मोटर चर: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Mathematical functions of split-complex numbers}} | {{Short description|Mathematical functions of split-complex numbers}} | ||
गणित में, मोटर वैरिएबल का एक फलन [[विभाजित-[[जटिल संख्या|सम्मिश्र संख्या]]]] विमान में तर्कों और | गणित में, मोटर वैरिएबल का एक फलन [[विभाजित-[[जटिल संख्या|सम्मिश्र संख्या]]]] विमान में तर्कों और मानो के साथ एक [[फ़ंक्शन (गणित)|फलन (गणित)]] होता है, जैसे कि एक [[जटिल चर|सम्मिश्र वैरिएबल]] के कार्यों में सामान्य सम्मिश्र संख्याएं सम्मिलित होती हैं। [[विलियम किंग्डन क्लिफोर्ड]] ने अपने प्रिलिमिनरी स्केच ऑफ़ बिक्वाटर्नियंस (1873) में गतिज संचालक के लिए मोटर शब्द गढ़ा है। उन्होंने अपने [[स्प्लिट-बाइक्वाटर्नियन]]में अदिशों के लिए स्प्लिट-कॉम्प्लेक्स संख्याओं का उपयोग किया गया था। व्यंजना और परंपरा के लिए ''स्प्लिट-कॉम्प्लेक्स वेरिएबल'' के स्थान पर ''मोटर वेरिएबल'' का उपयोग यहां किया जाता है। | ||
उदाहरण के लिए, | उदाहरण के लिए, | ||
:<math>f(z) = u(z) + j \ v(z) ,\ z = x + j y ,\ x,y \in R ,\quad j^2 = +1,\quad u(z),v(z) \in R.</math> | :<math>f(z) = u(z) + j \ v(z) ,\ z = x + j y ,\ x,y \in R ,\quad j^2 = +1,\quad u(z),v(z) \in R.</math> | ||
मोटर वैरिएबल के कार्य [[वास्तविक विश्लेषण]] को विस्तारित करने और विमान की मैपिंग का कॉम्पैक्ट प्रतिनिधित्व प्रदान करने के लिए एक संदर्भ प्रदान करते हैं। चूँकि , सिद्धांत [[जटिल विश्लेषण|सम्मिश्र विश्लेषण]] से अधिक कम है। फिर भी, पारंपरिक सम्मिश्र विश्लेषण के कुछ विधियों की व्याख्या मोटर वैरिएबल | मोटर वैरिएबल के कार्य [[वास्तविक विश्लेषण]] को विस्तारित करने और विमान की मैपिंग का कॉम्पैक्ट प्रतिनिधित्व प्रदान करने के लिए एक संदर्भ प्रदान करते हैं। चूँकि , सिद्धांत [[जटिल विश्लेषण|सम्मिश्र विश्लेषण]] से अधिक कम है। फिर भी, पारंपरिक सम्मिश्र विश्लेषण के कुछ विधियों की व्याख्या मोटर वैरिएबल के साथ दी गई है, और समान्यत: हाइपरकॉम्प्लेक्स विश्लेषण में उपस्थित है। | ||
==प्राथमिक कार्य== | ==प्राथमिक कार्य== | ||
माना | माना '''D''' = <math>\{ z = x + jy : x,y \in R \}</math>, विभाजित-सम्मिश्र विमान है जिसमे निम्नलिखित अनुकरणीय फलन f का डोमेन और रेंज 'D' में है: | ||
एक वर्सोर की क्रिया या हाइपरबोलिक वर्सोर <math>u = \exp(aj) = \cosh a + j \sinh a</math> [[एफ़िन परिवर्तन]] उत्पन्न करने के लिए [[अनुवाद (ज्यामिति)]] के साथ जोड़ा जाता है | एक वर्सोर की क्रिया या हाइपरबोलिक वर्सोर <math>u = \exp(aj) = \cosh a + j \sinh a</math> [[एफ़िन परिवर्तन]] उत्पन्न करने के लिए [[अनुवाद (ज्यामिति)]] के साथ जोड़ा जाता है | ||
:<math>f(z) = uz + c \ </math>. जब c = 0, फलन [[निचोड़ मानचित्रण|स्क़ुईज़ मानचित्रण]] के समान | :<math>f(z) = uz + c \ </math>. जब c = 0, फलन [[निचोड़ मानचित्रण|स्क़ुईज़ मानचित्रण]] के समान होता है। | ||
साधारण सम्मिश्र अंकगणित में वर्ग फलन की कोई समानता नहीं है। होने देना | साधारण सम्मिश्र अंकगणित में वर्ग फलन की कोई समानता नहीं है। होने देना | ||
Line 32: | Line 32: | ||
* अनुवाद <math>\begin{pmatrix}1 & 0 \\ t & 1 \end{pmatrix},</math> और | * अनुवाद <math>\begin{pmatrix}1 & 0 \\ t & 1 \end{pmatrix},</math> और | ||
* विपरीत <math>\begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix}.</math> | * विपरीत <math>\begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix}.</math> | ||
इनमें से प्रत्येक का एक व्युत्क्रम है, और रचनाएँ रैखिक भिन्नात्मक परिवर्तनों के एक समूह को भरती हैं। मोटर वैरिएबल | इनमें से प्रत्येक का एक व्युत्क्रम है, और रचनाएँ रैखिक भिन्नात्मक परिवर्तनों के एक समूह को भरती हैं। मोटर वैरिएबल को इसके ध्रुवीय निर्देशांक में [[अतिपरवलयिक कोण]] की विशेषता होती है, और यह कोण मोटर वैरिएबल रैखिक भिन्नात्मक परिवर्तनों द्वारा संरक्षित होता है, जैसे वृत्ताकार कोण सामान्य सम्मिश्र विमान के मोबियस परिवर्तनों द्वारा संरक्षित होता है। कोणों को संरक्षित करने वाले परिवर्तनों को अनुरूप कहा जाता है, इसलिए रैखिक भिन्नात्मक परिवर्तन [[अनुरूप मानचित्र]] होते हैं। | ||
