विकर्ण आव्यूह: Difference between revisions
(Created page with "{{Use American English|date = March 2019}} {{Short description|Matrix whose only nonzero elements are on its main diagonal}} रैखिक बीजगणित में,...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Matrix whose only nonzero elements are on its main diagonal}} | {{Short description|Matrix whose only nonzero elements are on its main diagonal}} | ||
रैखिक बीजगणित में, एक विकर्ण मैट्रिक्स एक [[मैट्रिक्स (गणित)]] है जिसमें [[मुख्य विकर्ण]] के बाहर की सभी प्रविष्टियाँ शून्य होती हैं; | रैखिक बीजगणित में, एक विकर्ण मैट्रिक्स एक [[मैट्रिक्स (गणित)]] होती है जिसमें [[मुख्य विकर्ण]] के बाहर की सभी प्रविष्टियाँ शून्य होती हैं; आमतौर पर इस शब्द का उपयोग [[स्क्वायर मैट्रिसेस]] के लिए किया जाता है। मुख्य विकर्ण के तत्व या तो शून्य या अशून्य हो सकते हैं। एक 2×2 विकर्ण मैट्रिक्स का एक उदाहरण है <math>\left[\begin{smallmatrix} | ||
3 & 0 \\ | 3 & 0 \\ | ||
0 & 2 \end{smallmatrix}\right]</math>, जबकि 3×3 विकर्ण मैट्रिक्स का एक उदाहरण है<math> | 0 & 2 \end{smallmatrix}\right]</math>, जबकि 3×3 विकर्ण मैट्रिक्स का एक उदाहरण है<math> | ||
Line 8: | Line 8: | ||
0 & 0 & 0 \\ | 0 & 0 & 0 \\ | ||
0 & 0 & 0 | 0 & 0 & 0 | ||
\end{smallmatrix}\right]</math>. किसी भी आकार का एक | \end{smallmatrix}\right]</math>. किसी भी आकार का एक आईडेंटिटी मैट्रिक्स, या उसका कोई गुणक (स्केलर मैट्रिक्स), एक विकर्ण मैट्रिक्स होती है। विकर्ण मैट्रिक्स को कभी-कभी एक [[स्केलिंग मैट्रिक्स]] के रूप में कहा जाता है, क्योंकि इसके साथ मैट्रिक्सगुणा करने से स्केल (आकार) में परिवर्तन होता है। इसका डिटर्मिनेंट इसके डायगनल मूल्यों का उत्पाद होता है। | ||
== परिभाषा == | == परिभाषा == | ||
जैसा ऊपर बताया गया है, एक विकर्ण मैट्रिक्स एक मैट्रिक्स है जिसमें सभी ऑफ-विकर्ण प्रविष्टियां शून्य हैं। | जैसा ऊपर बताया गया है, एक विकर्ण मैट्रिक्स एक मैट्रिक्स है जिसमें सभी ऑफ-विकर्ण प्रविष्टियां शून्य हैं। अर्थात, n स्तंभों और n पंक्तियों वाली मैट्रिक्स {{math|1=''D'' = (''d''<sub>''i'',''j''</sub>)}} n कॉलम और विकर्ण होती है। यदि | ||
<math display="block">\forall i,j \in \{1, 2, \ldots, n\}, i \ne j \implies d_{i,j} = 0.</math> | <math display="block">\forall i,j \in \{1, 2, \ldots, n\}, i \ne j \implies d_{i,j} = 0.</math> | ||
हालाँकि, मुख्य विकर्ण प्रविष्टियाँ | हालाँकि, मुख्य विकर्ण प्रविष्टियाँ प्रतिबंधित नहीं किया गया है। | ||
विकर्ण मैट्रिक्स का शब्द कभी-कभी एक आयताकार डायगनल मैट्रिक्स को संदर्भित कर सकता है, जो एक m-by-n मैट्रिक्स होती है जिसमें ''d<sub>i</sub>''<sub>,''i''</sub> के रूप में नहीं होने वाले सभी तत्व शून्य होते हैं। उदाहरण के लिए: | |||
