मुक्त वस्तु: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Left adjoint to a forgetful functor to sets}} गणित में, मुक्त वस्तु का विचार अमूर्त बीज...")
 
No edit summary
Line 1: Line 1:
{{Short description|Left adjoint to a forgetful functor to sets}}
{{Short description|Left adjoint to a forgetful functor to sets}}
गणित में, मुक्त वस्तु का विचार अमूर्त बीजगणित की मूल अवधारणाओं में से एक है। अनौपचारिक रूप से, एक [[सेट (गणित)]] ''ए'' पर एक मुक्त वस्तु को ''ए'' पर एक सामान्य [[बीजगणितीय संरचना]] के रूप में माना जा सकता है: मुक्त वस्तु के तत्वों के बीच होने वाले एकमात्र समीकरण वे हैं जो निम्न से अनुसरण करते हैं बीजगणितीय संरचना के सिद्धांतों को परिभाषित करना। उदाहरणों में [[मुक्त समूह]], टेन्सर बीजगणित, या मुक्त जालक शामिल हैं।
गणित में, मुक्त वस्तु का विचार अमूर्त बीजगणित की मूल अवधारणाओं में से एक है। अनौपचारिक रूप से, एक [[सेट (गणित)]] ''ए'' पर एक मुक्त वस्तु को ''ए'' पर एक सामान्य [[बीजगणितीय संरचना]] के रूप में माना जा सकता है: मुक्त वस्तु के तत्वों के बीच होने वाले एकमात्र समीकरण वे हैं जो निम्न से अनुसरण करते हैं बीजगणितीय संरचना के सिद्धांतों को परिभाषित करना। उदाहरणों में [[मुक्त समूह]], टेन्सर बीजगणित, या मुक्त जालक सम्मिलित हैं।


अवधारणा [[सार्वभौमिक बीजगणित]] का एक हिस्सा है, इस अर्थ में कि यह सभी प्रकार की बीजगणितीय संरचना ([[अंतिम]] संचालन के साथ) से संबंधित है। [[श्रेणी सिद्धांत]] के संदर्भ में इसका एक सूत्रीकरण भी है, हालांकि यह अभी और अधिक अमूर्त शब्दों में है।
अवधारणा [[सार्वभौमिक बीजगणित]] का एक हिस्सा है, इस अर्थ में कि यह सभी प्रकार की बीजगणितीय संरचना ([[अंतिम]] संचालन के साथ) से संबंधित है। [[श्रेणी सिद्धांत]] के संदर्भ में इसका एक सूत्रीकरण भी है, हालांकि यह अभी और अधिक अमूर्त शब्दों में है।
Line 25: Line 25:
मुक्त वस्तुओं का निर्माण दो चरणों में होता है। [[सहयोगी कानून]] के अनुरूप बीजगणित के लिए, पहला कदम [[वर्णमाला (कंप्यूटर विज्ञान)]] से बने सभी संभावित [[स्ट्रिंग (कंप्यूटर विज्ञान)]] के संग्रह पर विचार करना है। फिर शब्दों पर [[तुल्यता संबंध]]ों का एक सेट लगाया जाता है, जहां संबंध बीजगणितीय वस्तु के परिभाषित संबंध होते हैं। तब मुक्त वस्तु में [[तुल्यता वर्ग]]ों का समूह होता है।
मुक्त वस्तुओं का निर्माण दो चरणों में होता है। [[सहयोगी कानून]] के अनुरूप बीजगणित के लिए, पहला कदम [[वर्णमाला (कंप्यूटर विज्ञान)]] से बने सभी संभावित [[स्ट्रिंग (कंप्यूटर विज्ञान)]] के संग्रह पर विचार करना है। फिर शब्दों पर [[तुल्यता संबंध]]ों का एक सेट लगाया जाता है, जहां संबंध बीजगणितीय वस्तु के परिभाषित संबंध होते हैं। तब मुक्त वस्तु में [[तुल्यता वर्ग]]ों का समूह होता है।