ट्रांसफॉर्मेशन बाउंडिंग क्षेत्रों की तुलना की जा सकती है: उदाहरण के लिए, सामान्य सम्मिश्र विमान पर, केली ट्रांसफॉर्म या कॉम्प्लेक्स होमोग्राफी ऊपरी आधे-तल को [[यूनिट डिस्क]] तक ले जाती है, इस प्रकार इसे बांधती है। पहचान घटक U<sub>1</sub> का मानचित्रण एक [[आयत]] में D की एक तुलनीय बाउंडिंग क्रिया प्रदान करता है: | ट्रांसफॉर्मेशन बाउंडिंग क्षेत्रों की तुलना की जा सकती है: उदाहरण के लिए, सामान्य सम्मिश्र विमान पर, केली ट्रांसफॉर्म या कॉम्प्लेक्स होमोग्राफी ऊपरी आधे-तल को [[यूनिट डिस्क]] तक ले जाती है, इस प्रकार इसे बांधती है। पहचान घटक U<sub>1</sub> का मानचित्रण एक [[आयत]] में D की एक तुलनीय बाउंडिंग क्रिया प्रदान करता है: | ||
Line 43: | Line 43: | ||
घातांकीय फलन पूरे तल D को ''U''<sub>1</sub>में ले जाता है: | घातांकीय फलन पूरे तल D को ''U''<sub>1</sub>में ले जाता है: | ||
:<math>e^x = \sum_{n=0}^\infty {x^n \over n!} = \sum_{n=0}^\infty \frac {x^{2n}} {(2n)!} + \sum_{n=0}^\infty \frac {x^{2n+1}} {(2n+1)!} = \cosh x + \sinh x </math>. | :<math>e^x = \sum_{n=0}^\infty {x^n \over n!} = \sum_{n=0}^\infty \frac {x^{2n}} {(2n)!} + \sum_{n=0}^\infty \frac {x^{2n+1}} {(2n+1)!} = \cosh x + \sinh x </math>. | ||
इस प्रकार जब x = bj, तब e<sup>x</sup> एक अतिशयोक्तिपूर्ण छंद है। सामान्य मोटर वैरिएबल | इस प्रकार जब x = bj, तब e<sup>x</sup> एक अतिशयोक्तिपूर्ण छंद है। सामान्य मोटर वैरिएबल z = a + bj के लिए, एक है | ||
:<math>e^z = e^a (\cosh b + j \ \sinh b) \ </math>. | :<math>e^z = e^a (\cosh b + j \ \sinh b) \ </math>. | ||
Line 54: | Line 54: | ||
=='''D''' -[[होलोमोर्फिक फ़ंक्शन]]== | =='''D''' -[[होलोमोर्फिक फ़ंक्शन]]== | ||
कॉची-रीमैन समीकरण जो [[जटिल विमान|सम्मिश्र विमान]] में एक [[डोमेन (गणितीय विश्लेषण)]] पर होलोमोर्फिक कार्यों की विशेषता बताते हैं, एक मोटर वैरिएबल | कॉची-रीमैन समीकरण जो [[जटिल विमान|सम्मिश्र विमान]] में एक [[डोमेन (गणितीय विश्लेषण)]] पर होलोमोर्फिक कार्यों की विशेषता बताते हैं, एक मोटर वैरिएबल के कार्यों के लिए एक एनालॉग है। विर्टिंगर व्युत्पन्न का उपयोग करके '''D'''-होलोमोर्फिक कार्यों के लिए एक दृष्टिकोण मोट्टर एंड रॉसा द्वारा दिया गया था:<ref name=M&R>A.E. Motter & M.A.F. Rosa (1998) "Hyperbolic Calculus", [[Advances in Applied Clifford Algebras]] 8(1):109–28</ref> जिसमे फलन f = u + j v को ''''D'''-होलोमोर्फिक' कहा जाता है | ||
:<math>0 \ = \ \left({\partial \over \partial x} - j {\partial \over \partial y}\right) (u + j v) = \ u_x - j^2 v_y + j (v_x - u_y).</math> | :<math>0 \ = \ \left({\partial \over \partial x} - j {\partial \over \partial y}\right) (u + j v) = \ u_x - j^2 v_y + j (v_x - u_y).</math> | ||
वास्तविक और काल्पनिक घटकों पर विचार करके, एक '''D''' -होलोमोर्फिक फलन संतुष्ट होता है | वास्तविक और काल्पनिक घटकों पर विचार करके, एक '''D''' -होलोमोर्फिक फलन संतुष्ट होता है | ||
Line 63: | Line 63: | ||
==ला प्लाटा पाठ== | ==ला प्लाटा पाठ== | ||
1935 में [[ला प्लाटा का राष्ट्रीय विश्वविद्यालय]] में, अनंत श्रृंखला के अभिसरण के विशेषज्ञ जे.सी. विग्नॉक्स ने विश्वविद्यालय की वार्षिक पत्रिका में मोटर वैरिएबल | 1935 में [[ला प्लाटा का राष्ट्रीय विश्वविद्यालय]] में, अनंत श्रृंखला के अभिसरण के विशेषज्ञ जे.सी. विग्नॉक्स ने विश्वविद्यालय की वार्षिक पत्रिका में मोटर वैरिएबल पर चार लेख लिखे।<ref>Vignaux, J.C. & A. Durañona y Vedia (1935) "Sobre la teoría de las funciones de una variable compleja hiperbólica", ''Contribución al Estudio de las Ciencias Físicas y Matemáticas'', pp. 139–184, [[Universidad Nacional de La Plata]], República Argentina</ref> वह परिचयात्मक के एकमात्र लेखक हैं, और उन्होंने दूसरों पर अपने विभाग प्रमुख A. दुरानोना वाई वेदिया से परामर्श किया है। सोबरे लास सीरीज डी न्यूमेरोस कॉम्प्लीजोस हिपरबोलिकोस में वह कहते हैं (पृष्ठ 123): | ||
:अतिशयोक्तिपूर्ण सम्मिश्र संख्याओं की यह प्रणाली [मोटर वैरिएबल ] मॉड्यूल का प्रत्यक्ष योग है या वास्तविक संख्याओं के क्षेत्र के लिए आइसोमोर्फिक बीजगणित का प्रत्यक्ष योग; यह गुण वास्तविक संख्याओं के क्षेत्र के गुणों के उपयोग के माध्यम से श्रृंखला के सिद्धांत और हाइपरबोलिक सम्मिश्र वैरिएबल | :अतिशयोक्तिपूर्ण सम्मिश्र संख्याओं की यह प्रणाली [मोटर वैरिएबल ] मॉड्यूल का प्रत्यक्ष योग है या वास्तविक संख्याओं के क्षेत्र के लिए आइसोमोर्फिक बीजगणित का प्रत्यक्ष योग; यह गुण वास्तविक संख्याओं के क्षेत्र के गुणों के उपयोग के माध्यम से श्रृंखला के सिद्धांत और हाइपरबोलिक सम्मिश्र वैरिएबल के कार्यों की व्याख्या की अनुमति देती है। | ||
