सम्मिश्र संयुग्मी: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
ध्रुवीय समन्वय प्रणाली#जटिल संख्याओं में, का संयुग्म <math>r e^{i \varphi}</math> है <math>r e^{-i \varphi}.</math> यह यूलर के सूत्र का उपयोग करके दिखाया जा सकता है। | ध्रुवीय समन्वय प्रणाली#जटिल संख्याओं में, का संयुग्म <math>r e^{i \varphi}</math> है <math>r e^{-i \varphi}.</math> यह यूलर के सूत्र का उपयोग करके दिखाया जा सकता है। | ||
जटिल संख्या और इसके संयुग्म का उत्पाद वास्तविक संख्या है: <math>a^2 + b^2</math>& nbsp; (या & nbsp;<math>r^2</math> ध्रुवीय समन्वय प्रणाली में)। | |||
यदि वास्तविक गुणांक के साथ अविभाजित बहुपद की जड़ जटिल है, तो इसका जटिल संयुग्म जड़ प्रमेय है। | यदि वास्तविक गुणांक के साथ अविभाजित बहुपद की जड़ जटिल है, तो इसका जटिल संयुग्म जड़ प्रमेय है। | ||
Line 10: | Line 10: | ||
== संकेतन == | == संकेतन == | ||
जटिल संख्या का जटिल संयुग्म <math>z</math> के रूप में लिखा है <math>\overline z</math> या <math>z^*.</math> पहला संकेतन, विनकुलम (प्रतीक), मैट्रिक्स (गणित) के संयुग्मन ट्रांसपोज़ के लिए संकेतन के साथ भ्रम से बचता है, जिसे जटिल संयुग्म के सामान्यीकरण के रूप में सोचा जा सकता है।दूसरे को भौतिकी में पसंद किया जाता है, जहां डैगर (मार्क) (†) का उपयोग संयुग्म ट्रांसपोज़, साथ ही इलेक्ट्रिकल इंजीनियरिंग और कंप्यूटर इंजीनियरिंग के लिए किया जाता है, जहां बार नोटेशन तार्किक नकारात्मकता (नहीं) बूलियन बीजगणित प्रतीक के लिए भ्रमित हो सकता है, जबकिशुद्ध गणित में बार संकेतन अधिक सामान्य है।यदि जटिल संख्या जटिल संख्या है मैट्रिक्स जटिल संख्याओं का प्रतिनिधित्व | के रूप में प्रतिनिधित्व किया <math>2 \times 2</math> मैट्रिक्स, सूचनाएं समान हैं। | |||
== गुण == | == गुण == | ||
Line 19: | Line 19: | ||
\overline{zw} &= \overline{z} \; \overline{w}, \quad \text{and} \\ | \overline{zw} &= \overline{z} \; \overline{w}, \quad \text{and} \\ | ||
\overline{\left(\frac{z}{w}\right)} &= \frac{\overline{z}}{\overline{w}},\quad \text{if } w \neq 0. | \overline{\left(\frac{z}{w}\right)} &= \frac{\overline{z}}{\overline{w}},\quad \text{if } w \neq 0. | ||
\end{align}</math> | \end{align}</math>जटिल संख्या इसके जटिल संयुग्म के बराबर है यदि इसका काल्पनिक हिस्सा शून्य है, यानी, यदि संख्या वास्तविक है।दूसरे शब्दों में, वास्तविक संख्या संयुग्मन का एकमात्र निश्चित बिंदु (गणित) है। | ||
Line 32: | Line 32: | ||
सामान्य तौर पर, अगर <math>\varphi</math> होलोमोर्फिक फ़ंक्शन है जिसका वास्तविक संख्या पर प्रतिबंध वास्तविक-मूल्य है, और <math>\varphi(z)</math> और <math>\varphi(\overline{z})</math> परिभाषित किया गया है, फिर<math display="block">\varphi\left(\overline{z}\right) = \overline{\varphi(z)}.\,\!</math>वो नक्शा <math>\sigma(z) = \overline{z}</math> से <math>\Complex</math> को <math>\Complex</math> होमोमोर्फिज्म है (जहां टोपोलॉजी पर <math>\Complex</math> यदि कोई विचार करता है, तो मानक टोपोलॉजी के रूप में लिया जाता है) और एंटीलाइनियर <math>\Complex</math> अपने आप में जटिल वेक्टर स्थान के रूप में।