उदाहरण के लिए, एक समूह के दो जनरेटिंग सेट में मुक्त समूह के निर्माण पर विचार करें। एक पाँच अक्षरों से मिलकर एक वर्णमाला से शुरू होता है <math>\{e,a,b,a^{-1},b^{-1}\}</math>. पहले चरण में, अक्षरों को अभी तक कोई नियत अर्थ नहीं दिया गया है <math>a^{-1}</math> या <math>b^{-1}</math>; इन्हें बाद में, दूसरे चरण में दिया जाएगा। इस प्रकार, कोई समान रूप से अच्छी तरह से पाँच अक्षरों में वर्णमाला के साथ शुरू कर सकता है <math>S=\{a,b,c,d,e\}</math>. इस उदाहरण में, सभी शब्दों या स्ट्रिंग्स का सेट <math>W(S)</math> हर संभव क्रम में व्यवस्थित अक्षरों के साथ, एबेसेडे और एबीसी, और इसी तरह, मनमाने ढंग से परिमित लंबाई के तार शामिल होंगे।
उदाहरण के लिए, एक समूह के दो जनरेटिंग सेट में मुक्त समूह के निर्माण पर विचार करें। एक पाँच अक्षरों से मिलकर एक वर्णमाला से प्रांरम होता है <math>\{e,a,b,a^{-1},b^{-1}\}</math>. पहले चरण में, अक्षरों को अभी तक कोई नियत अर्थ नहीं दिया गया है <math>a^{-1}</math> या <math>b^{-1}</math>; इन्हें बाद में, दूसरे चरण में दिया जाएगा। इस प्रकार, कोई समान रूप से अच्छी तरह से पाँच अक्षरों में वर्णमाला के साथ प्रांरम कर सकता है <math>S=\{a,b,c,d,e\}</math>. इस उदाहरण में, सभी शब्दों या स्ट्रिंग्स का सेट <math>W(S)</math> हर संभव क्रम में व्यवस्थित अक्षरों के साथ, एबेसेडे और एबीसी, और इसी तरह, मनमाने ढंग से परिमित लंबाई के तार सम्मिलित होंगे।


अगले चरण में, तुल्यता संबंधों का एक सेट लगाया जाता है। एक [[समूह (गणित)]] के लिए तुल्यता संबंध पहचान द्वारा गुणन के हैं, <math>ge=eg=g</math>, और व्युत्क्रमों का गुणन: <math>gg^{-1}=g^{-1}g=e</math>. इन संबंधों को ऊपर के तार पर लागू करने पर, एक प्राप्त होता है
अगले चरण में, तुल्यता संबंधों का एक सेट लगाया जाता है। एक [[समूह (गणित)]] के लिए तुल्यता संबंध पहचान द्वारा गुणन के हैं, <math>ge=eg=g</math>, और व्युत्क्रमों का गुणन: <math>gg^{-1}=g^{-1}g=e</math>. इन संबंधों को ऊपर के तार पर प्रायुक्त करने पर, एक प्राप्त होता है


:<math>aebecede = aba^{-1}b^{-1},</math>
:<math>aebecede = aba^{-1}b^{-1},</math>
Line 36: Line 36:


:<math>F_2=W(S)/\sim.</math>
:<math>F_2=W(S)/\sim.</math>
इसे प्राय: इस प्रकार लिखा जाता है <math>F_2=W(S)/E</math> कहाँ <math>W(S) = \{a_1 a_2 \ldots a_n \, \vert \; a_k \in S \, ; \, n \in \mathbb{N}\}</math> सभी शब्दों का सेट है, और <math>E = \{a_1 a_2 \ldots a_n \, \vert \; e = a_1 a_2 \ldots a_n \, ; \, a_k \in S \, ; \, n \in \mathbb{N}\}</math> एक समूह को परिभाषित करने वाले संबंधों के लागू होने के बाद, पहचान का समतुल्य वर्ग है।
इसे प्राय: इस प्रकार लिखा जाता है <math>F_2=W(S)/E</math> कहाँ <math>W(S) = \{a_1 a_2 \ldots a_n \, \vert \; a_k \in S \, ; \, n \in \mathbb{N}\}</math> सभी शब्दों का सेट है, और <math>E = \{a_1 a_2 \ldots a_n \, \vert \; e = a_1 a_2 \ldots a_n \, ; \, a_k \in S \, ; \, n \in \mathbb{N}\}</math> एक समूह को परिभाषित करने वाले संबंधों के प्रायुक्त होने के बाद, पहचान का समतुल्य वर्ग है।