उदाहरण के लिए, वह मोटर वैरिएबल | उदाहरण के लिए, वह मोटर वैरिएबल के डोमेन के लिए कॉची, एबेल, मर्टेंस और हार्डी के कारण प्रमेयों को सामान्य बनाने के लिए आगे बढ़ता है। | ||
नीचे उद्धृत प्राथमिक लेख में, वह '''D''' -होलोमोर्फिक फलन और उनके घटकों द्वारा '''D'''<nowiki/>'अलेम्बर्ट के समीकरण की संतुष्टि पर विचार करता है। वह विकर्णों y = x और y = − x के समानांतर भुजाओं वाले एक आयत को एक समदैशिक आयत कहता है क्योंकि इसकी भुजाएँ [[समदैशिक रेखा]]ओं पर होती हैं। उन्होंने अपना सार इन शब्दों के साथ समाप्त किया गया था: | नीचे उद्धृत प्राथमिक लेख में, वह '''D''' -होलोमोर्फिक फलन और उनके घटकों द्वारा '''D'''<nowiki/>'अलेम्बर्ट के समीकरण की संतुष्टि पर विचार करता है। वह विकर्णों y = x और y = − x के समानांतर भुजाओं वाले एक आयत को एक समदैशिक आयत कहता है क्योंकि इसकी भुजाएँ [[समदैशिक रेखा]]ओं पर होती हैं। उन्होंने अपना सार इन शब्दों के साथ समाप्त किया गया था: | ||
:आइसोट्रोपिक आयतें इस सिद्धांत में एक मौलिक भूमिका निभाती हैं क्योंकि वे होलोमोर्फिक कार्यों के लिए अस्तित्व के डोमेन, शक्ति श्रृंखला के अभिसरण के डोमेन और कार्यात्मक श्रृंखला के अभिसरण के डोमेन बनाते हैं। | :आइसोट्रोपिक आयतें इस सिद्धांत में एक मौलिक भूमिका निभाती हैं क्योंकि वे होलोमोर्फिक कार्यों के लिए अस्तित्व के डोमेन, शक्ति श्रृंखला के अभिसरण के डोमेन और कार्यात्मक श्रृंखला के अभिसरण के डोमेन बनाते हैं। | ||
विग्नॉक्स ने [[बर्नस्टीन बहुपद]] द्वारा एक इकाई आइसोट्रोपिक आयत में '''D''' -होलोमोर्फिक कार्यों के सन्निकटन पर छह पेज के नोट के साथ अपनी श्रृंखला पूरी की चूँकि | विग्नॉक्स ने [[बर्नस्टीन बहुपद]] द्वारा एक इकाई आइसोट्रोपिक आयत में '''D''' -होलोमोर्फिक कार्यों के सन्निकटन पर छह पेज के नोट के साथ अपनी श्रृंखला पूरी की चूँकि इस श्रृंखला में कुछ मुद्रण संबंधी त्रुटियों के साथ-साथ कुछ तकनीकी कमियां भी हैं, विग्नॉक्स सिद्धांत की मुख्य पंक्तियों को प्रस्तुत करने में सफल रहा जो वास्तविक और सामान्य सम्मिश्र विश्लेषण के बीच स्थित है। तत्वों के अनुकरणीय विकास के कारण यह टेक्स्ट छात्रों और शिक्षकों के लिए एक शिक्षाप्रद डॉक्यूमेंट के रूप में विशेष रूप से प्रभावशाली है। इसके अतिरिक्त, संपूर्ण भ्रमण एमिल बोरेल की ज्यामिति के संबंध में निहित है जिससे इसकी प्रेरणा को रेखांकित किया जा सकता है। | ||
==बिरियल वैरिएबल == | ==बिरियल वैरिएबल == | ||
1892 में [[ कॉनराड सेग्रे ]] ने [[टेसरीन]] बीजगणित को द्विसंकुल संख्याओं के रूप में याद किया गया था।<ref>G. Baley Price (1991) ''An introduction to multicomplex spaces and functions'', [[Marcel Dekker]] {{isbn|0-8247-8345-X}}</ref> स्वाभाविक रूप से वास्तविक टेसरीन का उपबीजगणित उत्पन्न हुआ और इसे द्विवास्तविक संख्याएँ कहा जाने लगा। | 1892 में [[ कॉनराड सेग्रे |कॉनराड सेग्रे]] ने [[टेसरीन]] बीजगणित को द्विसंकुल संख्याओं के रूप में याद किया गया था।<ref>G. Baley Price (1991) ''An introduction to multicomplex spaces and functions'', [[Marcel Dekker]] {{isbn|0-8247-8345-X}}</ref> स्वाभाविक रूप से वास्तविक टेसरीन का उपबीजगणित उत्पन्न हुआ और इसे द्विवास्तविक संख्याएँ कहा जाने लगा। | ||
1946 में यू. बेनसिवेंगा ने एक निबंध प्रकाशित किया था<ref>Bencivenga, U. (1946) "Sulla Rappresentazione Geometrica Della Algebre Doppie Dotate Di Modulo", ''Atti. Accad. Sci. Napoli'' Ser(3) v.2 No 7</ref> [[दोहरी संख्या]]ओं और विभक्त-सम्मिश्र संख्याओं पर जहां उन्होंने द्विवास्तविक संख्या शब्द का प्रयोग किया। उन्होंने बायरियल वेरिएबल के कुछ फलन सिद्धांत का भी वर्णन किया। निबंध का अध्ययन 1949 में [[ब्रिटिश कोलंबिया विश्वविद्यालय]] में किया गया था जब जेफ्री फॉक्स ने अपने मास्टर की थीसिस हाइपरकॉम्प्लेक्स वैरिएबल के प्राथमिक फलन सिद्धांत और हाइपरबोलिक विमान में अनुरूप मानचित्रण के सिद्धांत को लिखा था। पृष्ठ 46 पर फॉक्स की रिपोर्ट बेनसिवेंगा ने दिखाया है कि एक बायरियल वेरिएबल का एक फलन हाइपरबोलिक विमान को अपने आप में इस तरह से मैप करता है कि, उन बिंदुओं पर, जिनके लिए फलन का व्युत्पन्न उपस्थित है और विलुप्त नहीं होता है जिससे हाइपरबोलिक कोण मैपिंग में संरक्षित होते हैं। | 1946 में यू. बेनसिवेंगा ने एक निबंध प्रकाशित किया था<ref>Bencivenga, U. (1946) "Sulla Rappresentazione Geometrica Della Algebre Doppie Dotate Di Modulo", ''Atti. Accad. Sci. Napoli'' Ser(3) v.2 