:<math>\begin{bmatrix} | :<math>\begin{bmatrix} | ||
1 & 0 & 0\\ | 1 & 0 & 0\\ | ||
Line 29: | Line 27: | ||
0 & 0 & -3& 0 & 0 | 0 & 0 & -3& 0 & 0 | ||
\end{bmatrix}</math> | \end{bmatrix}</math> | ||
अधिकतर मामलों में, विकर्ण मैट्रिक्स वर्गीय मैट्रिक्स को संदर्भित करती है, जो एक{{visible anchor|वर्गीय विकर्ण मैट्रिक्स}} के रूप में स्पष्ट रूप से निर्दिष्ट की जा सकती है।. एक वर्गीय विकर्ण मैट्रिक्स एक [[सममित मैट्रिक्स]] होती है, इसलिए इसे {{visible anchor|सममित्र विकर्ण मैट्रिक्स}} भी कहा जा सकता है. | |||
निम्नलिखित मैट्रिक्स वर्ग विकर्ण मैट्रिक्स है: | निम्नलिखित मैट्रिक्स वर्ग विकर्ण मैट्रिक्स होती है: | ||
<math display="block">\begin{bmatrix} | <math display="block">\begin{bmatrix} | ||
1 & 0 & 0\\ | 1 & 0 & 0\\ | ||
Line 37: | Line 35: | ||
0 & 0 & -2 | 0 & 0 & -2 | ||
\end{bmatrix}</math> | \end{bmatrix}</math> | ||
यदि प्रविष्टियाँ [[वास्तविक संख्या]]एँ या जटिल संख्याएँ हैं, तो यह एक [[सामान्य मैट्रिक्स]] भी है। | यदि प्रविष्टियाँ [[वास्तविक संख्या]]एँ या जटिल संख्याएँ हैं, तो यह एक [[सामान्य मैट्रिक्स]] भी होती है। | ||
इस लेख के शेष भाग में हम केवल वर्ग विकर्ण आव्यूहों पर विचार करेंगे, और उन्हें | इस लेख के शेष भाग में हम केवल वर्ग विकर्ण आव्यूहों पर विचार करेंगे, और उन्हें सीधे विकर्ण आव्यूहों के रूप में संदर्भित करेंगे। | ||
== वेक्टर-टू-मैट्रिक्स डायग ऑपरेटर == | == वेक्टर-टू-मैट्रिक्स डायग ऑपरेटर == | ||
Line 60: | Line 58: | ||
== स्केलर मैट्रिक्स == | == स्केलर मैट्रिक्स == | ||
समान विकर्ण प्रविष्टियों वाला एक विकर्ण मैट्रिक्स एक अदिश मैट्रिक्स है; यानी, आइडेंटिटी मैट्रिक्स का एक स्केलर मल्टिपल ''λ'' {{mvar|I}}. सदिश (गणित और भौतिकी) पर इसका प्रभाव λ द्वारा अदिश गुणन है। उदाहरण के लिए, एक 3×3 स्केलर मैट्रिक्स का रूप है: | समान विकर्ण प्रविष्टियों वाला एक विकर्ण मैट्रिक्स एक अदिश मैट्रिक्स है; यानी, आइडेंटिटी मैट्रिक्स का एक स्केलर मल्टिपल ''λ'' {{mvar|I}}. सदिश (गणित और भौतिकी) पर इसका प्रभाव λ द्वारा अदिश गुणन है। उदाहरण के लिए, एक 3×3 स्केलर मैट्रिक्स का रूप है: | ||
<math display="block"> | <math display="block"> |
Revision as of 22:30, 21 March 2023
रैखिक बीजगणित में, एक विकर्ण मैट्रिक्स एक मैट्रिक्स (गणित) होती है जिसमें मुख्य विकर्ण के बाहर की सभी प्रविष्टियाँ शून्य होती हैं; आमतौर पर इस शब्द का उपयोग स्क्वायर मैट्रिसेस के लिए किया जाता है। मुख्य विकर्ण के तत्व या तो शून्य या अशून्य हो सकते हैं। एक 2×2 विकर्ण मैट्रिक्स का एक उदाहरण है , जबकि 3×3 विकर्ण मैट्रिक्स का एक उदाहरण है. किसी भी आकार का एक आईडेंटिटी मैट्रिक्स, या उसका कोई गुणक (स्केलर मैट्रिक्स), एक विकर्ण मैट्रिक्स होती है। विकर्ण मैट्रिक्स को कभी-कभी एक स्केलिंग मैट्रिक्स के रूप में कहा जाता है, क्योंकि इसके साथ मैट्रिक्सगुणा करने से स्केल (आकार) में परिवर्तन होता है। इसका डिटर्मिनेंट इसके डायगनल मूल्यों का उत्पाद होता है।
