ऑर्थोट्रोपिक सामग्री: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
[[Image:Taxus wood.jpg|300px|thumb|right|लकड़ी ऑर्थोट्रोपिक सामग्री का एक उदाहरण है। तीन लंबवत दिशाओं (अक्षीय, रेडियल और परिधि) में सामग्री के गुण अलग-अलग हैं।]][[भौतिक विज्ञान]] और [[ठोस यांत्रिकी]] में, ऑर्थोट्रोपिक सामग्रियों में एक विशेष बिंदु पर भौतिक गुण होते हैं जो तीन [[ ओर्थोगोनल ]] अक्षों के साथ भिन्न होते हैं, जहां प्रत्येक अक्ष में दो गुना [[घूर्णी समरूपता]] होती है। ताकत में इन दिशात्मक अंतरों को हैंकिंसन के समीकरण से निर्धारित किया जा सकता है। | [[Image:Taxus wood.jpg|300px|thumb|right|लकड़ी ऑर्थोट्रोपिक सामग्री का एक उदाहरण है। तीन लंबवत दिशाओं (अक्षीय, रेडियल और परिधि) में सामग्री के गुण अलग-अलग हैं।]][[भौतिक विज्ञान]] और [[ठोस यांत्रिकी]] में, '''ऑर्थोट्रोपिक सामग्रियों''' में एक विशेष बिंदु पर भौतिक गुण होते हैं जो तीन [[ ओर्थोगोनल ]]अक्षों के साथ भिन्न होते हैं, जहां प्रत्येक अक्ष में दो गुना [[घूर्णी समरूपता]] होती है। ताकत में इन दिशात्मक अंतरों को हैंकिंसन के समीकरण से निर्धारित किया जा सकता है। | ||
वे [[असमदिग्वर्ती होने की दशा]] का एक उपसमूह हैं, क्योंकि विभिन्न दिशाओं से मापने पर उनके गुण बदल जाते हैं। | वे [[असमदिग्वर्ती होने की दशा]] का एक उपसमूह हैं, क्योंकि विभिन्न दिशाओं से मापने पर उनके गुण बदल जाते हैं। | ||
ऑर्थोट्रोपिक सामग्री का एक परिचित उदाहरण [[लकड़ी]] है। लकड़ी में, प्रत्येक बिंदु पर तीन परस्पर लंबवत दिशाओं को परिभाषित किया जा सकता है जिनमें गुण भिन्न होते हैं। यह कण (अक्षीय दिशा) के साथ सबसे अधिक कठोर (और | ऑर्थोट्रोपिक सामग्री का एक परिचित उदाहरण [[लकड़ी]] है। लकड़ी में, प्रत्येक बिंदु पर तीन परस्पर लंबवत दिशाओं को परिभाषित किया जा सकता है जिनमें गुण भिन्न होते हैं। यह कण (अक्षीय दिशा) के साथ सबसे अधिक कठोर (और सशक्त) होता है, क्योंकि अधिकांश सेलूलोज़ तंतु उसी तरह से संरेखित होते हैं। यह सामान्यतः रेडियल दिशा (विकास वलय के बीच) में सबसे कम कठोर होता है, और परिधि दिशा में मध्यवर्ती होता है। यह अनिसोट्रॉपी विकासवाद द्वारा प्रदान की गई थी, क्योंकि यह पेड़ को सीधा खड़ा रहने में सक्षम बनाती है। | ||
चूँकि पसंदीदा समन्वय प्रणाली बेलनाकार-ध्रुवीय है, इस प्रकार की ऑर्थोट्रॉपी को ध्रुवीय ऑर्थोट्रॉपी भी कहा जाता है। | चूँकि पसंदीदा समन्वय प्रणाली बेलनाकार-ध्रुवीय है, इस प्रकार की ऑर्थोट्रॉपी को ध्रुवीय ऑर्थोट्रॉपी भी कहा जाता है। | ||
ऑर्थोट्रोपिक सामग्री का एक अन्य उदाहरण भारी रोलर्स के बीच धातु के मोटे वर्गों को निचोड़ने से बनने वाली शीट धातु है। यह इसकी [[अनाज संरचना]] को चपटा और फैलाता है। परिणामस्वरूप, सामग्री [[एनिस्ट्रोपिक]] बन जाती है - इसके गुण उस दिशा के बीच भिन्न होते हैं जिस दिशा में इसे घुमाया गया था और दोनों अनुप्रस्थ दिशाओं में से प्रत्येक | ऑर्थोट्रोपिक सामग्री का एक अन्य उदाहरण भारी रोलर्स के बीच धातु के मोटे वर्गों को निचोड़ने से बनने वाली शीट धातु है। यह इसकी [[अनाज संरचना]] को चपटा और फैलाता है। परिणामस्वरूप, सामग्री [[एनिस्ट्रोपिक]] बन जाती है - इसके गुण उस दिशा के बीच भिन्न होते हैं जिस दिशा में इसे घुमाया गया था और दोनों अनुप्रस्थ दिशाओं में से प्रत्येक में हैं। इस पद्धति का उपयोग संरचनात्मक स्टील बीम और एल्यूमीनियम विमान की खाल में लाभ के लिए किया जाता है। | ||
यदि किसी वस्तु के अंदर बिंदुओं के बीच ऑर्थोट्रोपिक गुण भिन्न होते हैं, तो इसमें ऑर्थोट्रॉपी और [[अमानवीय]] दोनों होते हैं। इससे पता चलता है कि ऑर्थोट्रॉपी संपूर्ण वस्तु के बजाय किसी वस्तु के भीतर एक बिंदु की संपत्ति है (जब तक कि वस्तु सजातीय न हो)। समरूपता के संबंधित तलों को एक बिंदु के चारों ओर एक छोटे से क्षेत्र के लिए भी परिभाषित किया जाता है और जरूरी नहीं कि वे संपूर्ण वस्तु के समरूपता के तलों के समान हों। | यदि किसी वस्तु के अंदर बिंदुओं के बीच ऑर्थोट्रोपिक गुण भिन्न होते हैं, तो इसमें ऑर्थोट्रॉपी और [[अमानवीय]] दोनों होते हैं। इससे पता चलता है कि ऑर्थोट्रॉपी संपूर्ण वस्तु के बजाय किसी वस्तु के भीतर एक बिंदु की संपत्ति है (जब तक कि वस्तु सजातीय न हो)। समरूपता के संबंधित तलों को एक बिंदु के चारों ओर एक छोटे से क्षेत्र के लिए भी परिभाषित किया जाता है और जरूरी नहीं कि वे संपूर्ण वस्तु के समरूपता के तलों के समान हों। | ||
ऑर्थोट्रोपिक सामग्रियां अनिसोट्रॉपी का एक उपसमूह हैं; उनके गुण उस दिशा पर निर्भर करते हैं जिसमें उन्हें मापा जाता है। ऑर्थोट्रोपिक सामग्रियों में समरूपता के तीन तल/अक्ष होते हैं। इसके विपरीत, एक [[ समदैशिक ]] सामग्री में हर दिशा में समान गुण होते हैं। यह सिद्ध किया जा सकता है कि जिस सामग्री में सममिति के दो तल हैं, उसमें तीसरा तल अवश्य होगा। आइसोट्रोपिक सामग्रियों में समरूपता के विमानों की अनंत संख्या होती है। | ऑर्थोट्रोपिक सामग्रियां अनिसोट्रॉपी का एक उपसमूह हैं; उनके गुण उस दिशा पर निर्भर करते हैं जिसमें उन्हें मापा जाता है। ऑर्थोट्रोपिक सामग्रियों में समरूपता के तीन तल/अक्ष होते हैं। इसके विपरीत, एक[[ समदैशिक | समदैशिक]] सामग्री में हर दिशा में समान गुण होते हैं। यह सिद्ध किया जा सकता है कि जिस सामग्री में सममिति के दो तल हैं, उसमें तीसरा तल अवश्य होगा। आइसोट्रोपिक सामग्रियों में समरूपता के विमानों की अनंत संख्या होती है। | ||
