}} | |||
सल्फर (प्रतीक S) एक प्रचुर मात्रा में बहुसंख्यक अधातु [<nowiki/>[[ वैलेंस (रसायन विज्ञान) |वैलेंस (रसायन विज्ञान)]]] है, जो चाकोजेन्स में से एक है। सामान्य परिस्थितियों में, सल्फर परमाणु रासायनिक सूत्र S8 के साथ चक्रीय अष्टपरमाण्विक[[ ऑक्टासल्फर |(ऑक्टासल्फर]]) अणु बनाते हैं। अयौगिक सल्फर कमरे के तापमान पर एक चमकदार पीला [[ क्रिस्टल |क्रिस्टल]]ीय ठोस होता है। रासायनिक रूप से, सल्फर [[ ऑक्सीडेंट |ऑक्सीडेंट]] या कम करने वाले एजेंट के रूप में प्रतिक्रिया कर सकता है। यह कार्बन सहित अधिकांश [[ धातु |धातु]]ओं और कई अधातुओं का ऑक्सीकरण करता है, जिससे अधिकांश ऑर्गोसल्फर यौगिकों में इसका नकारात्मक चार्ज होता है, लेकिन यह ऑक्सीजन और [[ एक अधातु तत्त्व |एक अधातु तत्त्व]] जैसे कई मजबूत ऑक्सीडेंट को कम करता है। | |||
सल्फर (प्रतीक | |||
प्रकृति में, सल्फर को शुद्ध तत्व के रूप में | प्रकृति में, सल्फर को शुद्ध तत्व के रूप में [[ सल्फाइड |सल्फाइड]] और [[ सल्फेट |सल्फेट]] खनिजों के रूप में पाया जा सकता है। अयौगिक सल्फर क्रिस्टल आमतौर पर खनिज संग्राहकों द्वारा उनके चमकीले रंग के [[ बहुतल |बहुतल]] आकृतियों के लिए मांगे जाते हैं। देशी रूप में प्रचुर मात्रा में होने के कारण, सल्फर प्राचीन काल में जाना जाता था, [[ प्राचीन ग्रीस |प्राचीन ग्रीस]], चीन और [[ प्राचीन मिस्र |प्राचीन मिस्र]] में इसके उपयोग के लिए उल्लेख किया गया था। सल्फर के धुएं का उपयोग धूमक के रूप में किया जाता था, और सल्फर युक्त औषधीय मिश्रणों का उपयोग बाम और एंटीपैरासिटिक के रूप में किया जाता था। सल्फर को [[ बाइबिल |बाइबिल]] में [[ अंग्रेजी भाषा |अंग्रेजी भाषा]] में गंधक के रूप में संदर्भित किया गया है, इस नाम का उपयोग अभी भी कई गैर-वैज्ञानिक शब्दों में किया जाता है।<ref name=Greenwd>Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann. {{ISBN|0-7506-3365-4}}.</ref> सल्फर को अपने स्वयं के [[ रासायनिक प्रतीक |रासायनिक प्रतीक]] प्राप्त करने के लिए पर्याप्त महत्वपूर्ण माना जाता था। [[ बारूद |बारूद]] की सर्वोत्तम गुणवत्ता बनाने के लिए इसकी आवश्यकता थी, और चमकीले पीले पाउडर को कीमियागर द्वारा सोने के कुछ गुणों को शामिल करने के लिए परिकल्पित किया गया था, जिसे उन्होंने इससे संश्लेषित करने की मांग की थी। 1777 में, [[ एंटोनी लवॉज़िएर |एंटोनी लवॉज़िएर]] ने वैज्ञानिक समुदाय को यह समझाने में मदद की कि सल्फर एक यौगिक के बजाय एक मूल तत्व था। | ||
अयौगिक सल्फर को बार नमक के गुंबदों से निकाला जाता था, जहां यह कभी-कभी लगभग शुद्ध रूप में होता है, लेकिन 20 वीं शताब्दी के उत्तरार्ध से यह विधि अप्रचलित हो गई है। आज, लगभग सभी अयौगिक सल्फर [[ प्राकृतिक गैस |प्राकृतिक गैस]] और [[ पेट्रोलियम |पेट्रोलियम]] से सल्फर युक्त दूषित पदार्थों को हटाने के उपोत्पाद के रूप में उत्पादित होते हैं। तत्व का व्यावसायिक उपयोग मुख्य रूप से [[ उर्वरक |उर्वरक]]ों में होता है, क्योंकि इसके लिए पौधों की अपेक्षाकृत उच्च आवश्यकता होती है, और [[ सल्फ्यूरिक एसिड |सल्फ्यूरिक एसिड]] के निर्माण में, एक प्राथमिक औद्योगिक रसायन। तत्व के अन्य प्रसिद्ध उपयोग माचिस, [[ कीटनाशक |कीटनाशक]] और कवकनाशी में हैं। कई सल्फर यौगिक गंधहीन होते हैं, और गंधयुक्त प्राकृतिक गैस, स्कंक गंध, अंगूर, और लहसुन की गंध सल्फर यौगिकों के कारण होती है। जीवित जीवों द्वारा उत्पादित [[ हाइड्रोजन सल्फाइड |हाइड्रोजन सल्फाइड]] सड़ते अंडे और अन्य जैविक प्रक्रियाओं के लिए विशिष्ट गंध प्रदान करता है। | |||
=== क्लोरीन === | === क्लोरीन === | ||
{{Main| | {{Main|क्लोरीन}} | ||
क्लोरीन (प्रतीक | |||
क्लोरीन (प्रतीक Cl) दूसरा सबसे हल्का [[ हलोजन |हलोजन]] है। तत्व मानक परिस्थितियों में द्विपरमाणुक अणु बनाता है, जिसे डाइक्लोरीन कहा जाता है। इसमें उच्चतम इलेक्ट्रॉन आत्मीयता है और सभी तत्वों की उच्चतम विद्युतीयता में से एक है; इस प्रकार क्लोरीन एक प्रबल ऑक्सीकारक है। | |||
क्लोरीन, सोडियम क्लोराइड ([[ नमक ]]) का सबसे आम यौगिक | क्लोरीन, सोडियम क्लोराइड ([[ नमक |नमक]]) का सबसे आम यौगिक है जो प्राचीन काल से जाना जाता है; हालाँकि, 1630 के आसपास, बेल्जियम के रसायनज्ञ और चिकित्सक जान बैपटिस्ट वैन हेलमोंट द्वारा क्लोरीन गैस प्राप्त की गई थी। अयौगिक क्लोरीन का संश्लेषण और लक्षण वर्णन 1774 में स्वीडिश रसायनज्ञ कार्ल विल्हेम शीले द्वारा किया गया था, जिन्होंने इसे "डिफ्लोजिस्टिकेटेड म्यूरिएटिक एसिड वायु" कहा था, क्योंकि उन्होंने [[ हाइड्रोक्लोरिक एसिड |हाइड्रोक्लोरिक एसिड]] से प्राप्त ऑक्साइड को संश्लेषित किया था, उस समय एसिड को आवश्यक रूप से ऑक्सीजन युक्त माना जाता था। क्लाउड बेर्थोलेट सहित कई रसायनज्ञों ने सुझाव दिया कि स्कील की "डिफोलॉजिस्टिकेटेड म्यूरिएटिक एसिड वायु" ऑक्सीजन और अभी तक अनदेखे तत्व का एक संयोजन होना चाहिए, और शीले ने इस ऑक्साइड के भीतर कथित नए तत्व को म्यूरिएटिकम नाम दिया। यह सुझाव कि यह नई खोजी गई गैस एक साधारण तत्व थी, 1809 में जोसेफ लुइस गे-लुसाक और लुई-जैक्स द्वारा बनाई गई थी। इसकी पुष्टि 1810 में [[ सर हम्फ्री डेवी |सर हम्फ्री डेवी]] ने की थी, जिन्होंने इसे क्लोरीन नाम दिया था, ग्रीक शब्द χλωρός (chlōros) से, जिसका अर्थ है हरा-पीला। | ||