परिभाषा
जैसा ऊपर बताया गया है, एक विकर्ण मैट्रिक्स एक मैट्रिक्स है जिसमें सभी ऑफ-विकर्ण प्रविष्टियां शून्य हैं। अर्थात, n स्तंभों और n पंक्तियों वाली मैट्रिक्स D = (di,j) n कॉलम और विकर्ण होती है। यदि
विकर्ण मैट्रिक्स का शब्द कभी-कभी एक आयताकार डायगनल मैट्रिक्स को संदर्भित कर सकता है, जो एक m-by-n मैट्रिक्स होती है जिसमें di,i के रूप में नहीं होने वाले सभी तत्व शून्य होते हैं। उदाहरण के लिए:
- या
अधिकतर मामलों में, विकर्ण मैट्रिक्स वर्गीय मैट्रिक्स को संदर्भित करती है, जो एकवर्गीय विकर्ण मैट्रिक्स के रूप में स्पष्ट रूप से निर्दिष्ट की जा सकती है।. एक वर्गीय विकर्ण मैट्रिक्स एक सममित मैट्रिक्स होती है, इसलिए इसे सममित्र विकर्ण मैट्रिक्स भी कहा जा सकता है.
निम्नलिखित मैट्रिक्स वर्ग विकर्ण मैट्रिक्स होती है:
इस लेख के शेष भाग में हम केवल वर्ग विकर्ण आव्यूहों पर विचार करेंगे, और उन्हें सीधे विकर्ण आव्यूहों के रूप में संदर्भित करेंगे।
वेक्टर-टू-मैट्रिक्स डायग ऑपरेटर
एक विकर्ण मैट्रिक्स वेक्टर से बनाया जा सकता है का उपयोग ऑपरेटर:
उसी ऑपरेटर का उपयोग ब्लॉक मैट्रिक्स # ब्लॉक विकर्ण मैट्रिक्स को दर्शाने के लिए भी किया जाता है जहां प्रत्येक तर्क एक मैट्रिक्स है। h> ऑपरेटर के रूप में लिखा जा सकता है:
मैट्रिक्स-टू-वेक्टर डायग ऑपरेटर
उलटा मैट्रिक्स-टू-वेक्टर ऑपरेटर को कभी-कभी समान नाम से दर्शाया जाता है जहां तर्क अब एक मैट्रिक्स है और परिणाम इसकी विकर्ण प्रविष्टियों का एक सदिश है।
निम्नलिखित संपत्ति रखती है:
स्केलर मैट्रिक्स
समान विकर्ण प्रविष्टियों वाला एक विकर्ण मैट्रिक्स एक अदिश मैट्रिक्स है; यानी, आइडेंटिटी मैट्रिक्स का एक स्केलर मल्टिपल λ I. सदिश (गणित और भौतिकी) पर इसका प्रभाव λ द्वारा अदिश गुणन है। उदाहरण के लिए, एक 3×3 स्केलर मैट्रिक्स का रूप है:
वेक्टर संचालन
एक वेक्टर को एक विकर्ण मैट्रिक्स से गुणा करने पर प्रत्येक पद को संबंधित विकर्ण प्रविष्टि से गुणा किया जाता है। एक विकर्ण मैट्रिक्स दिया और एक वेक्टर उत्पाद है:
मैट्रिक्स संचालन
मैट्रिक्स जोड़ और मैट्रिक्स गुणन के संचालन विशेष रूप से विकर्ण मैट्रिसेस के लिए सरल हैं। लिखना diag(a1, ..., an) एक विकर्ण मैट्रिक्स के लिए जिसकी विकर्ण प्रविष्टियाँ ऊपरी बाएँ कोने में शुरू होती हैं1, ..., एn. फिर, जोड़ने के लिए, हमारे पास है
- diag(a1, ..., an) + diag(b1, ..., bn) = diag(a1 + b1, ..., an + bn)
और मैट्रिक्स गुणन के लिए,
- diag(a1, ..., an) diag(b1, ..., bn) = diag(a1b1, ..., anbn).