[[अनुप्रस्थ आइसोट्रॉपी]] सामग्री विशेष ऑर्थोट्रोपिक सामग्री होती है जिसमें समरूपता की एक धुरी होती है (कुल्हाड़ियों की कोई अन्य जोड़ी जो मुख्य एक के लंबवत होती है और आपस में ऑर्थोगोनल भी समरूपता की धुरी होती है)। समरूपता के एक अक्ष के साथ ट्रांसवर्सली आइसोट्रोपिक सामग्री का एक सामान्य उदाहरण समानांतर ग्लास या ग्रेफाइट फाइबर द्वारा प्रबलित एक बहुलक है। ऐसी मिश्रित सामग्री की ताकत और कठोरता | [[अनुप्रस्थ आइसोट्रॉपी]] सामग्री विशेष ऑर्थोट्रोपिक सामग्री होती है जिसमें समरूपता की एक धुरी होती है (कुल्हाड़ियों की कोई अन्य जोड़ी जो मुख्य एक के लंबवत होती है और आपस में ऑर्थोगोनल भी समरूपता की धुरी होती है)। समरूपता के एक अक्ष के साथ ट्रांसवर्सली आइसोट्रोपिक सामग्री का एक सामान्य उदाहरण समानांतर ग्लास या ग्रेफाइट फाइबर द्वारा प्रबलित एक बहुलक है। ऐसी मिश्रित सामग्री की ताकत और कठोरता सामान्यतः अनुप्रस्थ दिशा की तुलना में तंतुओं के समानांतर दिशा में अधिक होगी, और मोटाई दिशा में सामान्यतः अनुप्रस्थ दिशा के समान गुण होते हैं। एक अन्य उदाहरण एक जैविक झिल्ली होगा, जिसमें झिल्ली के तल में गुण लंबवत दिशा से भिन्न होंगे। ऑर्थोट्रोपिक सामग्री गुणों को हड्डी की लोचदार समरूपता का अधिक सटीक प्रतिनिधित्व प्रदान करने के लिए दिखाया गया है और यह हड्डी के ऊतक-स्तर सामग्री गुणों की त्रि-आयामी दिशात्मकता के बारे में भी जानकारी दे सकता है।<ref name=Gera>Geraldes DM et al, 2014, '''A comparative study of orthotropic and isotropic bone adaptation in the femur''', International Journal for Numerical Methods in Biomedical Engineering, Volume 30, Issue 9, pages 873–889, DOI: 10.1002/cnm.2633, http://onlinelibrary.wiley.com/wol1/doi/10.1002/cnm.2633/full</ref> | ||
यह ध्यान रखना महत्वपूर्ण है कि एक सामग्री जो एक लंबाई पैमाने पर अनिसोट्रोपिक है वह दूसरे ( | |||
यह ध्यान रखना महत्वपूर्ण है कि एक सामग्री जो एक लंबाई पैमाने पर अनिसोट्रोपिक है वह दूसरे (सामान्यतः बड़े) लंबाई पैमाने पर आइसोट्रोपिक हो सकती है। उदाहरण के लिए, अधिकांश धातुएँ बहुत छोटे क्रिस्टलीय के साथ [[स्फटिक]] होती हैं। प्रत्येक व्यक्तिगत अनाज अनिसोट्रोपिक हो सकता है, लेकिन यदि संपूर्ण सामग्री में कई यादृच्छिक रूप से उन्मुख अनाज सम्मिलित हैं, तो इसके मापा यांत्रिक गुण व्यक्तिगत अनाज के सभी संभावित अभिविन्यासों के गुणों का औसत होंगेl | |||
== भौतिकी में ऑर्थोट्रॉपी == | == भौतिकी में ऑर्थोट्रॉपी == | ||
=== अनिसोट्रोपिक सामग्री संबंध === | === अनिसोट्रोपिक सामग्री संबंध === | ||
भौतिक सिद्धांतों में भौतिक व्यवहार को संवैधानिक संबंधों द्वारा दर्शाया जाता है। भौतिक व्यवहारों के एक बड़े वर्ग को रैखिक सामग्री मॉडल द्वारा दर्शाया जा सकता है जो दूसरे क्रम के [[ टेन्सर ]] का रूप लेते हैं। सामग्री टेंसर दो [[यूक्लिडियन वेक्टर]] के बीच एक संबंध प्रदान करता है और इसे इस प्रकार लिखा जा सकता है | भौतिक सिद्धांतों में भौतिक व्यवहार को संवैधानिक संबंधों द्वारा दर्शाया जाता है। भौतिक व्यवहारों के एक बड़े वर्ग को रैखिक सामग्री मॉडल द्वारा दर्शाया जा सकता है जो दूसरे क्रम के [[ टेन्सर |टेन्सर]] का रूप लेते हैं। सामग्री टेंसर दो [[यूक्लिडियन वेक्टर|यूक्लिडियन सदिश]] के बीच एक संबंध प्रदान करता है और इसे इस प्रकार लिखा जा सकता है | ||
:<math> | :<math> | ||
\mathbf{f} = \boldsymbol{K}\cdot\mathbf{d} | \mathbf{f} = \boldsymbol{K}\cdot\mathbf{d} | ||
</math> | </math> | ||
जहाँ <math>\mathbf{d},\mathbf{f}</math> दो सदिश भौतिक मात्राओं का प्रतिनिधित्व करते हैं और <math>\boldsymbol{K}</math> दूसरे क्रम का सामग्री टेंसर है। यदि हम उपरोक्त समीकरण को [[ऑर्थोनॉर्मल]] समन्वय प्रणाली के संबंध में घटकों के संदर्भ में व्यक्त करते हैं, तो हम लिख सकते हैं | |||
:<math> | :<math> | ||
f_i = K_{ij}~d_j ~. | f_i = K_{ij}~d_j ~. | ||
</math> | </math> | ||
उपरोक्त संबंध में [[आइंस्टीन संकेतन]] को माना गया है। | उपरोक्त संबंध में [[आइंस्टीन संकेतन]] को माना गया है। आव्यूह रूप में हमारे पास है | ||
:<math> | :<math> | ||
\underline{\mathbf{f}} = \underline{\underline{\boldsymbol{K}}}~\underline{\mathbf{d}} | \underline{\mathbf{f}} = \underline{\underline{\boldsymbol{K}}}~\underline{\mathbf{d}} | ||
Line 50: | Line 51: | ||
| [[Fluid dynamics|Flow]] in [[porous media]] || Weighted fluid [[velocity]] <br /><math>\eta_\mu\mathbf{v}</math>|| [[Pressure gradient]] <br /><math>\boldsymbol{\nabla}P</math>|| [[Fluid permeability]] <br /><math>\boldsymbol{\kappa}</math> | | [[Fluid dynamics|Flow]] in [[porous media]] || Weighted fluid [[velocity]] <br /><math>\eta_\mu\mathbf{v}</math>|| [[Pressure gradient]] <br /><math>\boldsymbol{\nabla}P</math>|| [[Fluid permeability]] <br /><math>\boldsymbol{\kappa}</math> | ||
|} | |} | ||
=== सामग्री समरूपता के लिए शर्त === | |||
सामग्री आव्यूह <math>\underline{\underline{\boldsymbol{K}}}</math> किसी दिए गए [[ऑर्थोगोनल परिवर्तन]] के संबंध में समरूपता है (<math>\boldsymbol{A}</math>) यदि उस परिवर्तन के अधीन होने पर यह नहीं बदलता है। | |||
ऐसे परिवर्तन के तहत भौतिक गुणों की अपरिवर्तनीयता के लिए हमें आवश्यकता होती है | ऐसे परिवर्तन के तहत भौतिक गुणों की अपरिवर्तनीयता के लिए हमें आवश्यकता होती है | ||
:<math> | :<math> | ||
Line 67: | Line 67: | ||
A_{31} & A_{32} & A_{33} \end{bmatrix}~. | A_{31} & A_{32} & A_{33} \end{bmatrix}~. | ||
</math> | </math> | ||
इसलिए, समरूपता स्थिति को | इसलिए, समरूपता स्थिति को आव्यूह रूप में लिखा जा सकता है | ||
:<math> | :<math> | ||