क्लोरीन कई अन्य यौगिकों का एक घटक है। यह पृथ्वी की पपड़ी में | क्लोरीन कई अन्य यौगिकों का एक घटक है। यह पृथ्वी की पपड़ी में दूसरा सबसे प्रचुर मात्रा में हैलोजन और 21वां सबसे प्रचुर मात्रा में रासायनिक तत्व है। क्लोरीन की महान ऑक्सीकरण शक्ति ने इसे अपने [[ ब्लीच (रासायनिक) |ब्लीच (रासायनिक)]] और कीटाणुनाशक उपयोगों के साथ-साथ रासायनिक उद्योग में एक आवश्यक अभिकर्मक होने के लिए प्रेरित किया। सामान्य कीटाणुनाशक के रूप में, [[ [[ स्विमिंग पूल |स्विमिंग पूल]] स्वच्छता ]] क्लोरीन यौगिकों का उपयोग उन्हें साफ रखने और स्विमिंग पूल की स्वच्छता के लिए किया जाता है। ऊपरी वायुमंडल में, क्लोरीन युक्त अणुओं जैसे [[ क्लोरो ]]फ्लोरोकार्बन को ओजोन रिक्तीकरण में फंसाया गया है। | ||
=== आर्गन === | === आर्गन === | ||
{{Main| | {{Main|आर्गन}} | ||
आर्गन (प्रतीक ' | |||
आर्गन (प्रतीक '''Ar''') समूह 18 में तीसरा तत्व है। आर्गन, 0.93% पृथ्वी के वायुमंडल में तीसरी सबसे आम गैस है, जो इसे [[ कार्बन डाइआक्साइड |कार्बन डाइआक्साइड]] से अधिक सामान्य बनाती है। यह लगभग सभी [[ रेडियम-धर्मी |रेडियम-धर्मी]] [[ आर्गन-40 |आर्गन-40]] है जो पृथ्वी की पपड़ी में पोटेशियम-40 के क्षय से प्राप्त होता है। ब्रह्मांड में, [[ आर्गन -36 |आर्गन -36]] अब तक का सबसे आम आर्गन आइसोटोप है, जो [[ तारकीय न्यूक्लियोसिंथेसिस |तारकीय न्यूक्लियोसिंथेसिस]] द्वारा निर्मित पसंदीदा आर्गन आइसोटोप है। | |||
आर्गन नाम [[ ग्रीक भाषा ]] के नपुंसक विशेषण ἀργόν से लिया गया है, जिसका अर्थ है आलसी या निष्क्रिय, क्योंकि तत्व लगभग कोई रासायनिक प्रतिक्रिया नहीं करता है। बाहरी परमाणु कोश में पूर्ण ऑक्टेट नियम (आठ इलेक्ट्रॉन) आर्गन को अन्य तत्वों के साथ बंधन के लिए स्थिर और प्रतिरोधी बनाता है। 83.8058 [[ केल्विन ]] का इसका | आर्गन नाम [[ ग्रीक भाषा |ग्रीक भाषा]] के नपुंसक विशेषण ἀργόν से लिया गया है, जिसका अर्थ है आलसी या निष्क्रिय, क्योंकि तत्व लगभग कोई रासायनिक प्रतिक्रिया नहीं करता है। बाहरी परमाणु कोश में पूर्ण ऑक्टेट नियम (आठ इलेक्ट्रॉन) आर्गन को अन्य तत्वों के साथ बंधन के लिए स्थिर और प्रतिरोधी बनाता है। 83.8058 [[ केल्विन |केल्विन]] का इसका तिगुना बिंदु तापमान 1990 के अंतर्राष्ट्रीय तापमान पैमाने में एक परिभाषित निश्चित बिंदु है। | ||
आर्गन का उत्पादन औद्योगिक रूप से तरल वायु के भिन्नात्मक आसवन द्वारा किया जाता है। आर्गन का उपयोग ज्यादातर वेल्डिंग और अन्य उच्च तापमान वाली औद्योगिक प्रक्रियाओं में | आर्गन का उत्पादन औद्योगिक रूप से तरल वायु के भिन्नात्मक आसवन द्वारा किया जाता है। आर्गन का उपयोग ज्यादातर वेल्डिंग और अन्य उच्च तापमान वाली औद्योगिक प्रक्रियाओं में अक्रिय परिरक्षण गैस के रूप में किया जाता है, जहां आमतौर पर गैर-प्रतिक्रियाशील पदार्थ प्रतिक्रियाशील हो जाते हैं: उदाहरण के लिए, ग्रेफाइट को जलने से रोकने के लिए ग्रेफाइट इलेक्ट्रिक भट्टियों में एक आर्गन वातावरण का उपयोग किया जाता है। आर्गन गैस का उपयोग गरमागरम और फ्लोरोसेंट रोशनी, और अन्य प्रकार के गैस डिस्चार्ज ट्यूबों में भी होता है। आर्गन एक विशिष्ट ब्लू-ग्रीन गैस लेजर बनाता है। | ||
== जैविक भूमिकाएं == | == जैविक भूमिकाएं == | ||
सोडियम सभी जानवरों और कुछ पौधों के लिए | सोडियम सभी जानवरों और कुछ पौधों के लिए [[ आहार खनिज |आहार खनिज]] है। जानवरों में, सोडियम आयनों का उपयोग [[ पोटैशियम |पोटैशियम]] आयनों के विरुद्ध Na+/K+-ATPase किया जाता है, जिससे आवेश के नष्ट होने पर तंत्रिका आवेगों के संचरण की अनुमति मिलती है; इसलिए इसे आहार अकार्बनिक मैक्रोमिनरल के रूप में वर्गीकृत किया गया है। | ||
मैग्नीशियम [[ मानव शरीर ]] में द्रव्यमान के हिसाब से ग्यारहवां सबसे प्रचुर तत्व है; इसके आयन सभी जीवित कोशिकाओं (जीव विज्ञान) के लिए आवश्यक हैं, जहां वे [[ एडेनोसाइन ट्रायफ़ोस्फेट ]], [[ डीएनए ]] और | मैग्नीशियम [[ मानव शरीर |मानव शरीर]] में द्रव्यमान के हिसाब से ग्यारहवां सबसे प्रचुर तत्व है; इसके आयन सभी जीवित कोशिकाओं (जीव विज्ञान) के लिए आवश्यक हैं, जहां वे [[ एडेनोसाइन ट्रायफ़ोस्फेट |एडेनोसाइन ट्रायफ़ोस्फेट]], [[ डीएनए |DNA]] और RNA जैसे महत्वपूर्ण जैविक [[ पॉलीफॉस्फेट |पॉलीफॉस्फेट]] यौगिकों में हेरफेर करने में प्रमुख भूमिका निभाते हैं। इस प्रकार सैकड़ों [[ एंजाइम |एंजाइम]]ों को कार्य करने के लिए मैग्नीशियम आयनों की आवश्यकता होती है। मैग्नीशियम [[ क्लोरोफिल |क्लोरोफिल]] के केंद्र में धात्विक आयन भी है, और इस प्रकार उर्वरकों के लिए एक सामान्य योजक है।<ref>{{cite web|url=http://www.mg12.info|title=स्वास्थ्य में मैग्नीशियम}}</ref> मैग्नीशियम यौगिकों का उपयोग औषधीय रूप से सामान्य जुलाब, एंटासिड (जैसे, मैग्नेशिया का दूध) के रूप में किया जाता है, और कई स्थितियों में जहां असामान्य तंत्रिका उत्तेजना और रक्त वाहिका ऐंठन के स्थिरीकरण की आवश्यकता होती है (जैसे, [[ एक्लंप्षण |एक्लंप्षण]] का इलाज करने के लिए)। | ||
