वास्तविक संरचना: Difference between revisions
No edit summary |
No edit summary |
||
Line 14: | Line 14: | ||
:<math> \dim_{\mathbb R}V = 2\dim_{\mathbb C}V </math> | :<math> \dim_{\mathbb R}V = 2\dim_{\mathbb C}V </math> | ||
स्वाभाविक रूप से, कोई V को दो वास्तविक सदिश समष्टियो, V के वास्तविक और काल्पनिक भागों के प्रत्यक्ष योग के रूप में प्रस्तुत करना चाहेगा। ऐसा करने का कोई विहित विधि नहीं है: इस प्रकार का विभाजन V में अतिरिक्त 'वास्तविक संरचना' है। इस प्रकार इसे निम्नानुसार प्रस्तुत किया जा सकता है।<ref>Budinich, P. and Trautman, A. ''The Spinorial Chessboard''. Springer-Verlag, 1988, p. 29.</ref> मान लीजिए कि <math>\sigma: V \to V\,</math> ऐसा [[प्रतिरेखीय मानचित्र]] है जैसे कि <math>\sigma\circ\sigma=id_{V}\,</math> सम्मिश्र समष्टि V का प्रतिरेखीय समावेशन है। | स्वाभाविक रूप से, कोई V को दो वास्तविक सदिश समष्टियो, V के वास्तविक और काल्पनिक भागों के प्रत्यक्ष योग के रूप में प्रस्तुत करना चाहेगा। इस प्रकार ऐसा करने का कोई विहित विधि नहीं है: इस प्रकार का विभाजन V में अतिरिक्त 'वास्तविक संरचना' है। इस प्रकार इसे निम्नानुसार प्रस्तुत किया जा सकता है।<ref>Budinich, P. and Trautman, A. ''The Spinorial Chessboard''. Springer-Verlag, 1988, p. 29.</ref> मान लीजिए कि <math>\sigma: V \to V\,</math> ऐसा [[प्रतिरेखीय मानचित्र]] है जैसे कि <math>\sigma\circ\sigma=id_{V}\,</math> सम्मिश्र समष्टि V का प्रतिरेखीय समावेशन है। | ||
कोई भी सदिश <math>v\in V\,</math>, <math>{v = v^{+} + v^{-}}\,</math> लिखा जा सकता है, जहां <math>v^+ ={1\over {2}}(v+\sigma v)</math> और <math>v^- ={1\over {2}}(v-\sigma v)\,</math> | कोई भी सदिश <math>v\in V\,</math>, <math>{v = v^{+} + v^{-}}\,</math> लिखा जा सकता है, जहां <math>v^+ ={1\over {2}}(v+\sigma v)</math> और <math>v^- ={1\over {2}}(v-\sigma v)\,</math> | ||
Line 30: | Line 30: | ||
:<math>V=V_{\mathbb{R}} \oplus iV_{\mathbb{R}}\,</math>, | :<math>V=V_{\mathbb{R}} \oplus iV_{\mathbb{R}}\,</math>, | ||
अर्थात वास्तविक <math>V_{\mathbb{R}}\,</math> और काल्पनिक <math>iV_{\mathbb{R}}\,</math> V के भाग के प्रत्यक्ष योग के रूप में। यह निर्माण दृढ़ता से सम्मिश्र सदिश समष्टि V के प्रतिरेखीय समावेशन (गणित) के विकल्प पर निर्भर करता है। वास्तविक सदिश समष्टि <math>V_{\mathbb{R}}\,</math> की सम्मिश्रता , अर्थात <math>V^{\mathbb{C}}= V_{\mathbb R} \otimes_{\mathbb{R}} \mathbb{C}\,</math> प्राकृतिक वास्तविक संरचना और इसलिए इसकी दो प्रतियों <math>V_{\mathbb R}\,</math> के प्रत्यक्ष योग के लिए विहित रूप से आइसोमोर्फिक है।, | अर्थात वास्तविक <math>V_{\mathbb{R}}\,</math> और काल्पनिक <math>iV_{\mathbb{R}}\,</math> V के भाग के प्रत्यक्ष योग के रूप में। यह निर्माण दृढ़ता से सम्मिश्र सदिश समष्टि V के प्रतिरेखीय समावेशन (गणित) के विकल्प पर निर्भर करता है। इस प्रकार वास्तविक सदिश समष्टि <math>V_{\mathbb{R}}\,</math> की सम्मिश्रता , अर्थात <math>V^{\mathbb{C}}= V_{\mathbb R} \otimes_{\mathbb{R}} \mathbb{C}\,</math> प्राकृतिक वास्तविक संरचना और इसलिए इसकी दो प्रतियों <math>V_{\mathbb R}\,</math> के प्रत्यक्ष योग के लिए विहित रूप से आइसोमोर्फिक है।, | ||