\underline{\underline{\boldsymbol{K}}} = \underline{\underline{\boldsymbol{A}^T}}~\underline{\underline{\boldsymbol{K}}}~\underline{\underline{\boldsymbol{A}}} | \underline{\underline{\boldsymbol{K}}} = \underline{\underline{\boldsymbol{A}^T}}~\underline{\underline{\boldsymbol{K}}}~\underline{\underline{\boldsymbol{A}}} | ||
Line 74: | Line 74: | ||
=== ऑर्थोट्रोपिक सामग्री गुण === | === ऑर्थोट्रोपिक सामग्री गुण === | ||
एक ऑर्थोट्रोपिक सामग्री में समरूपता के तीन ऑर्थोगोनल विमान होते हैं। यदि हम एक ऑर्थोनॉर्मल समन्वय प्रणाली चुनते हैं जैसे कि अक्ष तीन समरूपता विमानों के मानदंडों के साथ मेल खाते हैं, तो परिवर्तन | एक ऑर्थोट्रोपिक सामग्री में समरूपता के तीन ऑर्थोगोनल विमान होते हैं। यदि हम एक ऑर्थोनॉर्मल समन्वय प्रणाली चुनते हैं जैसे कि अक्ष तीन समरूपता विमानों के मानदंडों के साथ मेल खाते हैं, तो परिवर्तन आव्यूह हैं | ||
:<math> | :<math> | ||
\underline{\underline{\boldsymbol{A}_1}} = \begin{bmatrix}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ~;~~ | \underline{\underline{\boldsymbol{A}_1}} = \begin{bmatrix}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ~;~~ | ||
Line 80: | Line 80: | ||
\underline{\underline{\boldsymbol{A}_3}} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} | \underline{\underline{\boldsymbol{A}_3}} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} | ||
</math> | </math> | ||
यह दिखाया जा सकता है कि यदि | यह दिखाया जा सकता है कि यदि आव्यूह <math>\underline{\underline{\boldsymbol{K}}}</math> यदि कोई सामग्री दो ऑर्थोगोनल विमानों के बारे में प्रतिबिंब के तहत अपरिवर्तनीय है तो यह तीसरे ऑर्थोगोनल विमान के बारे में प्रतिबिंब के तहत भी अपरिवर्तनीय है। | ||
प्रतिबिंब पर विचार करें <math>\underline{\underline{\boldsymbol{A}_3}}</math> के बारे में <math>1-2\,</math> | प्रतिबिंब पर विचार करें <math>\underline{\underline{\boldsymbol{A}_3}}</math> के बारे में <math>1-2\,</math> विमान तो हमारे पास हैं | ||
:<math> | :<math> | ||
\underline{\underline{\boldsymbol{K}}} = \underline{\underline{\boldsymbol{A}^T_3}}~\underline{\underline{\boldsymbol{K}}}~\underline{\underline{\boldsymbol{A}_3}} = \begin{bmatrix} K_{11} & K_{12} & -K_{13} \\ K_{21} & K_{22} & -K_{23} \\ | \underline{\underline{\boldsymbol{K}}} = \underline{\underline{\boldsymbol{A}^T_3}}~\underline{\underline{\boldsymbol{K}}}~\underline{\underline{\boldsymbol{A}_3}} = \begin{bmatrix} K_{11} & K_{12} & -K_{13} \\ K_{21} & K_{22} & -K_{23} \\ | ||
Line 92: | Line 92: | ||
0 & 0 & K_{33} \end{bmatrix} | 0 & 0 & K_{33} \end{bmatrix} | ||
</math> | </math> | ||
इसका तात्पर्य यह है <math>K_{12} = K_{21} = 0</math>. इसलिए, ऑर्थोट्रोपिक सामग्री के भौतिक गुणों का वर्णन | इसका तात्पर्य यह है <math>K_{12} = K_{21} = 0</math>. इसलिए, ऑर्थोट्रोपिक सामग्री के भौतिक गुणों का वर्णन आव्यूह द्वारा किया जाता हैl संरेखण=केंद्र शैली=बॉर्डर: 1px ठोस काला; पैडिंग:10px; चौड़ाई:300px > | ||
:<math> | :<math> | ||
\underline{\underline{\boldsymbol{K}}} = \begin{bmatrix} K_{11} & 0 & 0 \\ 0 & K_{22} & 0 \\ | \underline{\underline{\boldsymbol{K}}} = \begin{bmatrix} K_{11} & 0 & 0 \\ 0 & K_{22} & 0 \\ | ||
0 & 0 & K_{33} \end{bmatrix} | 0 & 0 & K_{33} \end{bmatrix} | ||
</math> | </math> | ||
== फलनरैखिक लोच में ऑर्थोट्रॉपी == | |||
== | |||
=== अनिसोट्रोपिक लोच === | === अनिसोट्रोपिक लोच === | ||
[[रैखिक लोच]] में, [[तनाव (भौतिकी)]] और अनंत तनाव सिद्धांत के बीच संबंध विचाराधीन सामग्री के प्रकार पर निर्भर करता है। इस संबंध को हुक के नियम के नाम से जाना जाता है। अनिसोट्रोपिक सामग्रियों के लिए हुक के नियम को इस प्रकार लिखा जा सकता है<ref name=Lekh>Lekhnitskii, S. G., 1963, '''Theory of Elasticity of an Anisotropic Elastic Body''', Holden-Day Inc.</ref> | [[रैखिक लोच]] में, [[तनाव (भौतिकी)]] और अनंत तनाव सिद्धांत के बीच संबंध विचाराधीन सामग्री के प्रकार पर निर्भर करता है। इस संबंध को हुक के नियम के नाम से जाना जाता है। अनिसोट्रोपिक सामग्रियों के लिए हुक के नियम को इस प्रकार लिखा जा सकता है<ref name=Lekh>Lekhnitskii, S. G., 1963, '''Theory of Elasticity of an Anisotropic Elastic Body''', Holden-Day Inc.</ref> | ||
:<math>\boldsymbol{\sigma} = \mathsf{c}\cdot\boldsymbol{\varepsilon}</math> | :<math>\boldsymbol{\sigma} = \mathsf{c}\cdot\boldsymbol{\varepsilon}</math> | ||
जहाँ <math>\boldsymbol{\sigma}</math> तनाव टेंसर है, <math>\boldsymbol{\varepsilon}</math> तनाव टेंसर है, और <math>\mathsf{c}</math> लोचदार [[कठोरता टेंसर]] है। यदि उपरोक्त अभिव्यक्ति में टेंसरों को एक ऑर्थोनॉर्मल समन्वय प्रणाली के संबंध में घटकों के संदर्भ में वर्णित किया गया है तो हम लिख सकते हैं | |||
:<math>\sigma_{ij} = c_{ijk\ell}~ \varepsilon_{k\ell}</math> | :<math>\sigma_{ij} = c_{ijk\ell}~ \varepsilon_{k\ell}</math> | ||
जहां बार-बार सूचकांकों पर योग माना गया है। चूंकि तनाव और तनाव टेंसर [[सममित टेंसर]] हैं, और चूंकि रैखिक लोच में तनाव-खिंचाव संबंध [[तनाव ऊर्जा घनत्व फ़ंक्शन]] | जहां बार-बार सूचकांकों पर योग माना गया है। चूंकि तनाव और तनाव टेंसर [[सममित टेंसर]] हैं, और चूंकि रैखिक लोच में तनाव-खिंचाव संबंध [[तनाव ऊर्जा घनत्व फ़ंक्शन|तनाव ऊर्जा घनत्व]] फलनसे प्राप्त किया जा सकता है, इसलिए रैखिक लोचदार सामग्री के लिए निम्नलिखित समरूपताएं लागू होती हैं | ||