No 7</ref> [[दोहरी संख्या]]ओं और विभक्त-सम्मिश्र संख्याओं पर जहां उन्होंने द्विवास्तविक संख्या शब्द का प्रयोग किया। उन्होंने बायरियल वेरिएबल के कुछ फलन सिद्धांत का भी वर्णन किया। निबंध का अध्ययन 1949 में [[ब्रिटिश कोलंबिया विश्वविद्यालय]] में किया गया था जब जेफ्री फॉक्स ने अपने मास्टर की थीसिस हाइपरकॉम्प्लेक्स वैरिएबल के प्राथमिक फलन सिद्धांत और हाइपरबोलिक विमान में अनुरूप मानचित्रण के सिद्धांत को लिखा था। पृष्ठ 46 पर फॉक्स की रिपोर्ट बेनसिवेंगा ने दिखाया है कि एक बायरियल वेरिएबल का एक फलन हाइपरबोलिक विमान को अपने आप में इस तरह से मैप करता है कि, उन बिंदुओं पर, जिनके लिए फलन का व्युत्पन्न उपस्थित है और विलुप्त नहीं होता है जिससे हाइपरबोलिक कोण मैपिंग में संरक्षित होते हैं। | ||
जी. फॉक्स एक द्विवार्षिक वैरिएबल | जी. फॉक्स एक द्विवार्षिक वैरिएबल के ध्रुवीय अपघटन या वैकल्पिक तलीय अपघटन प्रदान करने के लिए आगे बढ़ते हैं और [[अतिपरवलयिक रूढ़िवादिता]] पर विचार करते हैं। एक अलग परिभाषा से प्रारंभ करते हुए वह पृष्ठ 57 पर सिद्ध करता है | ||
:प्रमेय 3.42: दो सदिश परस्पर ओर्थोगोनल होते हैं यदि और केवल तभी जब उनके इकाई सदिश 0 से होकर गुजरने वाली एक या दूसरी विकर्ण रेखाओं में एक दूसरे का परस्पर प्रतिबिम्ब हों। | :प्रमेय 3.42: दो सदिश परस्पर ओर्थोगोनल होते हैं यदि और केवल तभी जब उनके इकाई सदिश 0 से होकर गुजरने वाली एक या दूसरी विकर्ण रेखाओं में एक दूसरे का परस्पर प्रतिबिम्ब हों। | ||
फ़ॉक्स | फ़ॉक्स या रैखिक भिन्नात्मक परिवर्तनों पर ध्यान केंद्रित करता है| द्विरेखीय परिवर्तन <math> w = \frac {\alpha z + \beta} {\gamma z + \delta} </math>, जहाँ <math> \alpha, \beta, \gamma, \delta </math> द्विवार्षिक स्थिरांक हैं। विलक्षणता से सामना करने के लिए वह विमान को अनंत पर एक बिंदु के साथ बढ़ाता है (पृष्ठ 73)। | ||
फलन सिद्धांत में उनके उपन्यास योगदानों में एक इंटरलॉक्ड सिस्टम की अवधारणा है। फ़ॉक्स दिखाता है कि एक बिरियल के लिए संतोषजनक है | फलन सिद्धांत में उनके उपन्यास योगदानों में एक इंटरलॉक्ड सिस्टम की अवधारणा है। फ़ॉक्स दिखाता है कि एक बिरियल के लिए संतोषजनक है | ||
Line 85: | Line 85: | ||
अतिपरवलय | अतिपरवलय | ||
:: |''z''| = ''a''<sup>2</sup> and |''z'' − k| = b<sup>2</sup> | :: |''z''| = ''a''<sup>2</sup> and |''z'' − k| = b<sup>2</sup> | ||
एक दूसरे को न काटें (एक इंटरलॉक्ड सिस्टम बनाएं)। फिर वह दिखाता है कि यह गुण एक द्विवार्षिक वैरिएबल | एक दूसरे को न काटें (एक इंटरलॉक्ड सिस्टम बनाएं)। फिर वह दिखाता है कि यह गुण एक द्विवार्षिक वैरिएबल के द्विरेखीय परिवर्तनों द्वारा संरक्षित है। | ||
==संकुचन== | ==संकुचन== | ||
गुणक व्युत्क्रम फलन इतना महत्वपूर्ण है कि इसे विभेदक ज्यामिति के मानचित्रण में सम्मिलित | गुणक व्युत्क्रम फलन इतना महत्वपूर्ण है कि इसे विभेदक ज्यामिति के मानचित्रण में सम्मिलित करने के लिए अत्यधिक उपाय किए जाते हैं। उदाहरण के लिए, साधारण सम्मिश्र अंकगणित के लिए सम्मिश्र विमान को रीमैन क्षेत्र तक घुमाया जाता है। स्प्लिट-कॉम्प्लेक्स अंकगणित के लिए एक गोले के अतिरिक्त एक हाइपरबोलॉइड का उपयोग किया जाता है: <math>H = \{(x, y, z) : z^2 + x^2 - y^2 = 1 \} .</math> रीमैन क्षेत्र के साथ, विधि P = (0, 0, 1) से t = (x, y, 0) तक स्टीरियोग्राफिक प्रक्षेपण है हाइपरबोलाइड. रेखा L = Pt को <math>L = \{ (s x, s y, 1 - s) : s \in R \}</math> में s द्वारा पैरामीट्रिज्ड किया गया है जिससे यह P से गुजरे जब s शून्य हो और t जब s एक हो। | ||
H ∩ L से यह इस प्रकार है | H ∩ L से यह इस प्रकार है | ||
Line 94: | Line 94: | ||
यदि t [[शून्य शंकु]] पर है, तो s = 2 और (2x, ±2x, - 1) H पर है, विपरीत बिंदु (2x, ±2x, 1) 'अनंत पर प्रकाश शंकु' बनाते हैं जो व्युत्क्रम के अनुसार शून्य शंकु की छवि है। | यदि t [[शून्य शंकु]] पर है, तो s = 2 और (2x, ±2x, - 1) H पर है, विपरीत बिंदु (2x, ±2x, 1) 'अनंत पर प्रकाश शंकु' बनाते हैं जो व्युत्क्रम के अनुसार शून्य शंकु की छवि है। | ||
ध्यान दें कि ''t'' | ध्यान दें कि ''t'' के लिए <math>y^2 > 1 + x^2 ,</math> s ऋणात्मक है. निहितार्थ यह है कि P से t के माध्यम से बैक-रे H पर बिंदु प्रदान करता है। ये बिंदु t इकाई हाइपरबोला से संयुग्मित हाइपरबोला के ऊपर और नीचे हैं। | ||