एक सरल उदाहरण [[मुक्त मोनोइड]]्स हैं। एक सेट एक्स पर मुक्त मोनॉयड, एक्स को वर्णमाला के रूप में उपयोग करने वाले सभी परिमित स्ट्रिंग (कंप्यूटर विज्ञान) का मोनॉयड है, जिसमें स्ट्रिंग्स का संचालन संयोजन होता है। पहचान खाली स्ट्रिंग है। संक्षेप में, मुक्त मोनॉइड केवल सभी शब्दों का समुच्चय है, जिसमें कोई तुल्यता संबंध नहीं लगाया गया है। [[क्लेन स्टार]] पर लेख में इस उदाहरण को और विकसित किया गया है।
एक सरल उदाहरण [[मुक्त मोनोइड]]्स हैं। एक सेट एक्स पर मुक्त मोनॉयड, एक्स को वर्णमाला के रूप में उपयोग करने वाले सभी परिमित स्ट्रिंग (कंप्यूटर विज्ञान) का मोनॉयड है, जिसमें स्ट्रिंग्स का संचालन संयोजन होता है। पहचान खाली स्ट्रिंग है। संक्षेप में, मुक्त मोनॉइड केवल सभी शब्दों का समुच्चय है, जिसमें कोई तुल्यता संबंध नहीं लगाया गया है। [[क्लेन स्टार]] पर लेख में इस उदाहरण को और विकसित किया गया है।


=== सामान्य मामला ===
=== सामान्य मामला ===
सामान्य मामले में, बीजगणितीय संबंधों को साहचर्य होने की आवश्यकता नहीं है, इस मामले में शुरुआती बिंदु सभी शब्दों का सेट नहीं है, बल्कि कोष्ठकों के साथ विरामित तार हैं, जो अक्षरों के गैर-सहयोगी समूहों को इंगित करने के लिए उपयोग किए जाते हैं। इस तरह की स्ट्रिंग को [[बाइनरी ट्री]] या [[मुक्त मेग्मा]] द्वारा समतुल्य रूप से दर्शाया जा सकता है; पेड़ की पत्तियाँ वर्णमाला के अक्षर हैं।
सामान्य मामले में, बीजगणितीय संबंधों को साहचर्य होने की आवश्यकता नहीं है, इस मामले में शुरुआती बिंदु सभी शब्दों का सेट नहीं है, किन्तु कोष्ठकों के साथ विरामित तार हैं, जो अक्षरों के गैर-सहयोगी समूहों को इंगित करने के लिए उपयोग किए जाते हैं। इस तरह की स्ट्रिंग को [[बाइनरी ट्री]] या [[मुक्त मेग्मा]] द्वारा समतुल्य रूप से दर्शाया जा सकता है; पेड़ की पत्तियाँ वर्णमाला के अक्षर हैं।


तब बीजगणितीय संबंध पेड़ की पत्तियों पर सामान्य [[arity]] या [[अंतिम संबंध]] हो सकते हैं। सभी संभावित कोष्ठकों के संग्रह के साथ शुरू करने के बजाय, हेरब्रांड ब्रह्मांड के साथ शुरू करना अधिक सुविधाजनक हो सकता है। प्रश्न में विशेष बीजगणितीय वस्तु के आधार पर, किसी मुक्त वस्तु की सामग्री का उचित वर्णन या गणना करना आसान या कठिन हो सकता है। उदाहरण के लिए, दो जनरेटर में मुक्त समूह का आसानी से वर्णन किया गया है। इसके विपरीत, एक से अधिक जनरेटर में मुक्त हेटिंग बीजगणित की संरचना के बारे में बहुत कम या कुछ भी ज्ञात नहीं है।<ref>Peter T. Johnstone, ''Stone Spaces'', (1982) Cambridge University Press, {{ISBN|0-521-23893-5}}. ''(A treatment of the one-generator free Heyting algebra is given in chapter 1, section 4.11)''</ref> यह निर्धारित करने की समस्या कि क्या दो अलग-अलग तार एक ही तुल्यता वर्ग के हैं, [[शब्द समस्या (गणित)]] के रूप में जानी जाती है।
तब बीजगणितीय संबंध पेड़ की पत्तियों पर सामान्य [[arity]] या [[अंतिम संबंध]] हो सकते हैं। सभी संभावित कोष्ठकों के संग्रह के साथ प्रांरम करने के अतिरिक्त, हेरब्रांड ब्रह्मांड के साथ प्रांरम करना अधिक सुविधाजनक हो सकता है। प्रश्न में विशेष बीजगणितीय वस्तु के आधार पर, किसी मुक्त वस्तु की सामग्री का उचित वर्णन या गणना करना आसान या कठिन हो सकता है। उदाहरण के लिए, दो जनरेटर में मुक्त समूह का आसानी से वर्णन किया गया है। इसके विपरीत, एक से अधिक जनरेटर में मुक्त हेटिंग बीजगणित की संरचना के बारे में बहुत कम या कुछ भी ज्ञात नहीं है।<ref>Peter T. Johnstone, ''Stone Spaces'', (1982) Cambridge University Press, {{ISBN|0-521-23893-5}}. ''(A treatment of the one-generator free Heyting algebra is given in chapter 1, section 4.11)''</ref> यह निर्धारित करने की समस्या कि क्या दो अलग-अलग तार एक ही तुल्यता वर्ग के हैं, [[शब्द समस्या (गणित)]] के रूप में जानी जाती है।