भले ही यह अच्छी तरह से व्यवहार करने वाला कार्य प्रतीत होता है, यह होलोमोर्फिक फ़ंक्शन नहीं है;यह अभिविन्यास को उलट देता है जबकि होलोमोर्फिक कार्य स्थानीय रूप से अभिविन्यास को संरक्षित करता है।यह अंकगणितीय संचालन के साथ आचार और संगत है, और इसलिए क्षेत्र (गणित) ऑटोमोर्फिज्म है।जैसा कि यह वास्तविक संख्याओं को तय करता है, यह फील्ड एक्सटेंशन के गैलोइस समूह का तत्व है <math>\Complex/\R.</math> इस गैलोइस समूह के केवल दो तत्व हैं: <math>\sigma</math> और पहचान पर <math>\Complex.</math> इस प्रकार केवल दो क्षेत्र ऑटोमोर्फिज्म <math>\Complex</math> जो वास्तविक संख्या में निश्चित संख्या में पहचान मानचित्र और जटिल संयुग्मन हैं। | सामान्य तौर पर, अगर <math>\varphi</math> होलोमोर्फिक फ़ंक्शन है जिसका वास्तविक संख्या पर प्रतिबंध वास्तविक-मूल्य है, और <math>\varphi(z)</math> और <math>\varphi(\overline{z})</math> परिभाषित किया गया है, फिर<math display="block">\varphi\left(\overline{z}\right) = \overline{\varphi(z)}.\,\!</math>वो नक्शा <math>\sigma(z) = \overline{z}</math> से <math>\Complex</math> को <math>\Complex</math> होमोमोर्फिज्म है (जहां टोपोलॉजी पर <math>\Complex</math> यदि कोई विचार करता है, तो मानक टोपोलॉजी के रूप में लिया जाता है) और एंटीलाइनियर <math>\Complex</math> अपने आप में जटिल वेक्टर स्थान के रूप में।भले ही यह अच्छी तरह से व्यवहार करने वाला कार्य प्रतीत होता है, यह होलोमोर्फिक फ़ंक्शन नहीं है;यह अभिविन्यास को उलट देता है जबकि होलोमोर्फिक कार्य स्थानीय रूप से अभिविन्यास को संरक्षित करता है।यह अंकगणितीय संचालन के साथ आचार और संगत है, और इसलिए क्षेत्र (गणित) ऑटोमोर्फिज्म है।जैसा कि यह वास्तविक संख्याओं को तय करता है, यह फील्ड एक्सटेंशन के गैलोइस समूह का तत्व है <math>\Complex/\R.</math> इस गैलोइस समूह के केवल दो तत्व हैं: <math>\sigma</math> और पहचान पर <math>\Complex.</math> इस प्रकार केवल दो क्षेत्र ऑटोमोर्फिज्म <math>\Complex</math> जो वास्तविक संख्या में निश्चित संख्या में पहचान मानचित्र और जटिल संयुग्मन हैं। | ||
== | == चर के रूप में उपयोग करें == | ||
बार जटिल संख्या <math>z = x + yi</math> या <math>z = re^{i\theta}</math> दिया गया है, इसका संयुग्म के कुछ हिस्सों को पुन: पेश करने के लिए पर्याप्त है <math>z</math>-चर: | |||
* असली हिस्सा: <math>x = \operatorname{Re}(z) = \dfrac{z + \overline{z}}{2}</math> | * असली हिस्सा: <math>x = \operatorname{Re}(z) = \dfrac{z + \overline{z}}{2}</math> | ||
* काल्पनिक भाग: <math>y = \operatorname{Im}(z) = \dfrac{z - \overline{z}}{2i}</math> | * काल्पनिक भाग: <math>y = \operatorname{Im}(z) = \dfrac{z - \overline{z}}{2i}</math> | ||
Line 53: | Line 53: | ||