कॉम्पेक्टिफिकेशन को P<sup>3</sup>'''R''' में सजातीय निर्देशांक (w, x, y, z) के साथ पूरा किया जाना चाहिए जहां w = 1 अब तक उपयोग किए गए एफ़िन स्पेस (x, y, z) को निर्दिष्ट करता है। हाइपरबोलॉइड H प्रक्षेप्य शंकु<math>\{ (w, x, y, z) \in P^3R : z^2 + x^2 = y^2 + w^2 \},</math> में अवशोषित हो जाता है जो एक सघन स्थान है। | कॉम्पेक्टिफिकेशन को P<sup>3</sup>'''R''' में सजातीय निर्देशांक (w, x, y, z) के साथ पूरा किया जाना चाहिए जहां w = 1 अब तक उपयोग किए गए एफ़िन स्पेस (x, y, z) को निर्दिष्ट करता है। हाइपरबोलॉइड H प्रक्षेप्य शंकु<math>\{ (w, x, y, z) \in P^3R : z^2 + x^2 = y^2 + w^2 \},</math> में अवशोषित हो जाता है जो एक सघन स्थान है। | ||
[[वाल्टर बेंज]] ने हंस बेक के कारण मैपिंग का उपयोग करके कॉम्पैक्टिफिकेशन किया गया था। [[इसहाक याग्लोम]] ने ऊपर बताए अनुसार दो-वैरिएबल णीय संघनन का वर्णन किया है, किंतु हाइपरबोलॉइड के स्पर्शरेखा वाले विभाजित-सम्मिश्र विमान के साथ।<ref>{{cite book |last=Yaglom |first=Isaak M. |authorlink=Isaak Yaglom |others=Abe Shenitzer (translator) |title=A simple non-Euclidean geometry and its physical basis : an elementary account of Galilean geometry and the Galilean principle of relativity |year=1979 |publisher=Springer-Verlag |location=New York |isbn=0-387-90332-1 |url-access=registration |url=https://archive.org/details/simplenoneuclide0000iagl }}</ref> 2015 में इमानुएलो और नोल्डर ने पहले मोटर प्लेन को [[ टोरस्र्स ]] में एम्बेड करके और फिर एंटीपोडल बिंदुओं की पहचान करके इसे प्रोजेक्टिव बनाकर कॉम्पैक्टिफिकेशन किया गया था।<ref>John A. Emanuello & Craig A. Nolder (2015) "Projective compactification of R<sup>1,1</sup> and its Möbius Geometry", ''Complex Analysis and Operator Theory'' 9(2): 329–54</ref> | [[वाल्टर बेंज]] ने हंस बेक के कारण मैपिंग का उपयोग करके कॉम्पैक्टिफिकेशन किया गया था। [[इसहाक याग्लोम]] ने ऊपर बताए अनुसार दो-वैरिएबल णीय संघनन का वर्णन किया है, किंतु हाइपरबोलॉइड के स्पर्शरेखा वाले विभाजित-सम्मिश्र विमान के साथ।<ref>{{cite book |last=Yaglom |first=Isaak M. |authorlink=Isaak Yaglom |others=Abe Shenitzer (translator) |title=A simple non-Euclidean geometry and its physical basis : an elementary account of Galilean geometry and the Galilean principle of relativity |year=1979 |publisher=Springer-Verlag |location=New York |isbn=0-387-90332-1 |url-access=registration |url=https://archive.org/details/simplenoneuclide0000iagl }}</ref> 2015 में इमानुएलो और नोल्डर ने पहले मोटर प्लेन को [[ टोरस्र्स |टोरस्र्स]] में एम्बेड करके और फिर एंटीपोडल बिंदुओं की पहचान करके इसे प्रोजेक्टिव बनाकर कॉम्पैक्टिफिकेशन किया गया था।<ref>John A. Emanuello & Craig A. Nolder (2015) "Projective compactification of R<sup>1,1</sup> and its Möbius Geometry", ''Complex Analysis and Operator Theory'' 9(2): 329–54</ref> | ||
Revision as of 12:37, 8 August 2023
गणित में, मोटर वैरिएबल का एक फलन [[विभाजित-सम्मिश्र संख्या]] विमान में तर्कों और मानो के साथ एक फलन (गणित) होता है, जैसे कि एक सम्मिश्र वैरिएबल के कार्यों में सामान्य सम्मिश्र संख्याएं सम्मिलित होती हैं। विलियम किंग्डन क्लिफोर्ड ने अपने प्रिलिमिनरी स्केच ऑफ़ बिक्वाटर्नियंस (1873) में गतिज संचालक के लिए मोटर शब्द गढ़ा है। उन्होंने अपने स्प्लिट-बाइक्वाटर्नियनमें अदिशों के लिए स्प्लिट-कॉम्प्लेक्स संख्याओं का उपयोग किया गया था। व्यंजना और परंपरा के लिए स्प्लिट-कॉम्प्लेक्स वेरिएबल के स्थान पर मोटर वेरिएबल का उपयोग यहां किया जाता है।
उदाहरण के लिए,
मोटर वैरिएबल के कार्य वास्तविक विश्लेषण को विस्तारित करने और विमान की मैपिंग का कॉम्पैक्ट प्रतिनिधित्व प्रदान करने के लिए एक संदर्भ प्रदान करते हैं। चूँकि , सिद्धांत सम्मिश्र विश्लेषण से अधिक कम है। फिर भी, पारंपरिक सम्मिश्र विश्लेषण के कुछ विधियों की व्याख्या मोटर वैरिएबल के साथ दी गई है, और समान्यत: हाइपरकॉम्प्लेक्स विश्लेषण में उपस्थित है।
प्राथमिक कार्य
माना D = , विभाजित-सम्मिश्र विमान है जिसमे निम्नलिखित अनुकरणीय फलन f का डोमेन और रेंज 'D' में है:
एक वर्सोर की क्रिया या हाइपरबोलिक वर्सोर एफ़िन परिवर्तन उत्पन्न करने के लिए अनुवाद (ज्यामिति) के साथ जोड़ा जाता है
- . जब c = 0, फलन स्क़ुईज़ मानचित्रण के समान होता है।
साधारण सम्मिश्र अंकगणित में वर्ग फलन की कोई समानता नहीं है। होने देना
- और उस पर ध्यान दें
परिणाम यह है कि चार चतुर्भुजों को एक, पहचान घटक में मैप किया गया है:
- .