जैसा कि उदाहरण सुझाते हैं, मुक्त वस्तुएँ [[वाक्य - विन्यास]] से निर्माण की तरह दिखती हैं; कोई यह कहकर कुछ हद तक उलट सकता है कि सिंटैक्स के प्रमुख उपयोगों को मुक्त वस्तुओं के रूप में समझाया और वर्णित किया जा सकता है, जो स्पष्ट रूप से भारी 'विराम चिह्न' को समझने योग्य (और अधिक यादगार) बनाता है।{{Clarify|date=May 2017}}
जैसा कि उदाहरण सुझाते हैं, मुक्त वस्तुएँ [[वाक्य - विन्यास]] से निर्माण की तरह दिखती हैं; कोई यह कहकर कुछ हद तक उलट सकता है कि सिंटैक्स के प्रमुख उपयोगों को मुक्त वस्तुओं के रूप में समझाया और वर्णित किया जा सकता है, जो स्पष्ट रूप से भारी 'विराम चिह्न' को समझने योग्य (और अधिक यादगार) बनाता है।{{Clarify|date=May 2017}}
Line 51: Line 51:
{{main|Term algebra}}
{{main|Term algebra}}
{{Expand section|date=June 2008}}
{{Expand section|date=June 2008}}
होने देना <math>S</math> कोई भी सेट हो, और रहने दो <math>\mathbf{A}</math> प्रकार की एक बीजगणितीय संरचना हो <math>\rho</math> द्वारा उत्पन्न <math>S</math>. आइए इस बीजगणितीय संरचना के अंतर्निहित सेट को दें <math>\mathbf{A}</math>, कभी-कभी इसका ब्रह्मांड कहा जाता है, हो <math>A</math>, और जाने <math>\psi: S \to A</math> एक समारोह हो। हम कहते हैं <math>(A, \psi)</math> (या अनौपचारिक रूप से सिर्फ <math>\mathbf{A}</math>) एक मुक्त बीजगणित है (प्रकार का <math>\rho</math>) मंच पर <math>S</math> मुफ्त जनरेटर की, अगर हर बीजगणित के लिए <math>\mathbf{B}</math> प्रकार का <math>\rho</math> और हर समारोह <math>\tau: S \to B</math>, कहाँ <math>B</math> का एक ब्रह्मांड है <math>\mathbf{B}</math>, एक अद्वितीय समरूपता मौजूद है <math>\sigma: A \to B</math> ऐसा है कि <math>\sigma \circ \psi = \tau.</math>
होने देना <math>S</math> कोई भी सेट हो, और रहने दो <math>\mathbf{A}</math> प्रकार की एक बीजगणितीय संरचना हो <math>\rho</math> द्वारा उत्पन्न <math>S</math>. आइए इस बीजगणितीय संरचना के अंतर्निहित सेट को दें <math>\mathbf{A}</math>, कभी-कभी इसका ब्रह्मांड कहा जाता है, हो <math>A</math>, और जाने <math>\psi: S \to A</math> एक समारोह हो। हम कहते हैं <math>(A, \psi)</math> (या अनौपचारिक रूप से सिर्फ <math>\mathbf{A}</math>) एक मुक्त बीजगणित है (प्रकार का <math>\rho</math>) मंच पर <math>S</math> मुफ्त जनरेटर की, यदि हर बीजगणित के लिए <math>\mathbf{B}</math> प्रकार का <math>\rho</math> और हर समारोह <math>\tau: S \to B</math>, कहाँ <math>B</math> का एक ब्रह्मांड है <math>\mathbf{B}</math>, एक अद्वितीय समरूपता मौजूद है <math>\sigma: A \to B</math> ऐसा है कि <math>\sigma \circ \psi = \tau.</math>