:<math>V_{\mathbb R} \otimes_{\mathbb{R}} \mathbb{C}= V_{\mathbb{R}} \oplus iV_{\mathbb{R}}\,</math>. | :<math>V_{\mathbb R} \otimes_{\mathbb{R}} \mathbb{C}= V_{\mathbb{R}} \oplus iV_{\mathbb{R}}\,</math>. | ||
Line 44: | Line 44: | ||
==योजना== | ==योजना== | ||
इस प्रकार वास्तविक संख्याओं के उपक्षेत्र पर परिभाषित योजना के लिए, सम्मिश्र संयुग्मन स्वाभाविक रूप से आधार क्षेत्र के [[बीजगणितीय समापन]] के गैलोज़ समूह का सदस्य है। वास्तविक संरचना आधार क्षेत्र के बीजगणितीय समापन पर योजना के विस्तार पर इस संयुग्मन की गैलोज़ क्रिया है । इस प्रकार वास्तविक बिंदु वह बिंदु हैं जिनका अवशेष क्षेत्र निश्चित है (जो खाली हो सकता है)। | इस प्रकार वास्तविक संख्याओं के उपक्षेत्र पर परिभाषित योजना के लिए, सम्मिश्र संयुग्मन स्वाभाविक रूप से आधार क्षेत्र के [[बीजगणितीय समापन]] के गैलोज़ समूह का सदस्य है। इस प्रकार वास्तविक संरचना आधार क्षेत्र के बीजगणितीय समापन पर योजना के विस्तार पर इस संयुग्मन की गैलोज़ क्रिया है । इस प्रकार वास्तविक बिंदु वह बिंदु हैं जिनका अवशेष क्षेत्र निश्चित है (जो खाली हो सकता है)। | ||
==वास्तविकता संरचना== | ==वास्तविकता संरचना== | ||
Line 82: | Line 82: | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
{{Reflist}} | {{Reflist}} | ||
==संदर्भ== | ==संदर्भ== | ||
* Horn and Johnson, ''Matrix Analysis,'' Cambridge University Press, 1985. {{isbn|0-521-38632-2}}. (antilinear maps are discussed in section 4.6). | * Horn and Johnson, ''Matrix Analysis,'' Cambridge University Press, 1985. {{isbn|0-521-38632-2}}. (antilinear maps are discussed in section 4.6). |
Revision as of 09:54, 5 October 2023
गणित में, एक सम्मिश्र सदिश समष्टि पर वास्तविक संरचना, सम्मिश्र सदिश समष्टि को दो वास्तविक सदिश समष्टि के प्रत्यक्ष योग में विघटित करने की एक विधि है। इस प्रकार ऐसी संरचना का प्रोटोटाइप स्वयं सम्मिश्र संख्याओं का क्षेत्र है, जिसे स्वयं पर एक सम्मिश्र सदिश समष्टि माना जाता है और संयुग्मन मानचित्र , के साथ , जो कि पर "कैनोनिकल" वास्तविक संरचना देता है, अर्थात
संयुग्मन मानचित्र प्रतिरेखीय और है:
सदिश समष्टि
सम्मिश्र सदिश समष्टि V पर वास्तविक संरचना प्रतिरेखीय समावेशन (गणित) है। इस प्रकार वास्तविक संरचना वास्तविक उप-समष्टि , इसके निश्चित समष्टि और प्राकृतिक मानचित्र को परिभाषित करती है
एक समरूपता है इसके विपरीत कोई भी सदिश समष्टि जो वास्तविक सदिश समष्टि का सम्मिश्र है उसकी एक प्राकृतिक वास्तविक संरचना होती है।
पहला नोट यह है कि प्रत्येक सम्मिश्र समष्टि V में मूल समुच्चय के समान सदिश और अदिश के प्रतिबंध को वास्तविक मानकर प्राप्ति प्राप्त की जाती है। यदि और फिर सदिश और V की प्राप्ति में रैखिक स्वतंत्रता हैं। इसलिए:
स्वाभाविक रूप से, कोई V को दो वास्तविक सदिश समष्टियो, V के वास्तविक और काल्पनिक भागों के प्रत्यक्ष योग के रूप में प्रस्तुत करना चाहेगा। इस प्रकार ऐसा करने का कोई विहित विधि नहीं है: इस प्रकार का विभाजन V में अतिरिक्त 'वास्तविक संरचना' है। इस प्रकार इसे निम्नानुसार प्रस्तुत किया जा सकता है।[1] मान लीजिए कि ऐसा प्रतिरेखीय मानचित्र है जैसे कि सम्मिश्र समष्टि V का प्रतिरेखीय समावेशन है।
कोई भी सदिश , लिखा जा सकता है, जहां और
इसलिए, किसी को सदिश समष्टियो का सीधा योग प्राप्त होता है जहाँ:
- और .
दोनों समुच्चय और वास्तविक सदिश समष्टि हैं। रेखीय मानचित्र , जहाँ , वास्तविक सदिश समष्टियो की समरूपता है, जहां से:
- .