ध्यान दें कि इकाई हाइपरबोला बनाता है इस प्रकार
C में वृत्त के विपरीत हाइपरबोला को संदर्भ वक्र के रूप में सम्मिलित किया गया है।
रैखिक भिन्नात्मक परिवर्तन
एक वलय के ऊपर प्रक्षेप्य रेखा की अवधारणा का उपयोग करते हुए, प्रक्षेप्य रेखा P(D) बनाई जाती है। निर्माण विभाजित-सम्मिश्र संख्या घटकों के साथ सजातीय निर्देशांक का उपयोग करता है। प्रक्षेप्य रेखा P(D) रैखिक भिन्नात्मक परिवर्तनों द्वारा रूपांतरित होती है:
- कभी-कभी लिखा जाता है
- परन्तु cz + d 'D' में एक इकाई है।
प्राथमिक रैखिक भिन्नात्मक परिवर्तनों में सम्मिलित हैं
- अतिशयोक्तिपूर्ण घुमाव
- अनुवाद और
- विपरीत
इनमें से प्रत्येक का एक व्युत्क्रम है, और रचनाएँ रैखिक भिन्नात्मक परिवर्तनों के एक समूह को भरती हैं। मोटर वैरिएबल को इसके ध्रुवीय निर्देशांक में अतिपरवलयिक कोण की विशेषता होती है, और यह कोण मोटर वैरिएबल रैखिक भिन्नात्मक परिवर्तनों द्वारा संरक्षित होता है, जैसे वृत्ताकार कोण सामान्य सम्मिश्र विमान के मोबियस परिवर्तनों द्वारा संरक्षित होता है। कोणों को संरक्षित करने वाले परिवर्तनों को अनुरूप कहा जाता है, इसलिए रैखिक भिन्नात्मक परिवर्तन अनुरूप मानचित्र होते हैं।
ट्रांसफॉर्मेशन बाउंडिंग क्षेत्रों की तुलना की जा सकती है: उदाहरण के लिए, सामान्य सम्मिश्र विमान पर, केली ट्रांसफॉर्म या कॉम्प्लेक्स होमोग्राफी ऊपरी आधे-तल को यूनिट डिस्क तक ले जाती है, इस प्रकार इसे बांधती है। पहचान घटक U1 का मानचित्रण एक आयत में D की एक तुलनीय बाउंडिंग क्रिया प्रदान करता है:
जहां T = {z = x + jy : |y| < x < 1 या |y| <2 - x जब 1 ≤ x <2}।
प्रक्षेप्य रेखा पर आक्षेप के रूप में रैखिक भिन्नात्मक परिवर्तनों को अनुभव करने के लिए 'D ' के कॉम्पैक्टिफिकेशन का उपयोग किया जाता है। नीचे दिया गया अनुभाग देखें.
एक्सप, लॉग, और वर्गमूल
घातांकीय फलन पूरे तल D को U1में ले जाता है:
- .
इस प्रकार जब x = bj, तब ex एक अतिशयोक्तिपूर्ण छंद है। सामान्य मोटर वैरिएबल z = a + bj के लिए, एक है
- .