Line 71: Line 71:


=== अस्तित्व ===
=== अस्तित्व ===
सामान्य अस्तित्व प्रमेय हैं जो लागू होते हैं; उनमें से सबसे बुनियादी इसकी गारंटी देता है
सामान्य अस्तित्व प्रमेय हैं जो प्रायुक्त होते हैं; उनमें से सबसे मुलभुत इसकी गारंटी देता है
: जब भी सी एक किस्म (सार्वभौमिक बीजगणित) है, तो प्रत्येक सेट 'एक्स' के लिए सी में एक मुक्त वस्तु ''एफ''(''एक्स'') है।
: जब भी सी एक किस्म (सार्वभौमिक बीजगणित) है, तो प्रत्येक सेट 'एक्स' के लिए सी में एक मुक्त वस्तु ''एफ''(''एक्स'') है।


Line 79: Line 79:
अन्य प्रकार की भुलक्कड़पन भी वस्तुओं को मुक्त वस्तुओं की तरह ही जन्म देती है, जिसमें वे एक भुलक्कड़ फ़नकार के साथ छोड़ दी जाती हैं, जरूरी नहीं कि वे सेट हों।
अन्य प्रकार की भुलक्कड़पन भी वस्तुओं को मुक्त वस्तुओं की तरह ही जन्म देती है, जिसमें वे एक भुलक्कड़ फ़नकार के साथ छोड़ दी जाती हैं, जरूरी नहीं कि वे सेट हों।


उदाहरण के लिए, सदिश स्थान पर टेन्सर बीजगणित का निर्माण [[साहचर्य बीजगणित]] पर फ़ैक्टर के बाईं ओर है जो बीजगणित संरचना की उपेक्षा करता है। इसलिए इसे अक्सर [[मुक्त बीजगणित]] भी कहा जाता है। इसी तरह [[सममित बीजगणित]] और [[बाहरी बीजगणित]] एक सदिश स्थान पर मुक्त सममित और विरोधी सममित बीजगणित हैं।
उदाहरण के लिए, सदिश स्थान पर टेन्सर बीजगणित का निर्माण [[साहचर्य बीजगणित]] पर फ़ैक्टर के बाईं ओर है जो बीजगणित संरचना की उपेक्षा करता है। इसलिए इसे अधिकांश [[मुक्त बीजगणित]] भी कहा जाता है। इसी तरह [[सममित बीजगणित]] और [[बाहरी बीजगणित]] एक सदिश स्थान पर मुक्त सममित और विरोधी सममित बीजगणित हैं।


== मुक्त वस्तुओं की सूची ==
== मुक्त वस्तुओं की सूची ==
{{See also|Category:Free algebraic structures}}
{{See also|Category:Free algebraic structures}}
विशिष्ट प्रकार की मुक्त वस्तुओं में शामिल हैं:
विशिष्ट प्रकार की मुक्त वस्तुओं में सम्मिलित हैं:
* मुक्त बीजगणित
* मुक्त बीजगणित
** [[मुक्त साहचर्य बीजगणित]]
** [[मुक्त साहचर्य बीजगणित]]

Revision as of 22:22, 17 February 2023

गणित में, मुक्त वस्तु का विचार अमूर्त बीजगणित की मूल अवधारणाओं में से एक है। अनौपचारिक रूप से, एक सेट (गणित) पर एक मुक्त वस्तु को पर एक सामान्य बीजगणितीय संरचना के रूप में माना जा सकता है: मुक्त वस्तु के तत्वों के बीच होने वाले एकमात्र समीकरण वे हैं जो निम्न से अनुसरण करते हैं बीजगणितीय संरचना के सिद्धांतों को परिभाषित करना। उदाहरणों में मुक्त समूह, टेन्सर बीजगणित, या मुक्त जालक सम्मिलित हैं।

अवधारणा सार्वभौमिक बीजगणित का एक हिस्सा है, इस अर्थ में कि यह सभी प्रकार की बीजगणितीय संरचना (अंतिम संचालन के साथ) से संबंधित है। श्रेणी सिद्धांत के संदर्भ में इसका एक सूत्रीकरण भी है, हालांकि यह अभी और अधिक अमूर्त शब्दों में है।