पर्यावरण में इसकी व्यापकता के बावजूद, एल्युमीनियम लवण का उपयोग जीवन के किसी भी रूप में नहीं किया जाता है। इसकी व्यापकता को ध्यान में रखते हुए, यह पौधों और जानवरों द्वारा अच्छी तरह से सहन किया जाता है।<ref name=Ullmann>{{cite book |doi=10.1002/14356007.a01_527.pub2 |chapter=Aluminum Compounds, Inorganic|title=उलमन का औद्योगिक रसायन विज्ञान का विश्वकोश|year=2007|last1=Helmboldt|first1=Otto|last2=Keith Hudson|first2=L.|last3=Misra|first3=Chanakya|last4=Wefers|first4=Karl|last5=Heck|first5=Wolfgang|last6=Stark|first6=Hans|last7=Danner|first7=Max|last8=Rösch|first8=Norbert|isbn=978-3527306732}}</ref> उनकी व्यापकता के कारण, एल्युमीनियम यौगिकों की संभावित लाभकारी (या अन्यथा) जैविक भूमिकाएँ निरंतर रुचि की हैं। | पर्यावरण में इसकी व्यापकता के बावजूद, एल्युमीनियम लवण का उपयोग जीवन के किसी भी रूप में नहीं किया जाता है। इसकी व्यापकता को ध्यान में रखते हुए, यह पौधों और जानवरों द्वारा अच्छी तरह से सहन किया जाता है।<ref name=Ullmann>{{cite book |doi=10.1002/14356007.a01_527.pub2 |chapter=Aluminum Compounds, Inorganic|title=उलमन का औद्योगिक रसायन विज्ञान का विश्वकोश|year=2007|last1=Helmboldt|first1=Otto|last2=Keith Hudson|first2=L.|last3=Misra|first3=Chanakya|last4=Wefers|first4=Karl|last5=Heck|first5=Wolfgang|last6=Stark|first6=Hans|last7=Danner|first7=Max|last8=Rösch|first8=Norbert|isbn=978-3527306732}}</ref> उनकी व्यापकता के कारण, एल्युमीनियम यौगिकों की संभावित लाभकारी (या अन्यथा) जैविक भूमिकाएँ निरंतर रुचि की हैं। | ||
जीव विज्ञान में सिलिकॉन एक आवश्यक तत्व है, हालांकि जानवरों के लिए इसके केवल छोटे अंशों की आवश्यकता प्रतीत होती है,<ref name="Niels">{{cite journal|doi=10.1146/annurev.nu.04.070184.000321|pages =21–41|journal=Annual Review of Nutrition|volume=4|year=1984|title=पोषण में अल्ट्राट्रेस तत्व|first=Forrest H.|last=Nielsen|pmid=6087860}}</ref> हालांकि विभिन्न [[ समुद्री स्पंज ]]ों को संरचना के लिए सिलिकॉन की आवश्यकता होती है। यह पौधों के चयापचय के लिए बहुत अधिक महत्वपूर्ण है, विशेष रूप से कई घास, और [[ सिलिकिक अम्ल ]] (एक प्रकार का सिलिका) सूक्ष्म [[ डायटम ]] के सुरक्षात्मक गोले के हड़ताली सरणी का आधार बनाता है। | जीव विज्ञान में सिलिकॉन एक आवश्यक तत्व है, हालांकि जानवरों के लिए इसके केवल छोटे अंशों की आवश्यकता प्रतीत होती है,<ref name="Niels">{{cite journal|doi=10.1146/annurev.nu.04.070184.000321|pages =21–41|journal=Annual Review of Nutrition|volume=4|year=1984|title=पोषण में अल्ट्राट्रेस तत्व|first=Forrest H.|last=Nielsen|pmid=6087860}}</ref> हालांकि विभिन्न [[ समुद्री स्पंज |समुद्री स्पंज]]ों को संरचना के लिए सिलिकॉन की आवश्यकता होती है। यह पौधों के चयापचय के लिए बहुत अधिक महत्वपूर्ण है, विशेष रूप से कई घास, और [[ सिलिकिक अम्ल |सिलिकिक अम्ल]] (एक प्रकार का सिलिका) सूक्ष्म [[ डायटम |डायटम]] के सुरक्षात्मक गोले के हड़ताली सरणी का आधार बनाता है। | ||
फास्फोरस जीवन के लिए आवश्यक है। फॉस्फेट के रूप में, यह | फास्फोरस जीवन के लिए आवश्यक है। फॉस्फेट के रूप में, यह DNA, RNA, एडेनोसिन ट्राइफॉस्फेट और [[ फॉस्फोलिपिड |फॉस्फोलिपिड]]्स का एक घटक है जो सभी कोशिका झिल्ली बनाते हैं। फास्फोरस और जीवन के बीच की कड़ी को प्रदर्शित करते हुए, अयौगिक फास्फोरस को ऐतिहासिक रूप से पहले मानव मूत्र से अलग किया गया था, और अस्थि राख एक महत्वपूर्ण प्रारंभिक फॉस्फेट स्रोत था। फॉस्फेट खनिज जीवाश्म हैं। कुछ जलीय प्रणालियों में वृद्धि के लिए निम्न फॉस्फेट का स्तर एक महत्वपूर्ण सीमा है। आज, फॉस्फोरस-आधारित रसायनों का सबसे महत्वपूर्ण व्यावसायिक उपयोग उर्वरकों का उत्पादन है, फॉस्फोरस को बदलने के लिए जिसे पौधे मिट्टी से हटाते हैं। | ||
सल्फर सभी जीवन के लिए एक आवश्यक तत्व है, और जैव रासायनिक प्रक्रियाओं में व्यापक रूप से उपयोग किया जाता है। चयापचय प्रतिक्रियाओं में, सल्फर यौगिक सरल जीवों के लिए ईंधन और श्वसन (ऑक्सीजन-प्रतिस्थापन) सामग्री दोनों के रूप में कार्य करते हैं। कार्बनिक रूप में सल्फर विटामिन [[ बायोटिन ]] और [[ | सल्फर सभी जीवन के लिए एक आवश्यक तत्व है, और जैव रासायनिक प्रक्रियाओं में व्यापक रूप से उपयोग किया जाता है। चयापचय प्रतिक्रियाओं में, सल्फर यौगिक सरल जीवों के लिए ईंधन और श्वसन (ऑक्सीजन-प्रतिस्थापन) सामग्री दोनों के रूप में कार्य करते हैं। कार्बनिक रूप में सल्फर विटामिन [[ बायोटिन |बायोटिन]] और [[Index.php?title=थायमिन|थायमिन]] में मौजूद होता है, जिसे बाद में सल्फर के लिए ग्रीक शब्द के लिए नामित किया जाता है। सल्फर कई एंजाइमों और [[ ग्लूटेथिओन |ग्लूटेथिओन]] और [[ थिओरेडॉक्सिन |थिओरेडॉक्सिन]] जैसे एंटीऑक्सीडेंट अणुओं का एक महत्वपूर्ण हिस्सा है। कार्बनिक रूप से बंधुआ सल्फर [[ एमिनो एसिड |एमिनो एसिड]][[ सिस्टीन ]]और [[ मेथियोनीन |मेथियोनीन]] के रूप में सभी प्रोटीन का एक घटक है। बाहरी त्वचा, बालों और पंखों में पाए जाने वाले प्रोटीन [[ केरातिन |केरातिन]] की यांत्रिक शक्ति और अघुलनशीलता के लिए [[ डाइसल्फ़ाइड |डाइसल्फ़ाइड]] बांड काफी हद तक जिम्मेदार होते हैं, और तत्व जलने पर उनकी तीखी गंध में योगदान देता है। | ||