मोटर वैरिएबल के कार्यों के सिद्धांत में वर्गमूल और लघुगणक कार्यों पर विशेष ध्यान दिया जाना चाहिए। विशेष रूप से, विभाजित-कॉम्प्लेक्स संख्याओं के विमान में चार जुड़े हुए घटक होते हैं और एकवचन बिंदुओं का सेट जिसमें कोई व्युत्क्रम नहीं होता है: विकर्ण z = x ± x j, x ∈ R.. पहचान घटक, अर्थात् {z : x > |y| } = U1, वर्ग फलन और घातांक की सीमा है। इस प्रकार यह वर्गमूल और लघुगणक कार्यों का क्षेत्र है। अन्य तीन चतुर्थांश डोमेन से संबंधित नहीं हैं क्योंकि वर्गमूल और लघुगणक को वर्ग फलन और घातीय फलन के एक-से-एक व्युत्क्रम के रूप में परिभाषित किया गया है।
D के लघुगणक का ग्राफिक विवरण मोट्टर एंड रोजा ने अपने लेख हाइपरबोलिक कैलकुलस (1998) में दिया है।[1]
D -होलोमोर्फिक फ़ंक्शन
कॉची-रीमैन समीकरण जो सम्मिश्र विमान में एक डोमेन (गणितीय विश्लेषण) पर होलोमोर्फिक कार्यों की विशेषता बताते हैं, एक मोटर वैरिएबल के कार्यों के लिए एक एनालॉग है। विर्टिंगर व्युत्पन्न का उपयोग करके D-होलोमोर्फिक कार्यों के लिए एक दृष्टिकोण मोट्टर एंड रॉसा द्वारा दिया गया था:[1] जिसमे फलन f = u + j v को 'D-होलोमोर्फिक' कहा जाता है
वास्तविक और काल्पनिक घटकों पर विचार करके, एक D -होलोमोर्फिक फलन संतुष्ट होता है
ये समीकरण प्रकाशित किये गये[2] 1893 में जॉर्ज शेफ़र्स द्वारा, इसलिए उन्हें शेफ़र्स की स्थितियाँ कहा गया है।[3]
हार्मोनिक फलन सिद्धांत में तुलनीय दृष्टिकोण को पीटर ड्यूरेन के एक टेक्स्ट में देखा जा सकता है।[4] यह स्पष्ट है कि घटक u और D -होलोमोर्फिक फलन f का v से जुड़े तरंग समीकरण को संतुष्ट करता है D 'अलेम्बर्ट, जबकि सी-होलोमोर्फिक फलन के घटक लाप्लास के समीकरण को संतुष्ट करते हैं।
ला प्लाटा पाठ
1935 में ला प्लाटा का राष्ट्रीय विश्वविद्यालय में, अनंत श्रृंखला के अभिसरण के विशेषज्ञ जे.सी. विग्नॉक्स ने विश्वविद्यालय की वार्षिक पत्रिका में मोटर वैरिएबल पर चार लेख लिखे।[5] वह परिचयात्मक के एकमात्र लेखक हैं, और उन्होंने दूसरों पर अपने विभाग प्रमुख A. दुरानोना वाई वेदिया से परामर्श किया है। सोबरे लास सीरीज डी न्यूमेरोस कॉम्प्लीजोस हिपरबोलिकोस में वह कहते हैं (पृष्ठ 123):
- अतिशयोक्तिपूर्ण सम्मिश्र संख्याओं की यह प्रणाली [मोटर वैरिएबल ] मॉड्यूल का प्रत्यक्ष योग है या वास्तविक संख्याओं के क्षेत्र के लिए आइसोमोर्फिक बीजगणित का प्रत्यक्ष योग; यह गुण वास्तविक संख्याओं के क्षेत्र के गुणों के उपयोग के माध्यम से श्रृंखला के सिद्धांत और हाइपरबोलिक सम्मिश्र वैरिएबल के कार्यों की व्याख्या की अनुमति देती है।
उदाहरण के लिए, वह मोटर वैरिएबल के डोमेन के लिए कॉची, एबेल, मर्टेंस और हार्डी के कारण प्रमेयों को सामान्य बनाने के लिए आगे बढ़ता है।
नीचे उद्धृत प्राथमिक लेख में, वह D -होलोमोर्फिक फलन और उनके घटकों द्वारा D'अलेम्बर्ट के समीकरण की संतुष्टि पर विचार करता है। वह विकर्णों y = x और y = − x के समानांतर भुजाओं वाले एक आयत को एक समदैशिक आयत कहता है क्योंकि इसकी भुजाएँ समदैशिक रेखाओं पर होती हैं। उन्होंने अपना सार इन शब्दों के साथ समाप्त किया गया था:
- आइसोट्रोपिक आयतें इस सिद्धांत में एक मौलिक भूमिका निभाती हैं क्योंकि वे होलोमोर्फिक कार्यों के लिए अस्तित्व के डोमेन, शक्ति श्रृंखला के अभिसरण के डोमेन और कार्यात्मक श्रृंखला के अभिसरण के डोमेन बनाते हैं।
विग्नॉक्स ने बर्नस्टीन बहुपद द्वारा एक इकाई आइसोट्रोपिक आयत में D -होलोमोर्फिक कार्यों के सन्निकटन पर छह पेज के नोट के साथ अपनी श्रृंखला पूरी की चूँकि इस श्रृंखला में कुछ मुद्रण संबंधी त्रुटियों के साथ-साथ कुछ तकनीकी कमियां भी हैं, विग्नॉक्स सिद्धांत की मुख्य पंक्तियों को प्रस्तुत करने में सफल रहा जो वास्तविक और सामान्य सम्मिश्र विश्लेषण के बीच स्थित है। तत्वों के अनुकरणीय विकास के कारण यह टेक्स्ट छात्रों और शिक्षकों के लिए एक शिक्षाप्रद डॉक्यूमेंट के रूप में विशेष रूप से प्रभावशाली है। इसके अतिरिक्त, संपूर्ण भ्रमण एमिल बोरेल की ज्यामिति के संबंध में निहित है जिससे इसकी प्रेरणा को रेखांकित किया जा सकता है।
बिरियल वैरिएबल
1892 में कॉनराड सेग्रे ने टेसरीन बीजगणित को द्विसंकुल संख्याओं के रूप में याद किया गया था।[6] स्वाभाविक रूप से वास्तविक टेसरीन का उपबीजगणित उत्पन्न हुआ और इसे द्विवास्तविक संख्याएँ कहा जाने लगा।
1946 में यू. बेनसिवेंगा ने एक निबंध प्रकाशित किया था[7] दोहरी संख्याओं और विभक्त-सम्मिश्र संख्याओं पर जहां उन्होंने द्विवास्तविक संख्या शब्द का प्रयोग किया। उन्होंने बायरियल वेरिएबल के कुछ फलन सिद्धांत का भी वर्णन किया। निबंध का अध्ययन 1949 में ब्रिटिश कोलंबिया विश्वविद्यालय में किया गया था जब जेफ्री फॉक्स ने अपने मास्टर की थीसिस हाइपरकॉम्प्लेक्स वैरिएबल के प्राथमिक फलन सिद्धांत और हाइपरबोलिक विमान में अनुरूप मानचित्रण के सिद्धांत को लिखा था। पृष्ठ 46 पर फॉक्स की रिपोर्ट बेनसिवेंगा ने दिखाया है कि एक बायरियल वेरिएबल का एक फलन हाइपरबोलिक विमान को अपने आप में इस तरह से मैप करता है कि, उन बिंदुओं पर, जिनके लिए फलन का व्युत्पन्न उपस्थित है और विलुप्त नहीं होता है जिससे हाइपरबोलिक कोण मैपिंग में संरक्षित होते हैं।