जटिल मैट्रिक्स (गणित) का संयुग्म ट्रांसपोज़ (या आसन्न) लेना जटिल संयुग्मन को सामान्य करता है।इससे भी अधिक सामान्य ऑपरेटरों के लिए आसन्न ऑपरेटर की अवधारणा है (संभवतः अनंत-आयामी) जटिल हिल्बर्ट रिक्त स्थान।यह सब C *-Algebras के *-ऑपरेशन द्वारा प्रस्तुत किया गया है। | जटिल मैट्रिक्स (गणित) का संयुग्म ट्रांसपोज़ (या आसन्न) लेना जटिल संयुग्मन को सामान्य करता है।इससे भी अधिक सामान्य ऑपरेटरों के लिए आसन्न ऑपरेटर की अवधारणा है (संभवतः अनंत-आयामी) जटिल हिल्बर्ट रिक्त स्थान।यह सब C *-Algebras के *-ऑपरेशन द्वारा प्रस्तुत किया गया है। | ||
भी चतुर्भुज और विभाजन-क्वाटेरन के लिए संयुग्मन को परिभाषित कर सकता है: का संयुग्म <math display="inline">a + bi + cj + dk</math> है <math display="inline">a - bi - cj - dk.</math> | |||
ये सभी सामान्यीकरण केवल तभी गुणक होते हैं जब कारक उलट होते हैं:<math display="block">{\left(zw\right)}^* = w^* z^*.</math>चूंकि प्लानर वास्तविक बीजगणित का गुणन कम्यूटेटिव है, इसलिए इस उलट की आवश्यकता नहीं है। | ये सभी सामान्यीकरण केवल तभी गुणक होते हैं जब कारक उलट होते हैं:<math display="block">{\left(zw\right)}^* = w^* z^*.</math>चूंकि प्लानर वास्तविक बीजगणित का गुणन कम्यूटेटिव है, इसलिए इस उलट की आवश्यकता नहीं है। | ||
Line 79: | Line 79: | ||
{{reflist|group=ref}} | {{reflist|group=ref}} | ||
== नोट == | == नोट == | ||
==इस पृष्ठ में गुम आंतरिक लिंक की सूची== | ==इस पृष्ठ में गुम आंतरिक लिंक की सूची== | ||
Revision as of 07:31, 5 October 2023
गणित में, जटिल संख्या का जटिल संयुग्म समान वास्तविक संख्या भाग के साथ संख्या है और परिमाण में काल्पनिक संख्या भाग है, लेकिन संकेत (गणित) में विपरीत है।वह है, (यदि और वास्तविक हैं, फिर) के जटिल संयुग्म के बराबर है का जटिल संयुग्म अक्सर के रूप में निरूपित किया जाता है या ।
ध्रुवीय समन्वय प्रणाली#जटिल संख्याओं में, का संयुग्म है यह यूलर के सूत्र का उपयोग करके दिखाया जा सकता है।
जटिल संख्या और इसके संयुग्म का उत्पाद वास्तविक संख्या है: & nbsp; (या & nbsp; ध्रुवीय समन्वय प्रणाली में)।
यदि वास्तविक गुणांक के साथ अविभाजित बहुपद की जड़ जटिल है, तो इसका जटिल संयुग्म जड़ प्रमेय है।
संकेतन
जटिल संख्या का जटिल संयुग्म के रूप में लिखा है या पहला संकेतन, विनकुलम (प्रतीक), मैट्रिक्स (गणित) के संयुग्मन ट्रांसपोज़ के लिए संकेतन के साथ भ्रम से बचता है, जिसे जटिल संयुग्म के सामान्यीकरण के रूप में सोचा जा सकता है।दूसरे को भौतिकी में पसंद किया जाता है, जहां डैगर (मार्क) (†) का उपयोग संयुग्म ट्रांसपोज़, साथ ही इलेक्ट्रिकल इंजीनियरिंग और कंप्यूटर इंजीनियरिंग के लिए किया जाता है, जहां बार नोटेशन तार्किक नकारात्मकता (नहीं) बूलियन बीजगणित प्रतीक के लिए भ्रमित हो सकता है, जबकिशुद्ध गणित में बार संकेतन अधिक सामान्य है।यदि जटिल संख्या जटिल संख्या है मैट्रिक्स जटिल संख्याओं का प्रतिनिधित्व | के रूप में प्रतिनिधित्व किया मैट्रिक्स, सूचनाएं समान हैं।
गुण
निम्नलिखित गुण सभी जटिल संख्याओं के लिए लागू होते हैं और जब तक अन्यथा नहीं कहा जाता है, और लेखन द्वारा साबित किया जा सकता है और प्रपत्र में किसी भी दो जटिल संख्याओं के लिए, संयुग्मन अतिरिक्त, घटाव, गुणन और विभाजन पर वितरण योग्य संपत्ति है:[ref 1]
संयुग्मन जटिल संख्या के मापांक को नहीं बदलता है:
संयुग्मन इनव्यूशन (गणित) है, अर्थात, जटिल संख्या के संयुग्म का संयुग्म है प्रतीकों में, [ref 1]