विकर्ण मैट्रिक्स diag(a1, ..., an) उलटा मैट्रिक्स है अगर और केवल अगर प्रविष्टियां ए1, ..., एn सभी अशून्य हैं। इस मामले में, हमारे पास है
- diag(a1, ..., an)−1 = diag(a1−1, ..., an−1).
विशेष रूप से, विकर्ण मेट्रिसेस सभी एन-बाय-एन मेट्रिसेस की रिंग का एक सबरिंग बनाते हैं।
n-by-n मैट्रिक्स को गुणा करना A बाएँ से diag(a1, ..., an) गुणा करने के बराबर है i-वीं पंक्ति A द्वारा ai सभी के लिए i; मैट्रिक्स को गुणा करना A के साथ दाएँ से diag(a1, ..., an) गुणा करने के बराबर है i-वाँ स्तंभ A द्वारा ai सभी के लिए i.
ईजेनबेसिस में ऑपरेटर मैट्रिक्स
जैसा कि परिवर्तन मैट्रिक्स में समझाया गया है # परिवर्तन के मैट्रिक्स को खोजना, एक विशेष आधार है, e1, ..., en, जिसके लिए मैट्रिक्स तिरछा रूप धारण कर लेता है। इसलिए, परिभाषित समीकरण में , सभी गुणांक साथ i ≠ j शून्य हैं, प्रति योग केवल एक पद छोड़ते हैं। जीवित विकर्ण तत्व, , eigenvalues के रूप में जाना जाता है और के साथ नामित किया गया है समीकरण में, जो कम हो जाता है . परिणामी समीकरण को eigenvalue समीकरण के रूप में जाना जाता है[4] और विशेषता बहुपद और आगे, आइगेनवैल्यू और ईजेनवेक्टर प्राप्त करने के लिए उपयोग किया जाता है।
दूसरे शब्दों में, के eigenvalues diag(λ1, ..., λn) हैं λ1, ..., λn के संबद्ध ईजेनवेक्टरों के साथ e1, ..., en.
गुण
- का निर्धारक diag(a1, ..., an) उत्पाद है a1⋯an.
- एक विकर्ण मैट्रिक्स का सहायक फिर से विकर्ण है।
- जहां सभी मेट्रिसेस वर्गाकार होते हैं,
- एक मैट्रिक्स विकर्ण है अगर और केवल अगर यह त्रिकोणीय और सामान्य मैट्रिक्स है।
- एक मैट्रिक्स विकर्ण है अगर और केवल अगर यह त्रिकोणीय मैट्रिक्स दोनों है | ऊपरी- और त्रिकोणीय मैट्रिक्स | निचला-त्रिकोणीय।
- एक विकर्ण मैट्रिक्स सममित मैट्रिक्स है।
- पहचान मैट्रिक्स मैंn और शून्य मैट्रिक्स विकर्ण हैं।
- एक 1×1 मैट्रिक्स हमेशा विकर्ण होता है।
अनुप्रयोग
रैखिक बीजगणित के कई क्षेत्रों में विकर्ण मैट्रिक्स होते हैं। ऊपर दिए गए मैट्रिक्स ऑपरेशन और eigenvalues/eigenvectors के सरल विवरण के कारण, आमतौर पर एक विकर्ण मैट्रिक्स द्वारा दिए गए मैट्रिक्स या रैखिक ऑपरेटर का प्रतिनिधित्व करना वांछनीय है।
वास्तव में, एक दिया गया n-by-n मैट्रिक्स A एक विकर्ण मैट्रिक्स के समान मैट्रिक्स है (जिसका अर्थ है कि एक मैट्रिक्स है X ऐसा है कि X−1AX विकर्ण है) अगर और केवल अगर यह है n रैखिक रूप से स्वतंत्र ईजेनवेक्टर। ऐसे आव्यूहों को विकर्णीय आव्यूह कहा जाता है।