:<math>c_{ijk\ell} = c_{jik\ell} ~,~~c_{ijk\ell} = c_{ij\ell k} ~,~~ c_{ijk\ell} = c_{k\ell ij} ~.</math> | :<math>c_{ijk\ell} = c_{jik\ell} ~,~~c_{ijk\ell} = c_{ij\ell k} ~,~~ c_{ijk\ell} = c_{k\ell ij} ~.</math> | ||
उपरोक्त समरूपताओं के कारण, रैखिक लोचदार सामग्रियों के लिए तनाव-खिंचाव संबंध को | उपरोक्त समरूपताओं के कारण, रैखिक लोचदार सामग्रियों के लिए तनाव-खिंचाव संबंध को आव्यूह रूप में व्यक्त किया जा सकता है | ||
:<math> | :<math> | ||
\begin{bmatrix}\sigma_{11}\\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{31} \\ \sigma_{12} \end{bmatrix} = | \begin{bmatrix}\sigma_{11}\\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{31} \\ \sigma_{12} \end{bmatrix} = | ||
Line 137: | Line 134: | ||
\underline{\underline{\boldsymbol{\sigma}}} = \underline{\underline{\mathsf{C}}}~\underline{\underline{\boldsymbol{\varepsilon}}} | \underline{\underline{\boldsymbol{\sigma}}} = \underline{\underline{\mathsf{C}}}~\underline{\underline{\boldsymbol{\varepsilon}}} | ||
</math> | </math> | ||
[[कठोरता मैट्रिक्स]] <math>\underline{\underline{\mathsf{C}}}</math> उपरोक्त संबंध में [[बिंदु समरूपता]] को संतुष्ट करता है।<ref name=Slawinski>Slawinski, M. A., 2010, '''Waves and Rays in Elastic Continua: 2nd Ed.''', World Scientific. [https://web.archive.org/web/20090210192845/http://samizdat.mines.edu/wavesandrays/WavesAndRays.pdf]</ref> | [[कठोरता मैट्रिक्स|कठोरता आव्यूह]] <math>\underline{\underline{\mathsf{C}}}</math> उपरोक्त संबंध में [[बिंदु समरूपता]] को संतुष्ट करता है।<ref name=Slawinski>Slawinski, M. A., 2010, '''Waves and Rays in Elastic Continua: 2nd Ed.''', World Scientific. [https://web.archive.org/web/20090210192845/http://samizdat.mines.edu/wavesandrays/WavesAndRays.pdf]</ref> | ||
=== सामग्री समरूपता के लिए शर्त === | === सामग्री समरूपता के लिए शर्त === | ||
कठोरता | कठोरता आव्यूह <math>\underline{\underline{\mathsf{C}}}</math> किसी दी गई समरूपता स्थिति को संतुष्ट करता है यदि यह संबंधित ऑर्थोगोनल परिवर्तन के अधीन होने पर नहीं बदलता है। ऑर्थोगोनल परिवर्तन एक बिंदु समरूपता, [[समरूपता की धुरी]] या समरूपता के एक विमान के संबंध में समरूपता का प्रतिनिधित्व कर सकता है। रैखिक लोच में ऑर्थोगोनल परिवर्तनों में घूर्णन और प्रतिबिंब सम्मिलित होते हैं, लेकिन आकार बदलने वाले परिवर्तन नहीं होते हैं और इन्हें ऑर्थोनॉर्मल निर्देशांक में, एक द्वारा दर्शाया जा सकता है। <math>3\times 3</math> आव्यूह <math>\underline{\underline{\mathbf{A}}}</math> द्वारा दिए गए | ||
:<math> | :<math> | ||
\underline{\underline{\mathbf{A}}} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ | \underline{\underline{\mathbf{A}}} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ | ||
A_{31} & A_{32} & A_{33} \end{bmatrix}~. | A_{31} & A_{32} & A_{33} \end{bmatrix}~. | ||
</math> | </math> | ||
वोइग्ट नोटेशन में, तनाव टेंसर के लिए परिवर्तन | वोइग्ट नोटेशन में, तनाव टेंसर के लिए परिवर्तन आव्यूह को एक के रूप में व्यक्त किया जा सकता है <math>6\times6</math> आव्यूह <math>\underline{\underline{\mathsf{A}_\sigma}}</math> द्वारा दिए गए<ref name=Slawinski/>:<math> | ||
\underline{\underline{\mathsf{A}_\sigma}} = \begin{bmatrix} | \underline{\underline{\mathsf{A}_\sigma}} = \begin{bmatrix} | ||
A_{11}^2 & A_{12}^2 & A_{13}^2 & 2A_{12}A_{13} & 2A_{11}A_{13} & 2A_{11}A_{12} \\ | A_{11}^2 & A_{12}^2 & A_{13}^2 & 2A_{12}A_{13} & 2A_{11}A_{13} & 2A_{11}A_{12} \\ | ||
Line 155: | Line 150: | ||
A_{11}A_{21} & A_{12}A_{22} & A_{13}A_{23} & A_{12}A_{23}+A_{13}A_{22} & A_{11}A_{23}+A_{13}A_{21} & A_{11}A_{22}+A_{12}A_{21} \end{bmatrix} | A_{11}A_{21} & A_{12}A_{22} & A_{13}A_{23} & A_{12}A_{23}+A_{13}A_{22} & A_{11}A_{23}+A_{13}A_{21} & A_{11}A_{22}+A_{12}A_{21} \end{bmatrix} | ||
</math> | </math> | ||
नोटेशन की पसंद के कारण स्ट्रेन टेंसर के परिवर्तन का रूप थोड़ा अलग होता है। यह परिवर्तन | |||
नोटेशन की पसंद के कारण स्ट्रेन टेंसर के परिवर्तन का रूप थोड़ा अलग होता है। यह परिवर्तन आव्यूह है | |||
:<math> | :<math> | ||
\underline{\underline{\mathsf{A}_\varepsilon}} = \begin{bmatrix} | \underline{\underline{\mathsf{A}_\varepsilon}} = \begin{bmatrix} | ||
Line 167: | Line 163: | ||
ऐसा दिखाया जा सकता है <math>\underline{\underline{\mathsf{A}_\varepsilon}}^T = \underline{\underline{\mathsf{A}_\sigma}}^{-1}</math>. | ऐसा दिखाया जा सकता है <math>\underline{\underline{\mathsf{A}_\varepsilon}}^T = \underline{\underline{\mathsf{A}_\sigma}}^{-1}</math>. | ||
ब्लॉककोट संरेखण=केंद्र शैली=बॉर्डर: 1px ठोस काला; पैडिंग:10px; चौड़ाई:500px > | |||
ऑर्थोगोनल परिवर्तन के तहत सातत्य के लोचदार गुण अपरिवर्तनीय होते हैं <math>\underline{\underline{\mathbf{A}}}</math> अगर और केवल अगर<ref name=Slawinski/>:<math> | |||
ऑर्थोगोनल परिवर्तन के तहत सातत्य के लोचदार गुण अपरिवर्तनीय होते हैं <math>\underline{\underline{\mathbf{A}}}</math> अगर और केवल अगर<ref name="Slawinski" />:<math> | |||