अयौगिक क्लोरीन सभी जीवों के लिए बेहद खतरनाक और जहरीला है, और [[ रासायनिक युद्ध |रासायनिक युद्ध]] में [[ फुफ्फुसीय एजेंट |फुफ्फुसीय एजेंट]] के रूप में प्रयोग किया जाता है; हालांकि, [[ क्लोराइड |क्लोराइड]] आयनों के रूप में, मनुष्यों सहित, जीवन के अधिकांश रूपों के लिए क्लोरीन आवश्यक है। | |||
आर्गन की कोई जैविक भूमिका नहीं है। ऑक्सीजन के अलावा किसी भी गैस की तरह, आर्गन एक श्वासावरोधक है। | आर्गन की कोई जैविक भूमिका नहीं है। ऑक्सीजन के अलावा किसी भी गैस की तरह, आर्गन एक श्वासावरोधक है। | ||
Line 127: | Line 127: | ||
== तत्वों की तालिका == | == तत्वों की तालिका == | ||
{{Periodic table (period 3)}} | {{Periodic table (period 3)}} | ||
== टिप्पणियाँ == | == टिप्पणियाँ == | ||
{{notelist}} | {{notelist}} | ||
==इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची== | ==इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची== | ||
Revision as of 14:51, 22 November 2022
Part of a series on the |
Periodic table |
---|
रासायनिक तत्वों की आवर्त सारणी की तीसरी पंक्ति (या आवर्त सारणी अवधि) में अवधि 3 रासायनिक तत्वों में से एक है। तत्वों के रासायनिक व्यवहार में आवर्ती (आवधिक) प्रवृत्तियों को चित्रित करने के लिए आवर्त सारणी को पंक्तियों में रखा गया है क्योंकि उनकी परमाणु संख्या बढ़ जाती है:नई पंक्ति शुरू होती है जब आवर्त सारणी एक पंक्ति को छोड़ देती है और रासायनिक व्यवहार दोहराना शुरू हो जाता है, जिसका अर्थ है कि समान व्यवहार वाले तत्व समान लंबवत स्तंभों में आते हैं। तीसरी अवधि में आठ तत्व होते हैं: सोडियम, मैग्नीशियम, एल्यूमीनियम, सिलिकॉन, फास्फोरस, सल्फर, क्लोरीन और आर्गन। पहले दो, सोडियम और मैग्नीशियम, आवर्त सारणी के S-ब्लॉक के सदस्य हैं, जबकि अन्य P-ब्लॉक के सदस्य हैं। सभी आवर्त 3 तत्व प्रकृति में पाए जाते हैं और इनमें कम से कम एक स्थिर समस्थानिक होता है।[1]
परमाणु संरचना
परमाणु संरचना के क्वांटम यांत्रिकी विवरण में, यह अवधि तीसरे (n = 3) शेल में इलेक्ट्रॉनों के निर्माण से मेल खाती है, विशेष रूप से इसके 3s और 3p उपकोशों को भरती है। 3d उपकोश है, लेकिन—औफ़बौ सिद्धांत के अनुपालन में—यह अवधि 4 तत्व तक नहीं भरी जाती है। यह सभी आठ तत्वों को समान सटीक क्रम में 2 तत्वों की अवधि के अनुरूप बनाता है। ऑक्टेट नियम आम तौर पर अवधि 3 पर उसी तरह लागू होता है जैसे अवधि 2 तत्वों के लिए, क्योंकि 3d उपकोश सामान्य रूप से गैर-क्रियाशील होता है।
तत्व
Element | # | Symbol | Block | Electron configuration |
---|---|---|---|---|
Sodium | 11 | Na | s-block | [Ne] 3s1 |
Magnesium | 12 | Mg | s-block | [Ne] 3s2 |
Aluminium | 13 | Al | p-block | [Ne] 3s2 3p1 |
Silicon | 14 | Si | p-block | [Ne] 3s2 3p2 |
Phosphorus | 15 | P | p-block | [Ne] 3s2 3p3 |
Sulfur | 16 | S | p-block | [Ne] 3s2 3p4 |
Chlorine | 17 | Cl | p-block | [Ne] 3s2 3p5 |
Argon | 18 | Ar | p-block | [Ne] 3s2 3p6 |
सोडियम
सोडियम (प्रतीक Na) नरम, चांदी-सफेद, अत्यधिक प्रतिक्रियाशील धातु है और क्षार धातुओं का सदस्य है; इसका एकमात्र स्थिर समस्थानिक है 23Na है. यह प्रचुर तत्व है जो कई खनिजों जैसे स्फतीय, सोडालाइट और सेंधा नमक में मौजूद है। सोडियम के कई लवण पानी में अत्यधिक घुलनशील होते हैं और इस प्रकार पृथ्वी के जल निकायों में महत्वपूर्ण मात्रा में मौजूद होते हैं, जो महासागरों में सोडियम क्लोराइड के रूप में प्रचुर मात्रा में होते हैं।
कई सोडियम यौगिक उपयोगी होते हैं, जैसे कि साबुन बनाने के लिए सोडियम हाइड्रॉक्साइड (लाइ), और सोडियम क्लोराइड डाइसिंग एजेंट और पोषक तत्व के रूप में उपयोग के लिए। वही आयन भी कई खनिजों का एक घटक है, जैसे सोडियम नाइट्रेट।
मुक्त धातु, तात्त्विक सोडियम, प्रकृति में नहीं होता है लेकिन इसे सोडियम यौगिकों से तैयार किया जाना चाहिए। तात्त्विक सोडियम को पहली बार हम्फ्री डेवी ने 1807 में सोडियम हाइड्रॉक्साइड के इलेक्ट्रोलीज़ द्वारा अलग किया था।
मैग्नीशियम