इसके संयुग्म के साथ जटिल संख्या का उत्पाद संख्या के मापांक के वर्ग के बराबर है:
सामान्य तौर पर, अगर होलोमोर्फिक फ़ंक्शन है जिसका वास्तविक संख्या पर प्रतिबंध वास्तविक-मूल्य है, और और परिभाषित किया गया है, फिर
चर के रूप में उपयोग करें
बार जटिल संख्या या दिया गया है, इसका संयुग्म के कुछ हिस्सों को पुन: पेश करने के लिए पर्याप्त है -चर:
- असली हिस्सा:
- काल्पनिक भाग:
- निरपेक्ष मान | मापांक (या निरपेक्ष मान):
- तर्क (जटिल विश्लेषण): इसलिए
आगे, विमान में लाइनों को निर्दिष्ट करने के लिए उपयोग किया जा सकता है: सेट
सामान्यीकरण
अन्य प्लानर रियल यूनिटल बीजगणित, दोहरी संख्या और विभाजन-जटिल संख्याओं का भी जटिल संयुग्मन का उपयोग करके विश्लेषण किया जाता है।
जटिल संख्याओं के मैट्रिस के लिए, कहां के तत्व-दर-तत्व संयुग्मन का प्रतिनिधित्व करता है [ref 2] संपत्ति के विपरीत कहां के संयुग्मन ट्रांसपोज़ का प्रतिनिधित्व करता है जटिल मैट्रिक्स (गणित) का संयुग्म ट्रांसपोज़ (या आसन्न) लेना जटिल संयुग्मन को सामान्य करता है।इससे भी अधिक सामान्य ऑपरेटरों के लिए आसन्न ऑपरेटर की अवधारणा है (संभवतः अनंत-आयामी) जटिल हिल्बर्ट रिक्त स्थान।यह सब C *-Algebras के *-ऑपरेशन द्वारा प्रस्तुत किया गया है।
भी चतुर्भुज और विभाजन-क्वाटेरन के लिए संयुग्मन को परिभाषित कर सकता है: का संयुग्म है ये सभी सामान्यीकरण केवल तभी गुणक होते हैं जब कारक उलट होते हैं:
वेक्टर रिक्त स्थान के लिए संयुग्मन की अमूर्त धारणा भी है जटिल संख्याओं पर।इस संदर्भ में, किसी भी एंटिलिनियर मैप वह संतुष्ट है
- कहां और पहचान मानचित्र पर है
- सबके लिए और
- सबके लिए
कहा जाता है complex conjugation, या वास्तविक संरचना।अन्वेषण के रूप में एंटीलिनियर है, यह पहचान का नक्शा नहीं हो सकता है बेशक, है के -इनर ट्रांसफॉर्मेशन यदि कोई नोट करता है कि हर जटिल स्थान मूल स्थान में ही वेक्टर (गणित और भौतिकी) को लेने और स्केलर को वास्तविक होने तक सीमित करने के लिए वास्तविक रूप प्राप्त किया गया है।उपरोक्त गुण वास्तव में जटिल वेक्टर अंतरिक्ष पर वास्तविक संरचना को परिभाषित करते हैं [1] इस धारणा का उदाहरण ऊपर परिभाषित जटिल मैट्रिसेस का संयुग्म ट्रांसपोज़ ऑपरेशन है।हालांकि, सामान्य जटिल वेक्टर रिक्त स्थान पर, कोई नहीं है canonical जटिल संयुग्मन की धारणा।
यह भी देखें
- Absolute square
- Complex conjugate line
- Complex conjugate representation
- Complex conjugate vector space
- Composition algebra
- Conjugate (square roots)
- Hermitian function
- Wirtinger derivatives
संदर्भ
- ↑ 1.0 1.1 Friedberg, Stephen; Insel, Arnold; Spence, Lawrence (2018), Linear Algebra (5 ed.), ISBN 978-0134860244, Appendix D
- ↑ Arfken, Mathematical Methods for Physicists, 1985, pg. 201
नोट
इस पृष्ठ में गुम आंतरिक लिंक की सूची
ग्रन्थसूची
- Budinich, P. and Trautman, A. The Spinorial Chessboard. Springer-Verlag, 1988. ISBN 0-387-19078-3. (antilinear maps are discussed in section 3.3).
- ↑ Budinich, P. and Trautman, A. The Spinorial Chessboard. Springer-Verlag, 1988, p. 29