\underline{\underline{\mathsf{C}}} = \underline{\underline{\mathsf{A}_\varepsilon}}^T~\underline{\underline{\mathsf{C}}}~\underline{\underline{\mathsf{A}_\varepsilon}} | \underline{\underline{\mathsf{C}}} = \underline{\underline{\mathsf{A}_\varepsilon}}^T~\underline{\underline{\mathsf{C}}}~\underline{\underline{\mathsf{A}_\varepsilon}} | ||
</math> | </math>ब्लॉककोट | ||
=== ऑर्थोट्रोपिक लोच में कठोरता और अनुपालन | === ऑर्थोट्रोपिक लोच में कठोरता और अनुपालन आव्यूह === | ||
एक ऑर्थोट्रोपिक लोचदार सामग्री में समरूपता के तीन ऑर्थोगोनल विमान होते हैं। यदि हम एक ऑर्थोनॉर्मल समन्वय प्रणाली चुनते हैं जैसे कि अक्ष तीन समरूपता विमानों के मानदंडों के साथ मेल खाते हैं, तो परिवर्तन | एक ऑर्थोट्रोपिक लोचदार सामग्री में समरूपता के तीन ऑर्थोगोनल विमान होते हैं। यदि हम एक ऑर्थोनॉर्मल समन्वय प्रणाली चुनते हैं जैसे कि अक्ष तीन समरूपता विमानों के मानदंडों के साथ मेल खाते हैं, तो परिवर्तन आव्यूह हैं | ||
:<math> | :<math> | ||
\underline{\underline{\mathbf{A}_1}} = \begin{bmatrix}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ~;~~ | \underline{\underline{\mathbf{A}_1}} = \begin{bmatrix}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ~;~~ | ||
Line 180: | Line 176: | ||
\underline{\underline{\mathbf{A}_3}} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} | \underline{\underline{\mathbf{A}_3}} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} | ||
</math> | </math> | ||
हम यह दिखा सकते हैं कि यदि | हम यह दिखा सकते हैं कि यदि आव्यूह <math>\underline{\underline{\mathsf{C}}}</math> यदि एक रैखिक लोचदार सामग्री दो ऑर्थोगोनल विमानों के बारे में प्रतिबिंब के तहत अपरिवर्तनीय है तो यह तीसरे ऑर्थोगोनल विमान के बारे में प्रतिबिंब के तहत भी अपरिवर्तनीय है। | ||
यदि हम प्रतिबिम्ब पर विचार करें <math>\underline{\underline{\mathbf{A}_3}}</math> के बारे में <math>1-2\,</math> विमान, तो हमारे पास है | यदि हम प्रतिबिम्ब पर विचार करें <math>\underline{\underline{\mathbf{A}_3}}</math> के बारे में <math>1-2\,</math> विमान, तो हमारे पास है | ||
Line 195: | Line 191: | ||
फिर आवश्यकता <math> | फिर आवश्यकता <math> | ||
\underline{\underline{\mathsf{C}}} = \underline{\underline{\mathsf{A}_\varepsilon}}^T~\underline{\underline{\mathsf{C}}}~\underline{\underline{\mathsf{A}_\varepsilon}} | \underline{\underline{\mathsf{C}}} = \underline{\underline{\mathsf{A}_\varepsilon}}^T~\underline{\underline{\mathsf{C}}}~\underline{\underline{\mathsf{A}_\varepsilon}} | ||
</math> इसका आशय है<ref name=Slawinski/>:<math> | </math> इसका आशय है<ref name="Slawinski" />:<math> | ||
\begin{bmatrix} | \begin{bmatrix} | ||
C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ | C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ | ||
Line 211: | Line 207: | ||
C_{16} & C_{26} & C_{36} & -C_{46} & -C_{56} & C_{66} \end{bmatrix} | C_{16} & C_{26} & C_{36} & -C_{46} & -C_{56} & C_{66} \end{bmatrix} | ||
</math> | </math> | ||
उपरोक्त आवश्यकता तभी पूरी हो सकती है यदि | उपरोक्त आवश्यकता तभी पूरी हो सकती है यदि | ||
:<math> | :<math> | ||
C_{14} = C_{15} = C_{24} = C_{25} = C_{34} = C_{35} = C_{46} = C_{56} = 0 ~. | C_{14} = C_{15} = C_{24} = C_{25} = C_{34} = C_{35} = C_{46} = C_{56} = 0 ~. | ||
</math> | </math> | ||
आइए आगे प्रतिबिंब पर विचार करें <math>\underline{\underline{\mathbf{A}_2}}</math> के बारे में <math>1-3\,</math> विमान। | आइए आगे प्रतिबिंब पर विचार करें <math>\underline{\underline{\mathbf{A}_2}}</math> के बारे में <math>1-3\,</math> विमान। उसपरिस्थिति में | ||
:<math> | :<math> | ||
\underline{\underline{\mathsf{A}_\varepsilon}} = \begin{bmatrix} | \underline{\underline{\mathsf{A}_\varepsilon}} = \begin{bmatrix} | ||
Line 230: | Line 227: | ||
C_{16} = C_{26} = C_{36} = C_{45} = 0 ~. | C_{16} = C_{26} = C_{36} = C_{45} = 0 ~. | ||
</math> | </math> | ||
कोई और जानकारी प्राप्त नहीं की जा सकती क्योंकि तीसरे समरूपता तल के बारे में प्रतिबिंब उन विमानों के बारे में प्रतिबिंब से स्वतंत्र नहीं है जिन पर हम पहले ही विचार कर चुके हैं। इसलिए, ऑर्थोट्रोपिक रैखिक लोचदार सामग्री की कठोरता | कोई और जानकारी प्राप्त नहीं की जा सकती क्योंकि तीसरे समरूपता तल के बारे में प्रतिबिंब उन विमानों के बारे में प्रतिबिंब से स्वतंत्र नहीं है जिन पर हम पहले ही विचार कर चुके हैं। इसलिए, ऑर्थोट्रोपिक रैखिक लोचदार सामग्री की कठोरता आव्यूह को इस प्रकार लिखा जा सकता है | ||
<ब्लॉककोट संरेखण=केंद्र शैली=बॉर्डर: 1px ठोस काला; पैडिंग:10px; चौड़ाई:400px > | <ब्लॉककोट संरेखण=केंद्र शैली=बॉर्डर: 1px ठोस काला; पैडिंग:10px; चौड़ाई:400px > | ||
:<math> | :<math> | ||
Line 243: | Line 240: | ||
</math> | </math> | ||
</ब्लॉककोट> | </ब्लॉककोट> | ||
इस | इस आव्यूह का व्युत्क्रम सामान्यतः इस प्रकार लिखा जाता है<ref name=Boresi>Boresi, A. P, Schmidt, R. J. and Sidebottom, O. M., 1993, ''Advanced Mechanics of Materials'', Wiley.</ref> | ||
:<math> | :<math> | ||
\underline{\underline{\mathsf{S}}} = | \underline{\underline{\mathsf{S}}} = | ||
Line 255: | Line 252: | ||
\end{bmatrix} | \end{bmatrix} | ||
</math> | </math> | ||
जहाँ <math>{E}_{\rm i}\,</math> अक्ष के अनुदिश यंग मापांक है <math>i</math>, <math>G_{\rm ij}\,</math> दिशा में अपरूपण मापांक है <math>j</math> उस तल पर जिसका अभिलम्ब दिशा में है <math>i</math>, और <math>\nu_{\rm ij}\,</math> पॉइसन का अनुपात है जो दिशा में संकुचन से मेल खाता है <math>j</math> जब कोई एक्सटेंशन दिशा में लगाया जाता है <math>i</math>. | |||