मैग्नीशियम (प्रतीक Mg) क्षारीय पृथ्वी धातु है और इसकी सामान्य ऑक्सीकरण संख्या +2 है। यह पृथ्वी की पपड़ी में रासायनिक तत्वों में आठवीं सबसे अधिक प्रचुरता है[2] और समग्र रूप से ज्ञात ब्रह्मांड में नौवां।[3][4] मैग्नीशियम पृथ्वी पर (लोहे, ऑक्सीजन और सिलिकॉन के बाद) चौथा सबसे आम तत्व है, जो ग्रह के द्रव्यमान का 13% और ग्रह के मेंटल (भूविज्ञान) का एक बड़ा अंश बनाता है। यह अपेक्षाकृत प्रचुर मात्रा में है क्योंकि यह सुपरनोवा सितारों में कार्बन में तीन हीलियम नाभिक के क्रमिक परिवर्धन द्वारा आसानी से निर्मित होता है (जो बदले में तीन हीलियम नाभिक से बनता है)। पानी में मैग्नीशियम आयन की उच्च घुलनशीलता के कारण, यह समुद्री जल में घुलने वाला तीसरा सबसे प्रचुर तत्व है।[5] मुक्त तत्व (धातु) पृथ्वी पर स्वाभाविक रूप से नहीं पाया जाता है, क्योंकि यह अत्यधिक प्रतिक्रियाशील है (हालांकि एक बार उत्पादित होने पर, यह ऑक्साइड की एक पतली परत में लेपित होता है [देखें निष्क्रियता], जो आंशिक रूप से इस प्रतिक्रियाशीलता को छुपाता है)। मुक्त धातु एक विशिष्ट चमकदार सफेद रोशनी के साथ जलती है, जिससे यह फ्लेयर्स में एक उपयोगी घटक बन जाती है। धातु अब मुख्य रूप से नमकीन से प्राप्त उदार लवण के इलेक्ट्रोलिसिस द्वारा प्राप्त की जाती है। व्यावसायिक रूप से, धातु के लिए मुख्य उपयोग अल्युमीनियम-मैग्नीशियम मिश्र धातु बनाने के लिए एक मिश्र धातु एजेंट के रूप में होता है, जिसे कभी-कभी मैग्नीशियम या मैग्नीशियम कहा जाता है। चूंकि मैग्नीशियम एल्यूमीनियम की तुलना में कम घना होता है, इसलिए इन मिश्र धातुओं को उनके सापेक्ष हल्कापन और ताकत के लिए बेशकीमती माना जाता है।
मैग्नीशियम आयन स्वाद में खट्टे होते हैं, और कम सांद्रता में ताजे खनिज पानी को प्राकृतिक तीखापन प्रदान करने में मदद करते हैं।
एल्यूमिनियम
एल्युमिनियम (प्रतीक Al) रासायनिक तत्वों के बोरॉन समूह का सफेद सदस्य (चांदी) है और कुछ रसायनज्ञों द्वारा पोस्ट-संक्रमण के रूप में वर्गीकृत P-ब्लॉक धातु है।[6] यह सामान्य परिस्थितियों में पानी में घुलनशील नहीं है। एल्युमिनियम, पृथ्वी की पपड़ी में तीसरा सबसे प्रचुर तत्व (ऑक्सीजन और सिलिकॉन के बाद) सबसे प्रचुर मात्रा में धातु है। यह पृथ्वी की ठोस सतह के वजन से लगभग 8% बनता है। एल्युमिनियम धातु रासायनिक रूप से बहुत अधिक प्रतिक्रियाशील है जो मूल रूप से उत्पन्न नहीं होती है। इसके बजाय, यह 270 से अधिक विभिन्न खनिजों में मिला हुआ पाया जाता है।[7] एल्युमिनियम का मुख्य अयस्क बाक्साइट है।
एल्युमिनियम धातु के कम घनत्व और निष्क्रियता की घटना के कारण जंग का विरोध करने की क्षमता के लिए उल्लेखनीय है। एल्यूमीनियम और इसके एल्यूमीनियम मिश्र धातु से बने संरचनात्मक घटक एयरोस्पेस उद्योग के लिए महत्वपूर्ण हैं और परिवहन और संरचनात्मक सामग्री के अन्य क्षेत्रों में महत्वपूर्ण हैं। एल्यूमीनियम के सबसे उपयोगी यौगिक, कम से कम वजन के आधार पर, ऑक्साइड और सल्फेट होते हैं।
सिलिकॉन
सिलिकॉन (प्रतीक Si) कार्बन समूह (समूह 14 धातु के रूप-रंग का एक अधातु पदार्थ) है| यह अपने रासायनिक एनालॉग कार्बन की तुलना में कम प्रतिक्रियाशील है, आवर्त सारणी में सीधे इसके ऊपर अधातु है, लेकिन जर्मेनियम की तुलना में अधिक प्रतिक्रियाशील है, जो सीधे तालिका में इसके नीचे धातु है। सिलिकॉन के चरित्र के बारे में विवाद इसकी खोज से दिनांकित है: सिलिकॉन को पहली बार 1824 में शुद्ध रूप में तैयार किया गया था और इसे सिलिकियम नाम दिया गया था (Latin: silicis, चकमक पत्थर), धातु का सुझाव देने के लिए -ium शब्द के अंत के साथ। हालांकि, इसका अंतिम नाम, 1831 में सुझाया गया, रासायनिक रूप से कार्बन और बोरॉन के अधिक समान तत्वों को दर्शाता है।
ब्रह्मांड में रासायनिक तत्वों के द्रव्यमान के अनुसार सिलिकॉन आठवां सबसे अधिक प्रचुरता में है, लेकिन प्रकृति में शुद्ध मुक्त तत्व के रूप में बहुत कम ही होता है। यह सबसे व्यापक रूप से धूल, रेत, ग्रह और ग्रहों में सिलिकॉन डाइऑक्साइड (सिलिका) या सिलिकेट के विभिन्न रूपों के रूप में वितरित किया जाता है। पृथ्वी की पपड़ी का 90% से अधिक सिलिकेट खनिजों से बना है, जो ऑक्सीजन के बाद सिलिकॉन को पृथ्वी की पपड़ी (लगभग 28% द्रव्यमान) में दूसरा सबसे प्रचुर तत्व बनाता है।[8] अधिकांश सिलिकॉन का उपयोग व्यावसायिक रूप से अलग किए बिना किया जाता है, और वास्तव में प्रकृति से यौगिकों के बहुत कम प्रसंस्करण के साथ इनमें मिट्टी, सिलिका रेत और पत्थर का प्रत्यक्ष औद्योगिक भवन उपयोग शामिल है। सिरेमिक ईंट में सिलिका का उपयोग किया जाता है। सिलिकेट मोर्टार (चिनाई) और प्लास्टर के लिए पोर्टलैंड सीमेंट में जाता है, और ठोस बनाने के लिए सिलिका रेत और बजरी के साथ मिलाया जाता है। सिलिकेट चीनी मिट्टी के बरतन जैसे व्हाइटवेयर सिरेमिक में और पारंपरिक क्वार्ट्ज-आधारित सोडा लाइम गिलास में भी होते हैं। सिलिकन कार्बाइड जैसे अधिक आधुनिक सिलिकॉन यौगिक अपघर्षक और उच्च शक्ति वाले सिरेमिक बनाते हैं। सिलिकॉन सर्वव्यापी सिंथेटिक सिलिकॉन-आधारित पॉलिमर का आधार है जिसे सिलिकोन कहा जाता है।
आधुनिक विश्व अर्थव्यवस्था पर अयौगिकसिलिकॉन का भी बड़ा प्रभाव पड़ता है। यद्यपि अधिकांश मुक्त सिलिकॉन का उपयोग स्टील रिफाइनिंग, एल्यूमीनियम-कास्टिंग और ठीक रासायनिक उद्योगों (अक्सर धुआँ लगायी हुई सिलिका बनाने के लिए) में किया जाता है, अर्धचालक इलेक्ट्रॉनिक्स (<10%) में उपयोग किए जाने वाले अत्यधिक शुद्ध सिलिकॉन का अपेक्षाकृत छोटा हिस्सा शायद अधिक महत्वपूर्ण है। एकीकृत परिपथों में सिलिकॉन के व्यापक उपयोग के कारण, अधिकांश कंप्यूटरों का आधार, आधुनिक तकनीक का एक बड़ा हिस्सा इस पर निर्भर करता है।