परिभाषा

नि: शुल्क वस्तुएं वेक्टर अंतरिक्ष में आधार (रैखिक बीजगणित) की धारणा के श्रेणी (गणित) के प्रत्यक्ष सामान्यीकरण हैं। एक रैखिक कार्य u : E1E2 वेक्टर रिक्त स्थान के बीच पूरी तरह से वेक्टर स्थान के आधार पर इसके मूल्यों द्वारा निर्धारित किया जाता है E1. निम्नलिखित परिभाषा इसे किसी भी श्रेणी में अनुवादित करती है।

एक ठोस श्रेणी एक ऐसी श्रेणी है जो सेट करने के लिए एक वफादार फ़ैक्टर से सुसज्जित है, सेट की श्रेणी। होने देना C एक विश्वसनीय कार्यकर्ता के साथ एक ठोस श्रेणी बनें f : CSet. होने देना X एक सेट हो (अर्थात, सेट में एक वस्तु), जो परिभाषित होने वाली मुक्त वस्तु का आधार होगा। पर एक मुक्त वस्तु X एक वस्तु से मिलकर एक जोड़ी है में C और एक इंजेक्शन (कैनोनिकल इंजेक्शन कहा जाता है), जो निम्नलिखित सार्वभौमिक संपत्ति को संतुष्ट करता है:

किसी वस्तु के लिए B में C और सेट के बीच कोई नक्शा एक अद्वितीय morphism मौजूद है में C ऐसा है कि यही है, निम्नलिखित कम्यूटेटिव आरेख यात्रा करता है:

यदि मुक्त वस्तुएं मौजूद हैं C, यह सत्यापित करने के लिए सीधा है कि सार्वभौमिक संपत्ति का तात्पर्य है कि दो सेटों के बीच का प्रत्येक मानचित्र उन पर निर्मित मुक्त वस्तुओं के बीच एक अद्वितीय आकारिकी उत्पन्न करता है, और यह एक फ़नकार को परिभाषित करता है यह इस प्रकार है कि, यदि मुक्त वस्तुएँ मौजूद हैं C, काम करनेवाला F, जिसे फ्री-ऑब्जेक्ट फ़ंक्टर कहा जाता है, भुलक्कड़ फ़ैक्टर का बायाँ भाग है f; अर्थात् आक्षेप होता है


उदाहरण

मुक्त वस्तुओं का निर्माण दो चरणों में होता है। सहयोगी कानून के अनुरूप बीजगणित के लिए, पहला कदम वर्णमाला (कंप्यूटर विज्ञान) से बने सभी संभावित स्ट्रिंग (कंप्यूटर विज्ञान) के संग्रह पर विचार करना है। फिर शब्दों पर तुल्यता संबंधों का एक सेट लगाया जाता है, जहां संबंध बीजगणितीय वस्तु के परिभाषित संबंध होते हैं। तब मुक्त वस्तु में तुल्यता वर्गों का समूह होता है।

उदाहरण के लिए, एक समूह के दो जनरेटिंग सेट में मुक्त समूह के निर्माण पर विचार करें। एक पाँच अक्षरों से मिलकर एक वर्णमाला से प्रांरम होता है . पहले चरण में, अक्षरों को अभी तक कोई नियत अर्थ नहीं दिया गया है या ; इन्हें बाद में, दूसरे चरण में दिया जाएगा। इस प्रकार, कोई समान रूप से अच्छी तरह से पाँच अक्षरों में वर्णमाला के साथ प्रांरम कर सकता है . इस उदाहरण में, सभी शब्दों या स्ट्रिंग्स का सेट हर संभव क्रम में व्यवस्थित अक्षरों के साथ, एबेसेडे और एबीसी, और इसी तरह, मनमाने ढंग से परिमित लंबाई के तार सम्मिलित होंगे।

अगले चरण में, तुल्यता संबंधों का एक सेट लगाया जाता है। एक समूह (गणित) के लिए तुल्यता संबंध पहचान द्वारा गुणन के हैं, , और व्युत्क्रमों का गुणन: . इन संबंधों को ऊपर के तार पर प्रायुक्त करने पर, एक प्राप्त होता है

जहां यह समझ में आया के लिए एक स्टैंड-इन है , और के लिए एक स्टैंड-इन है , जबकि पहचान तत्व है। इसी तरह, एक है