जी. फॉक्स एक द्विवार्षिक वैरिएबल के ध्रुवीय अपघटन या वैकल्पिक तलीय अपघटन प्रदान करने के लिए आगे बढ़ते हैं और अतिपरवलयिक रूढ़िवादिता पर विचार करते हैं। एक अलग परिभाषा से प्रारंभ करते हुए वह पृष्ठ 57 पर सिद्ध करता है
- प्रमेय 3.42: दो सदिश परस्पर ओर्थोगोनल होते हैं यदि और केवल तभी जब उनके इकाई सदिश 0 से होकर गुजरने वाली एक या दूसरी विकर्ण रेखाओं में एक दूसरे का परस्पर प्रतिबिम्ब हों।
फ़ॉक्स या रैखिक भिन्नात्मक परिवर्तनों पर ध्यान केंद्रित करता है| द्विरेखीय परिवर्तन , जहाँ द्विवार्षिक स्थिरांक हैं। विलक्षणता से सामना करने के लिए वह विमान को अनंत पर एक बिंदु के साथ बढ़ाता है (पृष्ठ 73)।
फलन सिद्धांत में उनके उपन्यास योगदानों में एक इंटरलॉक्ड सिस्टम की अवधारणा है। फ़ॉक्स दिखाता है कि एक बिरियल के लिए संतोषजनक है
- (a − b)2 < |k| < (a + b)2
अतिपरवलय
- |z| = a2 and |z − k| = b2
एक दूसरे को न काटें (एक इंटरलॉक्ड सिस्टम बनाएं)। फिर वह दिखाता है कि यह गुण एक द्विवार्षिक वैरिएबल के द्विरेखीय परिवर्तनों द्वारा संरक्षित है।
संकुचन
गुणक व्युत्क्रम फलन इतना महत्वपूर्ण है कि इसे विभेदक ज्यामिति के मानचित्रण में सम्मिलित करने के लिए अत्यधिक उपाय किए जाते हैं। उदाहरण के लिए, साधारण सम्मिश्र अंकगणित के लिए सम्मिश्र विमान को रीमैन क्षेत्र तक घुमाया जाता है। स्प्लिट-कॉम्प्लेक्स अंकगणित के लिए एक गोले के अतिरिक्त एक हाइपरबोलॉइड का उपयोग किया जाता है: रीमैन क्षेत्र के साथ, विधि P = (0, 0, 1) से t = (x, y, 0) तक स्टीरियोग्राफिक प्रक्षेपण है हाइपरबोलाइड. रेखा L = Pt को में s द्वारा पैरामीट्रिज्ड किया गया है जिससे यह P से गुजरे जब s शून्य हो और t जब s एक हो।
H ∩ L से यह इस प्रकार है
यदि t शून्य शंकु पर है, तो s = 2 और (2x, ±2x, - 1) H पर है, विपरीत बिंदु (2x, ±2x, 1) 'अनंत पर प्रकाश शंकु' बनाते हैं जो व्युत्क्रम के अनुसार शून्य शंकु की छवि है।
ध्यान दें कि t के लिए s ऋणात्मक है. निहितार्थ यह है कि P से t के माध्यम से बैक-रे H पर बिंदु प्रदान करता है। ये बिंदु t इकाई हाइपरबोला से संयुग्मित हाइपरबोला के ऊपर और नीचे हैं।
कॉम्पेक्टिफिकेशन को P3R में सजातीय निर्देशांक (w, x, y, z) के साथ पूरा किया जाना चाहिए जहां w = 1 अब तक उपयोग किए गए एफ़िन स्पेस (x, y, z) को निर्दिष्ट करता है। हाइपरबोलॉइड H प्रक्षेप्य शंकु में अवशोषित हो जाता है जो एक सघन स्थान है।
वाल्टर बेंज ने हंस बेक के कारण मैपिंग का उपयोग करके कॉम्पैक्टिफिकेशन किया गया था। इसहाक याग्लोम ने ऊपर बताए अनुसार दो-वैरिएबल णीय संघनन का वर्णन किया है, किंतु हाइपरबोलॉइड के स्पर्शरेखा वाले विभाजित-सम्मिश्र विमान के साथ।[8] 2015 में इमानुएलो और नोल्डर ने पहले मोटर प्लेन को टोरस्र्स में एम्बेड करके और फिर एंटीपोडल बिंदुओं की पहचान करके इसे प्रोजेक्टिव बनाकर कॉम्पैक्टिफिकेशन किया गया था।[9]
संदर्भ
- ↑ 1.0 1.1 A.E. Motter & M.A.F. Rosa (1998) "Hyperbolic Calculus", Advances in Applied Clifford Algebras 8(1):109–28
- ↑ Georg Scheffers (1893) "Verallgemeinerung der Grundlagen der gewohnlichen komplexen Funktionen", Sitzungsberichte Sachs. Ges. Wiss, Math-phys Klasse Bd 45 S. 828-42
- ↑ Isaak Yaglom (1988) Felix Klein & Sophus Lie, The Evolution of the Idea of Symmetry in the Nineteenth Century, Birkhäuser Verlag, p. 203
- ↑ Peter Duren (2004) Harmonic Mappings in the Plane, pp. 3,4, Cambridge University Press
- ↑ Vignaux, J.C. & A. Durañona y Vedia (1935) "Sobre la teoría de las funciones de una variable compleja hiperbólica", Contribución al Estudio de las Ciencias Físicas y Matemáticas, pp. 139–184, Universidad Nacional de La Plata, República Argentina
- ↑ G. Baley Price (1991) An introduction to multicomplex spaces and functions, Marcel Dekker ISBN 0-8247-8345-X
- ↑ Bencivenga, U. (1946) "Sulla Rappresentazione Geometrica Della Algebre Doppie Dotate Di Modulo", Atti. Accad. Sci. Napoli Ser(3) v.2 No 7
- ↑ Yaglom, Isaak M. (1979). A simple non-Euclidean geometry and its physical basis : an elementary account of Galilean geometry and the Galilean principle of relativity. Abe Shenitzer (translator). New York: Springer-Verlag. ISBN 0-387-90332-1.
- ↑ John A. Emanuello & Craig A. Nolder (2015) "Projective compactification of R1,1 and its Möbius Geometry", Complex Analysis and Operator Theory 9(2): 329–54
- Francesco Catoni, Dino Boccaletti, & Roberto Cannata (2008) Mathematics of Minkowski Space-Time, Birkhäuser Verlag, Basel. Chapter 7: Functions of a hyperbolic variable.
- Shahram Dehdasht + seven others (2021) "Conformal Hyperbolic Optics", Physical Review Research 3,033281 doi:10.1103/PhysRevResearch.3.033281