फास्फोरस
फॉस्फोरस (प्रतीक P) पिक्टोजेन का वैलेंसी (रसायन विज्ञान) अधातु है, खनिज के रूप में फास्फोरस लगभग हमेशा अपने अधिकतम ऑक्सीकृत (पेंटावलेंट) अवस्था में अकार्बनिक फॉस्फेट खनिजों के रूप में मौजूद होता है। अयौगिक फास्फोरस दो प्रमुख रूपों में मौजूद है -सफेद फास्फोरस और लाल फास्फोरस - लेकिन इसकी उच्च प्रतिक्रियाशीलता के कारण, फास्फोरस पृथ्वी पर कभी भी मुक्त तत्व के रूप में नहीं पाया जाता है।
उत्पादित होने वाले अयौगिक फास्फोरस का पहला रूप (1669 में सफेद फास्फोरस) ऑक्सीजन के संपर्क में एक फीकी चमक का उत्सर्जन करता है - इसलिए इसका नाम ग्रीक पौराणिक कथाओं से Φωσφόρος दिया गया है, जिसका अर्थ है - प्रकाश-वाहक (लैटिन लूसिफ़ेर), संध्या का तारा, शुक्र ग्रह। यद्यपि स्फुरदीप्ति शब्द, जिसका अर्थ है रोशनी के बाद चमक, फास्फोरस की इस संपत्ति से निकला है, फास्फोरस की चमक सफेद (लेकिन लाल नहीं) फास्फोरस के ऑक्सीकरण से उत्पन्न होती है और इसे रासायनिक संदीप्ति कहा जाना चाहिए। यह अष्टक नियम के स्थिर अपवादों को आसानी से उत्पन्न करने वाला सबसे हल्का तत्व भी है।
अधिकांश फास्फोरस यौगिकों का उपयोग उर्वरकों के रूप में किया जाता है। अन्य अनुप्रयोगों में डिटर्जेंट, कीटनाशकों और तंत्रिका एजेंटों और माचिस में ऑर्गनोफॉस्फोरस यौगिकों की भूमिका शामिल है।[9]
सल्फर
सल्फर (प्रतीक S) एक प्रचुर मात्रा में बहुसंख्यक अधातु [वैलेंस (रसायन विज्ञान)] है, जो चाकोजेन्स में से एक है। सामान्य परिस्थितियों में, सल्फर परमाणु रासायनिक सूत्र S8 के साथ चक्रीय अष्टपरमाण्विक(ऑक्टासल्फर) अणु बनाते हैं। अयौगिक सल्फर कमरे के तापमान पर एक चमकदार पीला क्रिस्टलीय ठोस होता है। रासायनिक रूप से, सल्फर ऑक्सीडेंट या कम करने वाले एजेंट के रूप में प्रतिक्रिया कर सकता है। यह कार्बन सहित अधिकांश धातुओं और कई अधातुओं का ऑक्सीकरण करता है, जिससे अधिकांश ऑर्गोसल्फर यौगिकों में इसका नकारात्मक चार्ज होता है, लेकिन यह ऑक्सीजन और एक अधातु तत्त्व जैसे कई मजबूत ऑक्सीडेंट को कम करता है।
प्रकृति में, सल्फर को शुद्ध तत्व के रूप में सल्फाइड और सल्फेट खनिजों के रूप में पाया जा सकता है। अयौगिक सल्फर क्रिस्टल आमतौर पर खनिज संग्राहकों द्वारा उनके चमकीले रंग के बहुतल आकृतियों के लिए मांगे जाते हैं। देशी रूप में प्रचुर मात्रा में होने के कारण, सल्फर प्राचीन काल में जाना जाता था, प्राचीन ग्रीस, चीन और प्राचीन मिस्र में इसके उपयोग के लिए उल्लेख किया गया था। सल्फर के धुएं का उपयोग धूमक के रूप में किया जाता था, और सल्फर युक्त औषधीय मिश्रणों का उपयोग बाम और एंटीपैरासिटिक के रूप में किया जाता था। सल्फर को बाइबिल में अंग्रेजी भाषा में गंधक के रूप में संदर्भित किया गया है, इस नाम का उपयोग अभी भी कई गैर-वैज्ञानिक शब्दों में किया जाता है।[10] सल्फर को अपने स्वयं के रासायनिक प्रतीक प्राप्त करने के लिए पर्याप्त महत्वपूर्ण माना जाता था। बारूद की सर्वोत्तम गुणवत्ता बनाने के लिए इसकी आवश्यकता थी, और चमकीले पीले पाउडर को कीमियागर द्वारा सोने के कुछ गुणों को शामिल करने के लिए परिकल्पित किया गया था, जिसे उन्होंने इससे संश्लेषित करने की मांग की थी। 1777 में, एंटोनी लवॉज़िएर ने वैज्ञानिक समुदाय को यह समझाने में मदद की कि सल्फर एक यौगिक के बजाय एक मूल तत्व था।
अयौगिक सल्फर को बार नमक के गुंबदों से निकाला जाता था, जहां यह कभी-कभी लगभग शुद्ध रूप में होता है, लेकिन 20 वीं शताब्दी के उत्तरार्ध से यह विधि अप्रचलित हो गई है। आज, लगभग सभी अयौगिक सल्फर प्राकृतिक गैस और पेट्रोलियम से सल्फर युक्त दूषित पदार्थों को हटाने के उपोत्पाद के रूप में उत्पादित होते हैं। तत्व का व्यावसायिक उपयोग मुख्य रूप से उर्वरकों में होता है, क्योंकि इसके लिए पौधों की अपेक्षाकृत उच्च आवश्यकता होती है, और सल्फ्यूरिक एसिड के निर्माण में, एक प्राथमिक औद्योगिक रसायन। तत्व के अन्य प्रसिद्ध उपयोग माचिस, कीटनाशक और कवकनाशी में हैं। कई सल्फर यौगिक गंधहीन होते हैं, और गंधयुक्त प्राकृतिक गैस, स्कंक गंध, अंगूर, और लहसुन की गंध सल्फर यौगिकों के कारण होती है। जीवित जीवों द्वारा उत्पादित हाइड्रोजन सल्फाइड सड़ते अंडे और अन्य जैविक प्रक्रियाओं के लिए विशिष्ट गंध प्रदान करता है।
क्लोरीन
क्लोरीन (प्रतीक Cl) दूसरा सबसे हल्का हलोजन है। तत्व मानक परिस्थितियों में द्विपरमाणुक अणु बनाता है, जिसे डाइक्लोरीन कहा जाता है। इसमें उच्चतम इलेक्ट्रॉन आत्मीयता है और सभी तत्वों की उच्चतम विद्युतीयता में से एक है; इस प्रकार क्लोरीन एक प्रबल ऑक्सीकारक है।