वास्तविक संख्या या जटिल संख्या संख्याओं के क्षेत्र (गणित) में, अधिक सत्य है। वर्णक्रमीय प्रमेय का कहना है कि प्रत्येक सामान्य मैट्रिक्स एक विकर्ण मैट्रिक्स (यदि AA∗ = A∗A तो एक एकात्मक मैट्रिक्स मौजूद है U ऐसा है कि UAU∗ विकर्ण है)। इसके अलावा, एकवचन मूल्य अपघटन का अर्थ है कि किसी भी मैट्रिक्स के लिए A, एकात्मक मैट्रिसेस मौजूद हैं U और V ऐसा है कि U∗AV सकारात्मक प्रविष्टियों के साथ विकर्ण है।
ऑपरेटर सिद्धांत
ऑपरेटर सिद्धांत में, विशेष रूप से पीडीई के अध्ययन में, ऑपरेटरों को विशेष रूप से समझना आसान होता है और पीडीई को हल करना आसान होता है यदि ऑपरेटर उस आधार के संबंध में विकर्ण है जिसके साथ कोई काम कर रहा है; यह एक वियोज्य आंशिक अंतर समीकरण के अनुरूप है। इसलिए, ऑपरेटरों को समझने के लिए एक महत्वपूर्ण तकनीक निर्देशांक का एक परिवर्तन है - ऑपरेटरों की भाषा में, एक अभिन्न परिवर्तन - जो आधार को eigenfunction के खुद का आधार में बदलता है: जो समीकरण को वियोज्य बनाता है। इसका एक महत्वपूर्ण उदाहरण फूरियर रूपांतरण है, जो गर्मी समीकरण में निरंतर गुणांक विभेदन संचालकों (या अधिक सामान्यतः अनुवाद अपरिवर्तनीय संचालकों) को तिरछा करता है, जैसे कि लाप्लासियन संचालिका।
गुणन संचालक विशेष रूप से आसान होते हैं, जिन्हें एक निश्चित फ़ंक्शन द्वारा गुणन (के मान) के रूप में परिभाषित किया जाता है - प्रत्येक बिंदु पर फ़ंक्शन के मान एक मैट्रिक्स की विकर्ण प्रविष्टियों के अनुरूप होते हैं।
यह भी देखें
- विरोधी विकर्ण मैट्रिक्स
- बैंडेड मैट्रिक्स
- बिडायगोनल मैट्रिक्स
- तिरछे प्रमुख मैट्रिक्स
- विकर्ण मैट्रिक्स
- जॉर्डन सामान्य रूप
- गुणा ऑपरेटर
- त्रिविकर्ण मैट्रिक्स
- टोप्लिट्ज मैट्रिक्स
- तोरल झूठ बीजगणित
- परिचालित मैट्रिक्स
टिप्पणियाँ
- ↑ Proof: given the elementary matrix , is the matrix with only the i-th row of M and is the square matrix with only the M j-th column, so the non-diagonal entries must be zero, and the ith diagonal entry much equal the jth diagonal entry.
- ↑ Over more general rings, this does not hold, because one cannot always divide.
संदर्भ
- ↑ "Do Diagonal Matrices Always Commute?". Stack Exchange. March 15, 2016. Retrieved August 4, 2018.
- ↑ Sahami, Mehran (2009-06-15). Text Mining: Classification, Clustering, and Applications. CRC Press. p. 14. ISBN 9781420059458.
- ↑ "Element-wise vector-vector multiplication in BLAS?". stackoverflow.com. 2011-10-01. Retrieved 2020-08-30.
- ↑ Nearing, James (2010). "Chapter 7.9: Eigenvalues and Eigenvectors" (PDF). भौतिकी के लिए गणितीय उपकरण. ISBN 978-0486482125. Retrieved January 1, 2012.
स्रोत
- Horn, Roger Alan; Johnson, Charles Royal (1985), Matrix Analysis, Cambridge University Press, ISBN 978-0-521-38632-6
श्रेणी:मैट्रिक्स सामान्य रूप श्रेणी: विरल मैट्रिसेस