द्वारा तुल्यता संबंध या सर्वांगसमता संबंध को नकारना मुक्त वस्तु तब शब्दों के समतुल्य वर्गों का संग्रह है। इस प्रकार, इस उदाहरण में, दो जनरेटर में मुक्त समूह भागफल सेट है

इसे प्राय: इस प्रकार लिखा जाता है कहाँ सभी शब्दों का सेट है, और एक समूह को परिभाषित करने वाले संबंधों के प्रायुक्त होने के बाद, पहचान का समतुल्य वर्ग है।

एक सरल उदाहरण मुक्त मोनोइड्स हैं। एक सेट एक्स पर मुक्त मोनॉयड, एक्स को वर्णमाला के रूप में उपयोग करने वाले सभी परिमित स्ट्रिंग (कंप्यूटर विज्ञान) का मोनॉयड है, जिसमें स्ट्रिंग्स का संचालन संयोजन होता है। पहचान खाली स्ट्रिंग है। संक्षेप में, मुक्त मोनॉइड केवल सभी शब्दों का समुच्चय है, जिसमें कोई तुल्यता संबंध नहीं लगाया गया है। क्लेन स्टार पर लेख में इस उदाहरण को और विकसित किया गया है।

सामान्य मामला

सामान्य मामले में, बीजगणितीय संबंधों को साहचर्य होने की आवश्यकता नहीं है, इस मामले में शुरुआती बिंदु सभी शब्दों का सेट नहीं है, किन्तु कोष्ठकों के साथ विरामित तार हैं, जो अक्षरों के गैर-सहयोगी समूहों को इंगित करने के लिए उपयोग किए जाते हैं। इस तरह की स्ट्रिंग को बाइनरी ट्री या मुक्त मेग्मा द्वारा समतुल्य रूप से दर्शाया जा सकता है; पेड़ की पत्तियाँ वर्णमाला के अक्षर हैं।

तब बीजगणितीय संबंध पेड़ की पत्तियों पर सामान्य arity या अंतिम संबंध हो सकते हैं। सभी संभावित कोष्ठकों के संग्रह के साथ प्रांरम करने के अतिरिक्त, हेरब्रांड ब्रह्मांड के साथ प्रांरम करना अधिक सुविधाजनक हो सकता है। प्रश्न में विशेष बीजगणितीय वस्तु के आधार पर, किसी मुक्त वस्तु की सामग्री का उचित वर्णन या गणना करना आसान या कठिन हो सकता है। उदाहरण के लिए, दो जनरेटर में मुक्त समूह का आसानी से वर्णन किया गया है। इसके विपरीत, एक से अधिक जनरेटर में मुक्त हेटिंग बीजगणित की संरचना के बारे में बहुत कम या कुछ भी ज्ञात नहीं है।[1] यह निर्धारित करने की समस्या कि क्या दो अलग-अलग तार एक ही तुल्यता वर्ग के हैं, शब्द समस्या (गणित) के रूप में जानी जाती है।

जैसा कि उदाहरण सुझाते हैं, मुक्त वस्तुएँ वाक्य - विन्यास से निर्माण की तरह दिखती हैं; कोई यह कहकर कुछ हद तक उलट सकता है कि सिंटैक्स के प्रमुख उपयोगों को मुक्त वस्तुओं के रूप में समझाया और वर्णित किया जा सकता है, जो स्पष्ट रूप से भारी 'विराम चिह्न' को समझने योग्य (और अधिक यादगार) बनाता है।[clarification needed]


मुक्त सार्वभौमिक बीजगणित

होने देना कोई भी सेट हो, और रहने दो प्रकार की एक बीजगणितीय संरचना हो द्वारा उत्पन्न . आइए इस बीजगणितीय संरचना के अंतर्निहित सेट को दें , कभी-कभी इसका ब्रह्मांड कहा जाता है, हो , और जाने एक समारोह हो। हम कहते हैं (या अनौपचारिक रूप से सिर्फ ) एक मुक्त बीजगणित है (प्रकार का ) मंच पर मुफ्त जनरेटर की, यदि हर बीजगणित के लिए प्रकार का और हर समारोह , कहाँ का एक ब्रह्मांड है , एक अद्वितीय समरूपता मौजूद है ऐसा है कि


फ्री फंक्‍टर

एक मुक्त वस्तु के लिए सबसे सामान्य सेटिंग श्रेणी सिद्धांत में है, जहां एक ऑपरेटर, फ़्री फ़ैक्टर को परिभाषित करता है, जो भुलक्कड़ फंक्टर के बाईं ओर है।