क्लोरीन, सोडियम क्लोराइड (नमक) का सबसे आम यौगिक है जो प्राचीन काल से जाना जाता है; हालाँकि, 1630 के आसपास, बेल्जियम के रसायनज्ञ और चिकित्सक जान बैपटिस्ट वैन हेलमोंट द्वारा क्लोरीन गैस प्राप्त की गई थी। अयौगिक क्लोरीन का संश्लेषण और लक्षण वर्णन 1774 में स्वीडिश रसायनज्ञ कार्ल विल्हेम शीले द्वारा किया गया था, जिन्होंने इसे "डिफ्लोजिस्टिकेटेड म्यूरिएटिक एसिड वायु" कहा था, क्योंकि उन्होंने हाइड्रोक्लोरिक एसिड से प्राप्त ऑक्साइड को संश्लेषित किया था, उस समय एसिड को आवश्यक रूप से ऑक्सीजन युक्त माना जाता था। क्लाउड बेर्थोलेट सहित कई रसायनज्ञों ने सुझाव दिया कि स्कील की "डिफोलॉजिस्टिकेटेड म्यूरिएटिक एसिड वायु" ऑक्सीजन और अभी तक अनदेखे तत्व का एक संयोजन होना चाहिए, और शीले ने इस ऑक्साइड के भीतर कथित नए तत्व को म्यूरिएटिकम नाम दिया। यह सुझाव कि यह नई खोजी गई गैस एक साधारण तत्व थी, 1809 में जोसेफ लुइस गे-लुसाक और लुई-जैक्स द्वारा बनाई गई थी। इसकी पुष्टि 1810 में सर हम्फ्री डेवी ने की थी, जिन्होंने इसे क्लोरीन नाम दिया था, ग्रीक शब्द χλωρός (chlōros) से, जिसका अर्थ है हरा-पीला।
क्लोरीन कई अन्य यौगिकों का एक घटक है। यह पृथ्वी की पपड़ी में दूसरा सबसे प्रचुर मात्रा में हैलोजन और 21वां सबसे प्रचुर मात्रा में रासायनिक तत्व है। क्लोरीन की महान ऑक्सीकरण शक्ति ने इसे अपने ब्लीच (रासायनिक) और कीटाणुनाशक उपयोगों के साथ-साथ रासायनिक उद्योग में एक आवश्यक अभिकर्मक होने के लिए प्रेरित किया। सामान्य कीटाणुनाशक के रूप में, [[ स्विमिंग पूल स्वच्छता ]] क्लोरीन यौगिकों का उपयोग उन्हें साफ रखने और स्विमिंग पूल की स्वच्छता के लिए किया जाता है। ऊपरी वायुमंडल में, क्लोरीन युक्त अणुओं जैसे क्लोरो फ्लोरोकार्बन को ओजोन रिक्तीकरण में फंसाया गया है।
आर्गन
आर्गन (प्रतीक Ar) समूह 18 में तीसरा तत्व है। आर्गन, 0.93% पृथ्वी के वायुमंडल में तीसरी सबसे आम गैस है, जो इसे कार्बन डाइआक्साइड से अधिक सामान्य बनाती है। यह लगभग सभी रेडियम-धर्मी आर्गन-40 है जो पृथ्वी की पपड़ी में पोटेशियम-40 के क्षय से प्राप्त होता है। ब्रह्मांड में, आर्गन -36 अब तक का सबसे आम आर्गन आइसोटोप है, जो तारकीय न्यूक्लियोसिंथेसिस द्वारा निर्मित पसंदीदा आर्गन आइसोटोप है।
आर्गन नाम ग्रीक भाषा के नपुंसक विशेषण ἀργόν से लिया गया है, जिसका अर्थ है आलसी या निष्क्रिय, क्योंकि तत्व लगभग कोई रासायनिक प्रतिक्रिया नहीं करता है। बाहरी परमाणु कोश में पूर्ण ऑक्टेट नियम (आठ इलेक्ट्रॉन) आर्गन को अन्य तत्वों के साथ बंधन के लिए स्थिर और प्रतिरोधी बनाता है। 83.8058 केल्विन का इसका तिगुना बिंदु तापमान 1990 के अंतर्राष्ट्रीय तापमान पैमाने में एक परिभाषित निश्चित बिंदु है।
आर्गन का उत्पादन औद्योगिक रूप से तरल वायु के भिन्नात्मक आसवन द्वारा किया जाता है। आर्गन का उपयोग ज्यादातर वेल्डिंग और अन्य उच्च तापमान वाली औद्योगिक प्रक्रियाओं में अक्रिय परिरक्षण गैस के रूप में किया जाता है, जहां आमतौर पर गैर-प्रतिक्रियाशील पदार्थ प्रतिक्रियाशील हो जाते हैं: उदाहरण के लिए, ग्रेफाइट को जलने से रोकने के लिए ग्रेफाइट इलेक्ट्रिक भट्टियों में एक आर्गन वातावरण का उपयोग किया जाता है। आर्गन गैस का उपयोग गरमागरम और फ्लोरोसेंट रोशनी, और अन्य प्रकार के गैस डिस्चार्ज ट्यूबों में भी होता है। आर्गन एक विशिष्ट ब्लू-ग्रीन गैस लेजर बनाता है।
जैविक भूमिकाएं
सोडियम सभी जानवरों और कुछ पौधों के लिए आहार खनिज है। जानवरों में, सोडियम आयनों का उपयोग पोटैशियम आयनों के विरुद्ध Na+/K+-ATPase किया जाता है, जिससे आवेश के नष्ट होने पर तंत्रिका आवेगों के संचरण की अनुमति मिलती है; इसलिए इसे आहार अकार्बनिक मैक्रोमिनरल के रूप में वर्गीकृत किया गया है।
मैग्नीशियम मानव शरीर में द्रव्यमान के हिसाब से ग्यारहवां सबसे प्रचुर तत्व है; इसके आयन सभी जीवित कोशिकाओं (जीव विज्ञान) के लिए आवश्यक हैं, जहां वे एडेनोसाइन ट्रायफ़ोस्फेट, DNA और RNA जैसे महत्वपूर्ण जैविक पॉलीफॉस्फेट यौगिकों में हेरफेर करने में प्रमुख भूमिका निभाते हैं। इस प्रकार सैकड़ों एंजाइमों को कार्य करने के लिए मैग्नीशियम आयनों की आवश्यकता होती है। मैग्नीशियम क्लोरोफिल के केंद्र में धात्विक आयन भी है, और इस प्रकार उर्वरकों के लिए एक सामान्य योजक है।[11] मैग्नीशियम यौगिकों का उपयोग औषधीय रूप से सामान्य जुलाब, एंटासिड (जैसे, मैग्नेशिया का दूध) के रूप में किया जाता है, और कई स्थितियों में जहां असामान्य तंत्रिका उत्तेजना और रक्त वाहिका ऐंठन के स्थिरीकरण की आवश्यकता होती है (जैसे, एक्लंप्षण का इलाज करने के लिए)।
पर्यावरण में इसकी व्यापकता के बावजूद, एल्युमीनियम लवण का उपयोग जीवन के किसी भी रूप में नहीं किया जाता है। इसकी व्यापकता को ध्यान में रखते हुए, यह पौधों और जानवरों द्वारा अच्छी तरह से सहन किया जाता है।[12] उनकी व्यापकता के कारण, एल्युमीनियम यौगिकों की संभावित लाभकारी (या अन्यथा) जैविक भूमिकाएँ निरंतर रुचि की हैं।
जीव विज्ञान में सिलिकॉन एक आवश्यक तत्व है, हालांकि जानवरों के लिए इसके केवल छोटे अंशों की आवश्यकता प्रतीत होती है,[13] हालांकि विभिन्न समुद्री स्पंजों को संरचना के लिए सिलिकॉन की आवश्यकता होती है। यह पौधों के चयापचय के लिए बहुत अधिक महत्वपूर्ण है, विशेष रूप से कई घास, और सिलिकिक अम्ल (एक प्रकार का सिलिका) सूक्ष्म डायटम के सुरक्षात्मक गोले के हड़ताली सरणी का आधार बनाता है।