=== ऑर्थोट्रोपिक लोचदार सामग्री के मॉड्यूल पर सीमाएं === | === ऑर्थोट्रोपिक लोचदार सामग्री के मॉड्यूल पर सीमाएं === | ||
Line 262: | Line 259: | ||
\underline{\underline{\boldsymbol{\varepsilon}}} = \underline{\underline{\mathsf{S}}}~\underline{\underline{\boldsymbol{\sigma}}} | \underline{\underline{\boldsymbol{\varepsilon}}} = \underline{\underline{\mathsf{S}}}~\underline{\underline{\boldsymbol{\sigma}}} | ||
</math> | </math> | ||
जहां अनुपालन | जहां अनुपालन आव्यूह <math>\underline{\underline{\mathsf{S}}}</math> द्वारा दिया गया है | ||
:<math> | :<math> | ||
\underline{\underline{\mathsf{S}}} = | \underline{\underline{\mathsf{S}}} = | ||
Line 273: | Line 270: | ||
0 & 0 & 0 & 0 & 0 & S_{66} \end{bmatrix} | 0 & 0 & 0 & 0 & 0 & S_{66} \end{bmatrix} | ||
</math> | </math> | ||
अनुपालन | अनुपालन आव्यूह [[सममित मैट्रिक्स|सममित आव्यूह]] है और तनाव ऊर्जा घनत्व फलन के घनात्मक होने के लिए [[सकारात्मक-निश्चित मैट्रिक्स|घनात्मक-निश्चित आव्यूह]] होना चाहिए। सिल्वेस्टर की कसौटी से इसका तात्पर्य यह है कि आव्यूह के सभी प्रमुख [[लघु (रैखिक बीजगणित)]] घनात्मक हैं,<ref name=Ting>Ting, T. C. T. and Chen, T., 2005, ''Poisson's ratio for anisotropic elastic materials can have no bounds,'', Q. J. Mech. Appl. Math., 58(1), pp. 73-82.</ref> अर्थात।, | ||
:<math> | :<math> | ||
\Delta_k := \det(\underline{\underline{\mathsf{S}_k}}) > 0 | \Delta_k := \det(\underline{\underline{\mathsf{S}_k}}) > 0 | ||
</math> | </math> | ||
जहाँ <math>\underline{\underline{\mathsf{S}_k}}</math> है <math>k\times k</math> का प्रमुख उपाव्यूह<math>\underline{\underline{\mathsf{S}}}</math>. | |||
तब, | तब, | ||
Line 299: | Line 296: | ||
</math> | </math> | ||
हालाँकि, पॉइसन के अनुपात के मूल्यों पर कोई समान निचली सीमा नहीं रखी जा सकती है <math>\nu_{ij}</math>.<ref name=Ting/> | हालाँकि, पॉइसन के अनुपात के मूल्यों पर कोई समान निचली सीमा नहीं रखी जा सकती है <math>\nu_{ij}</math>.<ref name=Ting/> | ||
==यह भी देखें== | ==यह भी देखें== | ||
* अनिसोट्रॉपी | * अनिसोट्रॉपी | ||
Line 310: | Line 305: | ||
== संदर्भ == | == संदर्भ == | ||
{{Reflist}} | {{Reflist}} | ||
==अग्रिम पठन== | ==अग्रिम पठन== | ||
*[http://www.oofem.org/resources/doc/matlibmanual/html/node6.html Orthotropy modeling equations] from [[OOFEM]] Matlib manual section. | *[http://www.oofem.org/resources/doc/matlibmanual/html/node6.html Orthotropy modeling equations] from [[OOFEM]] Matlib manual section. |
Revision as of 21:47, 5 October 2023
भौतिक विज्ञान और ठोस यांत्रिकी में, ऑर्थोट्रोपिक सामग्रियों में एक विशेष बिंदु पर भौतिक गुण होते हैं जो तीन ओर्थोगोनल अक्षों के साथ भिन्न होते हैं, जहां प्रत्येक अक्ष में दो गुना घूर्णी समरूपता होती है। ताकत में इन दिशात्मक अंतरों को हैंकिंसन के समीकरण से निर्धारित किया जा सकता है।
वे असमदिग्वर्ती होने की दशा का एक उपसमूह हैं, क्योंकि विभिन्न दिशाओं से मापने पर उनके गुण बदल जाते हैं।
ऑर्थोट्रोपिक सामग्री का एक परिचित उदाहरण लकड़ी है। लकड़ी में, प्रत्येक बिंदु पर तीन परस्पर लंबवत दिशाओं को परिभाषित किया जा सकता है जिनमें गुण भिन्न होते हैं। यह कण (अक्षीय दिशा) के साथ सबसे अधिक कठोर (और सशक्त) होता है, क्योंकि अधिकांश सेलूलोज़ तंतु उसी तरह से संरेखित होते हैं। यह सामान्यतः रेडियल दिशा (विकास वलय के बीच) में सबसे कम कठोर होता है, और परिधि दिशा में मध्यवर्ती होता है। यह अनिसोट्रॉपी विकासवाद द्वारा प्रदान की गई थी, क्योंकि यह पेड़ को सीधा खड़ा रहने में सक्षम बनाती है।
चूँकि पसंदीदा समन्वय प्रणाली बेलनाकार-ध्रुवीय है, इस प्रकार की ऑर्थोट्रॉपी को ध्रुवीय ऑर्थोट्रॉपी भी कहा जाता है।
ऑर्थोट्रोपिक सामग्री का एक अन्य उदाहरण भारी रोलर्स के बीच धातु के मोटे वर्गों को निचोड़ने से बनने वाली शीट धातु है। यह इसकी अनाज संरचना को चपटा और फैलाता है। परिणामस्वरूप, सामग्री एनिस्ट्रोपिक बन जाती है - इसके गुण उस दिशा के बीच भिन्न होते हैं जिस दिशा में इसे घुमाया गया था और दोनों अनुप्रस्थ दिशाओं में से प्रत्येक में हैं। इस पद्धति का उपयोग संरचनात्मक स्टील बीम और एल्यूमीनियम विमान की खाल में लाभ के लिए किया जाता है।
यदि किसी वस्तु के अंदर बिंदुओं के बीच ऑर्थोट्रोपिक गुण भिन्न होते हैं, तो इसमें ऑर्थोट्रॉपी और अमानवीय दोनों होते हैं। इससे पता चलता है कि ऑर्थोट्रॉपी संपूर्ण वस्तु के बजाय किसी वस्तु के भीतर एक बिंदु की संपत्ति है (जब तक कि वस्तु सजातीय न हो)। समरूपता के संबंधित तलों को एक बिंदु के चारों ओर एक छोटे से क्षेत्र के लिए भी परिभाषित किया जाता है और जरूरी नहीं कि वे संपूर्ण वस्तु के समरूपता के तलों के समान हों।
ऑर्थोट्रोपिक सामग्रियां अनिसोट्रॉपी का एक उपसमूह हैं; उनके गुण उस दिशा पर निर्भर करते हैं जिसमें उन्हें मापा जाता है। ऑर्थोट्रोपिक सामग्रियों में समरूपता के तीन तल/अक्ष होते हैं। इसके विपरीत, एक समदैशिक सामग्री में हर दिशा में समान गुण होते हैं। यह सिद्ध किया जा सकता है कि जिस सामग्री में सममिति के दो तल हैं, उसमें तीसरा तल अवश्य होगा। आइसोट्रोपिक सामग्रियों में समरूपता के विमानों की अनंत संख्या होती है।