बीजगणितीय संरचनाओं की श्रेणी C पर विचार करें; वस्तुओं को कुछ कानूनों का पालन करते हुए सेट प्लस ऑपरेशंस के रूप में सोचा जा सकता है। इस श्रेणी में एक कारक है, , भुलक्कड़ फ़ंक्टर, जो सी से सेट, सेट की श्रेणी में वस्तुओं और कार्यों को मैप करता है। भुलक्कड़ फ़ंक्टर बहुत सरल है: यह सभी कार्यों को अनदेखा करता है।

फ्री फंक्‍टर एफ, जब यह मौजूद होता है, यू के बगल में बाईं ओर होता है। वह है, सेट एक्स को 'सेट' में उनकी संबंधित फ्री ऑब्जेक्ट्स एफ (एक्स) श्रेणी 'सी' में ले जाता है। सेट एक्स को फ्री ऑब्जेक्ट एफ (एक्स) के जेनरेटर के सेट के रूप में माना जा सकता है।

मुक्त फ़ंक्टर के लिए एक बाएँ आसन्न होने के लिए, एक 'सेट'-मोर्फिज़्म भी होना चाहिए . अधिक स्पष्ट रूप से, एफ, 'सी' में समरूपता तक है, जो निम्नलिखित सार्वभौमिक संपत्ति द्वारा विशेषता है:

जब भी A 'C' में एक बीजगणित है, और g : XU(A) एक फ़ंक्शन (सेट की श्रेणी में एक रूपवाद) है, तो एक अद्वितीय सी-रूपवाद है h : F(X) → A ऐसा है कि U(h) ∘ η = g.

विशेष रूप से, यह उस सेट पर मुक्त वस्तु में एक सेट भेजता है; यह एक आधार का समावेश है। दुरुपयोग संकेतन, (यह संकेतन का दुरुपयोग करता है क्योंकि एक्स एक सेट है, जबकि एफ (एक्स) बीजगणित है; सही ढंग से, यह है ).

प्राकृतिक परिवर्तन इकाई (श्रेणी सिद्धांत) कहा जाता है; एक साथ देश के साथ , कोई एक टी-बीजगणित का निर्माण कर सकता है, और इसलिए एक मोनाड (श्रेणी सिद्धांत)

कॉफ़्री फ़ैक्टर भुलक्कड़ फंक्‍टर का सही संलग्‍न है।

अस्तित्व

सामान्य अस्तित्व प्रमेय हैं जो प्रायुक्त होते हैं; उनमें से सबसे मुलभुत इसकी गारंटी देता है

जब भी सी एक किस्म (सार्वभौमिक बीजगणित) है, तो प्रत्येक सेट 'एक्स' के लिए सी में एक मुक्त वस्तु एफ(एक्स) है।

यहाँ, विविधता एक परिमित बीजगणितीय श्रेणी का एक पर्यायवाची है, इस प्रकार इसका अर्थ है कि संबंधों का समुच्चय परिमित संबंध है, और बीजगणितीय क्योंकि यह सेट पर मोनाड (श्रेणी सिद्धांत) है।

सामान्य मामला

अन्य प्रकार की भुलक्कड़पन भी वस्तुओं को मुक्त वस्तुओं की तरह ही जन्म देती है, जिसमें वे एक भुलक्कड़ फ़नकार के साथ छोड़ दी जाती हैं, जरूरी नहीं कि वे सेट हों।

उदाहरण के लिए, सदिश स्थान पर टेन्सर बीजगणित का निर्माण साहचर्य बीजगणित पर फ़ैक्टर के बाईं ओर है जो बीजगणित संरचना की उपेक्षा करता है। इसलिए इसे अधिकांश मुक्त बीजगणित भी कहा जाता है। इसी तरह सममित बीजगणित और बाहरी बीजगणित एक सदिश स्थान पर मुक्त सममित और विरोधी सममित बीजगणित हैं।

मुक्त वस्तुओं की सूची

विशिष्ट प्रकार की मुक्त वस्तुओं में सम्मिलित हैं:

यह भी देखें

टिप्पणियाँ

  1. Peter T. Johnstone, Stone Spaces, (1982) Cambridge University Press, ISBN 0-521-23893-5. (A treatment of the one-generator free Heyting algebra is given in chapter 1, section 4.11)

[Category:Adjoint functo