फास्फोरस जीवन के लिए आवश्यक है। फॉस्फेट के रूप में, यह DNA, RNA, एडेनोसिन ट्राइफॉस्फेट और फॉस्फोलिपिड्स का एक घटक है जो सभी कोशिका झिल्ली बनाते हैं। फास्फोरस और जीवन के बीच की कड़ी को प्रदर्शित करते हुए, अयौगिक फास्फोरस को ऐतिहासिक रूप से पहले मानव मूत्र से अलग किया गया था, और अस्थि राख एक महत्वपूर्ण प्रारंभिक फॉस्फेट स्रोत था। फॉस्फेट खनिज जीवाश्म हैं। कुछ जलीय प्रणालियों में वृद्धि के लिए निम्न फॉस्फेट का स्तर एक महत्वपूर्ण सीमा है। आज, फॉस्फोरस-आधारित रसायनों का सबसे महत्वपूर्ण व्यावसायिक उपयोग उर्वरकों का उत्पादन है, फॉस्फोरस को बदलने के लिए जिसे पौधे मिट्टी से हटाते हैं।
सल्फर सभी जीवन के लिए एक आवश्यक तत्व है, और जैव रासायनिक प्रक्रियाओं में व्यापक रूप से उपयोग किया जाता है। चयापचय प्रतिक्रियाओं में, सल्फर यौगिक सरल जीवों के लिए ईंधन और श्वसन (ऑक्सीजन-प्रतिस्थापन) सामग्री दोनों के रूप में कार्य करते हैं। कार्बनिक रूप में सल्फर विटामिन बायोटिन और थायमिन में मौजूद होता है, जिसे बाद में सल्फर के लिए ग्रीक शब्द के लिए नामित किया जाता है। सल्फर कई एंजाइमों और ग्लूटेथिओन और थिओरेडॉक्सिन जैसे एंटीऑक्सीडेंट अणुओं का एक महत्वपूर्ण हिस्सा है। कार्बनिक रूप से बंधुआ सल्फर एमिनो एसिडसिस्टीन और मेथियोनीन के रूप में सभी प्रोटीन का एक घटक है। बाहरी त्वचा, बालों और पंखों में पाए जाने वाले प्रोटीन केरातिन की यांत्रिक शक्ति और अघुलनशीलता के लिए डाइसल्फ़ाइड बांड काफी हद तक जिम्मेदार होते हैं, और तत्व जलने पर उनकी तीखी गंध में योगदान देता है।
अयौगिक क्लोरीन सभी जीवों के लिए बेहद खतरनाक और जहरीला है, और रासायनिक युद्ध में फुफ्फुसीय एजेंट के रूप में प्रयोग किया जाता है; हालांकि, क्लोराइड आयनों के रूप में, मनुष्यों सहित, जीवन के अधिकांश रूपों के लिए क्लोरीन आवश्यक है।
आर्गन की कोई जैविक भूमिका नहीं है। ऑक्सीजन के अलावा किसी भी गैस की तरह, आर्गन एक श्वासावरोधक है।
तत्वों की तालिका
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group → | ||||||||||||||||||
↓ Period | ||||||||||||||||||
3 | ||||||||||||||||||
Primordial [[Trace radioisotope|From decay]] Synthetic Border shows natural occurrence of the element |
टिप्पणियाँ
इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची
- परमाण्विक संरचना
- निर्माण सिद्धांत
- ओकटेट नियम
- क्षारीय धातु
- आइसोटोप
- रासायनिक तत्वों की प्रचुरता
- एल्कलाइन अर्थ मेटल
- ब्रम्हांड
- शुद्ध पानी
- निष्क्रियता (रसायन विज्ञान)
- क्रस्ट (भूविज्ञान)
- धरती
- यातायात
- उप ग्रहों
- कंकड़
- एकीकृत सर्किट
- चीनी मिटटी
- पथरी
- चिकनी मिट्टी
- वैधता (रसायन विज्ञान)
- मिलान
- तापमान और दबाव के लिए मानक स्थितियां
- ऑर्गनोसल्फर यौगिक
- अपचायक कारक
- फफूंदनाशी
- नमक गुंबद
- वैद्युतीयऋणात्मकता
- ऊपरी वातावरण
- ऑक्सीकरण एजेंट
- ओज़ोन रिक्तीकरण
- मानक शर्तें
- इलेक्ट्रान बन्धुता
- 1990 का अंतर्राष्ट्रीय तापमान पैमाना
- तरल हवा
- तीन बिंदु
- नोबल गैस
- पोटेशियम-40
- आंशिक आसवन
- कोशिका विज्ञान)
- शाही सेना
- रेचक
- मैग्नीशिया का दूध
- नस
- गला घोंटनेवाला
संदर्भ
- ↑ Period 3 Element Archived 2012-07-29 at the Wayback Machine from Scienceaid.co.uk
- ↑ Railsback, L. Bruce. "बहुतायत और पृथ्वी की महाद्वीपीय परत में सबसे प्रचुर मात्रा में तत्वों का रूप" (PDF). Some Fundamentals of Mineralogy and Geochemistry. Archived (PDF) from the original on 2011-09-27. Retrieved 2008-02-15.
- ↑ Housecroft, C. E.; Sharpe, A. G. (2008). Inorganic Chemistry (3rd ed.). Prentice Hall. pp. 305–306. ISBN 978-0-13-175553-6.
- ↑ Ash, Russell (2005). सब कुछ 2006 के शीर्ष 10: सूचियों की अंतिम पुस्तक. Dk Pub. ISBN 0-7566-1321-3. Archived from the original on 2010-02-10.
- ↑ Anthoni, J Floor (2006). "समुद्री जल की रासायनिक संरचना".
- ↑ Huheey JE, Keiter EA & Keiter RL 1993, Principles of Structure & Reactivity, 4th ed., HarperCollins College Publishers, ISBN 0-06-042995-X, p. 28
- ↑ Shakhashiri, Bassam Z. "सप्ताह का रसायन: एल्युमिनियम". Science is Fun. Archived from the original on 2007-09-06. Retrieved 2007-08-28.
- ↑ Nave, R. Abundances of the Elements in the Earth's Crust, Georgia State University
- ↑ Herbert Diskowski, Thomas Hofmann "Phosphorus" in Ullmann's Encyclopedia of Industrial Chemistry 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a19_505
- ↑ Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann. ISBN 0-7506-3365-4.
- ↑ "स्वास्थ्य में मैग्नीशियम".
- ↑ Helmboldt, Otto; Keith Hudson, L.; Misra, Chanakya; Wefers, Karl; Heck, Wolfgang; Stark, Hans; Danner, Max; Rösch, Norbert (2007). "Aluminum Compounds, Inorganic". उलमन का औद्योगिक रसायन विज्ञान का विश्वकोश. doi:10.1002/14356007.a01_527.pub2. ISBN 978-3527306732.
- ↑ Nielsen, Forrest H. (1984). "पोषण में अल्ट्राट्रेस तत्व". Annual Review of Nutrition. 4: 21–41. doi:10.1146/annurev.nu.04.070184.000321. PMID 6087860.