अनुप्रस्थ आइसोट्रॉपी सामग्री विशेष ऑर्थोट्रोपिक सामग्री होती है जिसमें समरूपता की एक धुरी होती है (कुल्हाड़ियों की कोई अन्य जोड़ी जो मुख्य एक के लंबवत होती है और आपस में ऑर्थोगोनल भी समरूपता की धुरी होती है)। समरूपता के एक अक्ष के साथ ट्रांसवर्सली आइसोट्रोपिक सामग्री का एक सामान्य उदाहरण समानांतर ग्लास या ग्रेफाइट फाइबर द्वारा प्रबलित एक बहुलक है। ऐसी मिश्रित सामग्री की ताकत और कठोरता सामान्यतः अनुप्रस्थ दिशा की तुलना में तंतुओं के समानांतर दिशा में अधिक होगी, और मोटाई दिशा में सामान्यतः अनुप्रस्थ दिशा के समान गुण होते हैं। एक अन्य उदाहरण एक जैविक झिल्ली होगा, जिसमें झिल्ली के तल में गुण लंबवत दिशा से भिन्न होंगे। ऑर्थोट्रोपिक सामग्री गुणों को हड्डी की लोचदार समरूपता का अधिक सटीक प्रतिनिधित्व प्रदान करने के लिए दिखाया गया है और यह हड्डी के ऊतक-स्तर सामग्री गुणों की त्रि-आयामी दिशात्मकता के बारे में भी जानकारी दे सकता है।[1]
यह ध्यान रखना महत्वपूर्ण है कि एक सामग्री जो एक लंबाई पैमाने पर अनिसोट्रोपिक है वह दूसरे (सामान्यतः बड़े) लंबाई पैमाने पर आइसोट्रोपिक हो सकती है। उदाहरण के लिए, अधिकांश धातुएँ बहुत छोटे क्रिस्टलीय के साथ स्फटिक होती हैं। प्रत्येक व्यक्तिगत अनाज अनिसोट्रोपिक हो सकता है, लेकिन यदि संपूर्ण सामग्री में कई यादृच्छिक रूप से उन्मुख अनाज सम्मिलित हैं, तो इसके मापा यांत्रिक गुण व्यक्तिगत अनाज के सभी संभावित अभिविन्यासों के गुणों का औसत होंगेl
भौतिकी में ऑर्थोट्रॉपी
अनिसोट्रोपिक सामग्री संबंध
भौतिक सिद्धांतों में भौतिक व्यवहार को संवैधानिक संबंधों द्वारा दर्शाया जाता है। भौतिक व्यवहारों के एक बड़े वर्ग को रैखिक सामग्री मॉडल द्वारा दर्शाया जा सकता है जो दूसरे क्रम के टेन्सर का रूप लेते हैं। सामग्री टेंसर दो यूक्लिडियन सदिश के बीच एक संबंध प्रदान करता है और इसे इस प्रकार लिखा जा सकता है
जहाँ दो सदिश भौतिक मात्राओं का प्रतिनिधित्व करते हैं और दूसरे क्रम का सामग्री टेंसर है। यदि हम उपरोक्त समीकरण को ऑर्थोनॉर्मल समन्वय प्रणाली के संबंध में घटकों के संदर्भ में व्यक्त करते हैं, तो हम लिख सकते हैं
उपरोक्त संबंध में आइंस्टीन संकेतन को माना गया है। आव्यूह रूप में हमारे पास है
उपरोक्त टेम्पलेट में फिट होने वाली भौतिक समस्याओं के उदाहरण नीचे दी गई तालिका में सूचीबद्ध हैं।[2]
सामग्री समरूपता के लिए शर्त
सामग्री आव्यूह किसी दिए गए ऑर्थोगोनल परिवर्तन के संबंध में समरूपता है () यदि उस परिवर्तन के अधीन होने पर यह नहीं बदलता है।
ऐसे परिवर्तन के तहत भौतिक गुणों की अपरिवर्तनीयता के लिए हमें आवश्यकता होती है
इसलिए सामग्री समरूपता के लिए शर्त है (ऑर्थोगोनल परिवर्तन की परिभाषा का उपयोग करके)
ऑर्थोगोनल परिवर्तनों को कार्टेशियन निर्देशांक में ए द्वारा दर्शाया जा सकता है आव्यूह द्वारा दिए गए
इसलिए, समरूपता स्थिति को आव्यूह रूप में लिखा जा सकता है
ऑर्थोट्रोपिक सामग्री गुण
एक ऑर्थोट्रोपिक सामग्री में समरूपता के तीन ऑर्थोगोनल विमान होते हैं। यदि हम एक ऑर्थोनॉर्मल समन्वय प्रणाली चुनते हैं जैसे कि अक्ष तीन समरूपता विमानों के मानदंडों के साथ मेल खाते हैं, तो परिवर्तन आव्यूह हैं
यह दिखाया जा सकता है कि यदि आव्यूह यदि कोई सामग्री दो ऑर्थोगोनल विमानों के बारे में प्रतिबिंब के तहत अपरिवर्तनीय है तो यह तीसरे ऑर्थोगोनल विमान के बारे में प्रतिबिंब के तहत भी अपरिवर्तनीय है।
प्रतिबिंब पर विचार करें के बारे में विमान तो हमारे पास हैं
उपरोक्त संबंध का तात्पर्य यह है . आगे एक प्रतिबिंब पर विचार करें के बारे में विमान। फिर हमारे पास है
इसका तात्पर्य यह है . इसलिए, ऑर्थोट्रोपिक सामग्री के भौतिक गुणों का वर्णन आव्यूह द्वारा किया जाता हैl संरेखण=केंद्र शैली=बॉर्डर: 1px ठोस काला; पैडिंग:10px; चौड़ाई:300px >
फलनरैखिक लोच में ऑर्थोट्रॉपी
अनिसोट्रोपिक लोच
रैखिक लोच में, तनाव (भौतिकी) और अनंत तनाव सिद्धांत के बीच संबंध विचाराधीन सामग्री के प्रकार पर निर्भर करता है। इस संबंध को हुक के नियम के नाम से जाना जाता है। अनिसोट्रोपिक सामग्रियों के लिए हुक के नियम को इस प्रकार लिखा जा सकता है[3]
जहाँ तनाव टेंसर है, तनाव टेंसर है, और लोचदार कठोरता टेंसर है। यदि उपरोक्त अभिव्यक्ति में टेंसरों को एक ऑर्थोनॉर्मल समन्वय प्रणाली के संबंध में घटकों के संदर्भ में वर्णित किया गया है तो हम लिख सकते हैं
जहां बार-बार सूचकांकों पर योग माना गया है। चूंकि तनाव और तनाव टेंसर सममित टेंसर हैं, और चूंकि रैखिक लोच में तनाव-खिंचाव संबंध तनाव ऊर्जा घनत्व फलनसे प्राप्त किया जा सकता है, इसलिए रैखिक लोचदार सामग्री के लिए निम्नलिखित समरूपताएं लागू होती हैं
उपरोक्त समरूपताओं के कारण, रैखिक लोचदार सामग्रियों के लिए तनाव-खिंचाव संबंध को आव्यूह रूप में व्यक्त किया जा सकता है
Voigt संकेतन में एक वैकल्पिक प्रतिनिधित्व है
या
कठोरता आव्यूह उपरोक्त संबंध में बिंदु समरूपता को संतुष्ट करता है।[4]
सामग्री समरूपता के लिए शर्त
कठोरता आव्यूह किसी दी गई समरूपता स्थिति को संतुष्ट करता है यदि यह संबंधित ऑर्थोगोनल परिवर्तन के अधीन होने पर नहीं बदलता है। ऑर्थोगोनल परिवर्तन एक बिंदु समरूपता, समरूपता की धुरी या समरूपता के एक विमान के संबंध में समरूपता का प्रतिनिधित्व कर सकता है। रैखिक लोच में ऑर्थोगोनल परिवर्तनों में घूर्णन और प्रतिबिंब सम्मिलित होते हैं, लेकिन आकार बदलने वाले परिवर्तन नहीं होते हैं और इन्हें ऑर्थोनॉर्मल निर्देशांक में, एक द्वारा दर्शाया जा सकता है। आव्यूह द्वारा दिए गए
वोइग्ट नोटेशन में, तनाव टेंसर के लिए परिवर्तन आव्यूह को एक के रूप में व्यक्त किया जा सकता है आव्यूह द्वारा दिए गए[4]:
नोटेशन की पसंद के कारण स्ट्रेन टेंसर के परिवर्तन का रूप थोड़ा अलग होता है। यह परिवर्तन आव्यूह है
ऐसा दिखाया जा सकता है .