पहला कारक को द्वारा भी निरूपित किया जाता है और द्वारा अपरिवर्तनीय छोड़ दिया गया है , अर्थात . दूसरा कारक है सामान्यतः द्वारा निरूपित किया जाता है, सीधा योग अब इस प्रकार पढ़ता है:
- ,
अर्थात वास्तविक और काल्पनिक V के भाग के प्रत्यक्ष योग के रूप में। यह निर्माण दृढ़ता से सम्मिश्र सदिश समष्टि V के प्रतिरेखीय समावेशन (गणित) के विकल्प पर निर्भर करता है। इस प्रकार वास्तविक सदिश समष्टि की सम्मिश्रता , अर्थात प्राकृतिक वास्तविक संरचना और इसलिए इसकी दो प्रतियों के प्रत्यक्ष योग के लिए विहित रूप से आइसोमोर्फिक है।,
- .
यह किसी दी गई वास्तविक संरचना के साथ सम्मिश्र सदिश समष्टियो के मध्य प्राकृतिक रैखिक समरूपता का अनुसरण करता है।
सम्मिश्र सदिश समष्टि V पर वास्तविक संरचना, जो प्रतिरेखीय समावेशन है , रैखिक मानचित्र के संदर्भ में समान रूप से वर्णित किया जा सकता है। सदिश समष्टि से सम्मिश्र संयुग्मी सदिश समष्टि के लिए द्वारा परिभाषित है।
- .[2]
बीजगणितीय विविधता
वास्तविक संख्याओं के उपक्षेत्र पर परिभाषित बीजगणितीय विविधता के लिए, वास्तविक संरचना सम्मिश्र प्रक्षेप्य या एफ़िन समष्टि में विविधता के बिंदुओं पर कार्य करने वाला सम्मिश्र संयुग्मन है। इस प्रकार इसका निश्चित समष्टि विविधता के वास्तविक बिंदुओं का समष्टि है (जो खाली हो सकता है)।
योजना
इस प्रकार वास्तविक संख्याओं के उपक्षेत्र पर परिभाषित योजना के लिए, सम्मिश्र संयुग्मन स्वाभाविक रूप से आधार क्षेत्र के बीजगणितीय समापन के गैलोज़ समूह का सदस्य है। इस प्रकार वास्तविक संरचना आधार क्षेत्र के बीजगणितीय समापन पर योजना के विस्तार पर इस संयुग्मन की गैलोज़ क्रिया है । इस प्रकार वास्तविक बिंदु वह बिंदु हैं जिनका अवशेष क्षेत्र निश्चित है (जो खाली हो सकता है)।
वास्तविकता संरचना
गणित में, सम्मिश्र सदिश समष्टि V पर वास्तविकता संरचना V का दो वास्तविक उप-समष्टियो में अपघटन है, जिसे V का वास्तविक भाग और काल्पनिक भाग कहा जाता है:
यहां VR V का वास्तविक उपसमष्टि है, अर्थात V का उपसमष्टि वास्तविक संख्याओं पर सदिश समष्टि के रूप में माना जाता है। यदि V का सम्मिश्र आयाम n (वास्तविक आयाम 2n) है, तो VR वास्तविक आयाम n होना चाहिए।
सदिश समष्टि पर 'मानक वास्तविकता संरचना' विघटन है
वास्तविकता संरचना की उपस्थिति में, V में प्रत्येक सदिश का वास्तविक भाग और काल्पनिक भाग होता है, जिनमें से प्रत्येक VR में सदिश होता है:
इस स्थिति में, सदिश v के सम्मिश्र संयुग्म को निम्नानुसार परिभाषित किया गया है:
यह मानचित्र प्रतिरेखीय समावेशन (गणित) है, अर्थात।
इसके विपरीत, सम्मिश्र सदिश समष्टि V पर, दिया गया है। इस प्रकार V पर वास्तविकता संरचना को निम्नानुसार परिभाषित करना संभव है। मान लीजिए
और परिभाषित करें
तब
यह वास्तव में वास्तविक रैखिक संचालिका c के एगेनस्पेस के रूप में V का अपघटन है। इस प्रकार c के एगेनवैल्यू औरएगेनस्पेस क्रमशः VR और VR के साथ +1 और −1 हैं।। सामान्यतः, ऑपरेटर c को, ईजेनस्पेस अपघटन के अतिरिक्त, V पर 'वास्तविकता संरचना' के रूप में जाना जाता है।
यह भी देखें
- एंटीलीनियर मानचित्र
- कैनोनिकल सम्मिश्र संयुग्मन मानचित्र
- सम्मिश्र सन्युग्म
- सम्मिश्र संयुग्म सदिश समष्टि
- सम्मिश्रता
- रैखिक सम्मिश्र संरचना
- रेखीय मानचित्र
- सेसक्विलिनियर फॉर्म
- स्पिनर कैलकुलस
टिप्पणियाँ
संदर्भ
- Horn and Johnson, Matrix Analysis, Cambridge University Press, 1985. ISBN 0-521-38632-2. (antilinear maps are discussed in section 4.6).
- Budinich, P. and Trautman, A. The Spinorial Chessboard. Springer-Verlag, 1988. ISBN 0-387-19078-3. (antilinear maps are discussed in section 3.3).
- Penrose, Roger; Rindler, Wolfgang (1986), Spinors and space-time. Vol. 2, Cambridge Monographs on Mathematical Physics, Cambridge University Press, ISBN 978-0-521-25267-6, MR 0838301