ब्लॉककोट संरेखण=केंद्र शैली=बॉर्डर: 1px ठोस काला; पैडिंग:10px; चौड़ाई:500px >
ऑर्थोगोनल परिवर्तन के तहत सातत्य के लोचदार गुण अपरिवर्तनीय होते हैं अगर और केवल अगर[4]:ब्लॉककोट
ऑर्थोट्रोपिक लोच में कठोरता और अनुपालन आव्यूह
एक ऑर्थोट्रोपिक लोचदार सामग्री में समरूपता के तीन ऑर्थोगोनल विमान होते हैं। यदि हम एक ऑर्थोनॉर्मल समन्वय प्रणाली चुनते हैं जैसे कि अक्ष तीन समरूपता विमानों के मानदंडों के साथ मेल खाते हैं, तो परिवर्तन आव्यूह हैं
हम यह दिखा सकते हैं कि यदि आव्यूह यदि एक रैखिक लोचदार सामग्री दो ऑर्थोगोनल विमानों के बारे में प्रतिबिंब के तहत अपरिवर्तनीय है तो यह तीसरे ऑर्थोगोनल विमान के बारे में प्रतिबिंब के तहत भी अपरिवर्तनीय है।
यदि हम प्रतिबिम्ब पर विचार करें के बारे में विमान, तो हमारे पास है
फिर आवश्यकता इसका आशय है[4]:
उपरोक्त आवश्यकता तभी पूरी हो सकती है यदि
आइए आगे प्रतिबिंब पर विचार करें के बारे में विमान। उसपरिस्थिति में
पुनः अपरिवर्तनीय स्थिति का उपयोग करते हुए, हमें अतिरिक्त आवश्यकता प्राप्त होती है
कोई और जानकारी प्राप्त नहीं की जा सकती क्योंकि तीसरे समरूपता तल के बारे में प्रतिबिंब उन विमानों के बारे में प्रतिबिंब से स्वतंत्र नहीं है जिन पर हम पहले ही विचार कर चुके हैं। इसलिए, ऑर्थोट्रोपिक रैखिक लोचदार सामग्री की कठोरता आव्यूह को इस प्रकार लिखा जा सकता है <ब्लॉककोट संरेखण=केंद्र शैली=बॉर्डर: 1px ठोस काला; पैडिंग:10px; चौड़ाई:400px >
</ब्लॉककोट> इस आव्यूह का व्युत्क्रम सामान्यतः इस प्रकार लिखा जाता है[5]
जहाँ अक्ष के अनुदिश यंग मापांक है , दिशा में अपरूपण मापांक है उस तल पर जिसका अभिलम्ब दिशा में है , और पॉइसन का अनुपात है जो दिशा में संकुचन से मेल खाता है जब कोई एक्सटेंशन दिशा में लगाया जाता है .
ऑर्थोट्रोपिक लोचदार सामग्री के मॉड्यूल पर सीमाएं
ऑर्थोट्रोपिक रैखिक लोचदार सामग्रियों के लिए तनाव-तनाव संबंध को वोइग्ट नोटेशन में लिखा जा सकता है
जहां अनुपालन आव्यूह द्वारा दिया गया है
अनुपालन आव्यूह सममित आव्यूह है और तनाव ऊर्जा घनत्व फलन के घनात्मक होने के लिए घनात्मक-निश्चित आव्यूह होना चाहिए। सिल्वेस्टर की कसौटी से इसका तात्पर्य यह है कि आव्यूह के सभी प्रमुख लघु (रैखिक बीजगणित) घनात्मक हैं,[6] अर्थात।,
जहाँ है का प्रमुख उपाव्यूह.
तब,
हम दिखा सकते हैं कि शर्तों का यह सेट इसका तात्पर्य है[7]
या
हालाँकि, पॉइसन के अनुपात के मूल्यों पर कोई समान निचली सीमा नहीं रखी जा सकती है .[6]
यह भी देखें
- अनिसोट्रॉपी
- तनाव (यांत्रिकी)
- अनंतिम तनाव सिद्धांत
- परिमित तनाव सिद्धांत
- हुक का नियम
संदर्भ
- ↑ Geraldes DM et al, 2014, A comparative study of orthotropic and isotropic bone adaptation in the femur, International Journal for Numerical Methods in Biomedical Engineering, Volume 30, Issue 9, pages 873–889, DOI: 10.1002/cnm.2633, http://onlinelibrary.wiley.com/wol1/doi/10.1002/cnm.2633/full
- ↑ Milton, G. W., 2002, The Theory of Composites, Cambridge University Press.
- ↑ Lekhnitskii, S. G., 1963, Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day Inc.
- ↑ 4.0 4.1 4.2 4.3 Slawinski, M. A., 2010, Waves and Rays in Elastic Continua: 2nd Ed., World Scientific. [1]
- ↑ Boresi, A. P, Schmidt, R. J. and Sidebottom, O. M., 1993, Advanced Mechanics of Materials, Wiley.
- ↑ 6.0 6.1 Ting, T. C. T. and Chen, T., 2005, Poisson's ratio for anisotropic elastic materials can have no bounds,, Q. J. Mech. Appl. Math., 58(1), pp. 73-82.
- ↑ Ting, T. C. T. (1996), "Positive definiteness of anisotropic elastic constants", Mathematics & Mechanics of Solids, 1 (3): 301–314, doi:10.1177/108128659600100302, S2CID 122747373.
अग्रिम पठन
- Orthotropy modeling equations from OOFEM Matlib manual section.
- Hooke's law for orthotropic materials