आइंस्टीन-हिल्बर्ट क्रिया: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Concept in general relativity}}
{{Short description|Concept in general relativity}}
{{General relativity sidebar}}
{{General relativity sidebar}}
[[सामान्य सापेक्षता]] में आइंस्टीन-हिल्बर्ट वह [[क्रिया (भौतिकी)|क्रिया]] है जो [[स्थिर-क्रिया सिद्धांत]] के माध्यम से [[आइंस्टीन क्षेत्र समीकरण]] उत्पन्न करती है। {{nowrap|(− + + +)}} मीट्रिक हस्ताक्षर के साथ, क्रिया का गुरुत्वाकर्षण भाग इस प्रकार दिया गया है;<ref>{{cite book |first=Richard P. |last=Feynman |title=गुरुत्वाकर्षण पर फेनमैन व्याख्यान|url=https://archive.org/details/feynmanlectureso0000feyn_g4q1 |url-access=registration |publisher=Addison-Wesley |year=1995 |isbn=0-201-62734-5 |at=p. 136, eq. (10.1.2) }}</ref>
[[सामान्य सापेक्षता]] में '''आइंस्टीन-हिल्बर्ट''' वह [[क्रिया (भौतिकी)|क्रिया]] है जो [[स्थिर-क्रिया सिद्धांत]] के माध्यम से [[आइंस्टीन क्षेत्र समीकरण]] उत्पन्न करती है। {{nowrap|(− + + +)}} मीट्रिक हस्ताक्षर के साथ, क्रिया का गुरुत्वाकर्षण भाग इस प्रकार दिया गया है;<ref>{{cite book |first=Richard P. |last=Feynman |title=गुरुत्वाकर्षण पर फेनमैन व्याख्यान|url=https://archive.org/details/feynmanlectureso0000feyn_g4q1 |url-access=registration |publisher=Addison-Wesley |year=1995 |isbn=0-201-62734-5 |at=p. 136, eq. (10.1.2) }}</ref>
:<math>S = {1 \over 2\kappa} \int R \sqrt{-g} \, \mathrm{d}^4x,</math>
:<math>S = {1 \over 2\kappa} \int R \sqrt{-g} \, \mathrm{d}^4x,</math>
जहाँ <math>g=\det(g_{\mu\nu})</math> [[मीट्रिक टेंसर]] आव्यूह का निर्धारक है, <math>R</math> [[रिक्की अदिश]] राशि है, और <math>\kappa = 8\pi Gc^{-4}</math> [[आइंस्टीन गुरुत्वाकर्षण स्थिरांक]] है (<math>G</math> [[गुरुत्वाकर्षण स्थिरांक]] है और <math>c</math> निर्वात में [[प्रकाश की गति]] है)। यदि यह अभिसरण होता है, तो अभिन्न को पूर्ण[[ अंतरिक्ष समय | स्पेसटाइम]] पर प्राप्त किया जाता है। यदि यह अभिसरण नहीं होता है, <math>S</math> अब उत्तम रूप से परिभाषित नहीं है, किन्तु संशोधित परिभाषा है जहां कोई इच्छानुसार बड़े, अपेक्षाकृत कॉम्पैक्ट डोमेन पर एकीकृत होता है, फिर भी आइंस्टीन समीकरण को आइंस्टीन-हिल्बर्ट क्रिया के यूलर-लैग्रेंज समीकरण के रूप में उत्पन्न करता है। इस क्रिया का प्रस्ताव<ref>{{Citation
जहाँ <math>g=\det(g_{\mu\nu})</math> [[मीट्रिक टेंसर]] आव्यूह का निर्धारक है, <math>R</math> [[रिक्की अदिश]] राशि है, और <math>\kappa = 8\pi Gc^{-4}</math> [[आइंस्टीन गुरुत्वाकर्षण स्थिरांक]] है (<math>G</math> [[गुरुत्वाकर्षण स्थिरांक]] है और <math>c</math> निर्वात में [[प्रकाश की गति]] है)। यदि यह अभिसरण होता है, तो अभिन्न को पूर्ण[[ अंतरिक्ष समय | स्पेसटाइम]] पर प्राप्त किया जाता है। यदि यह अभिसरण नहीं होता है, <math>S</math> अब उत्तम रूप से परिभाषित नहीं है, किन्तु संशोधित परिभाषा है जहां कोई इच्छानुसार बड़े, अपेक्षाकृत कॉम्पैक्ट डोमेन पर एकीकृत होता है, फिर भी आइंस्टीन समीकरण को आइंस्टीन-हिल्बर्ट क्रिया के यूलर-लैग्रेंज समीकरण के रूप में उत्पन्न करता है। इस क्रिया का प्रस्ताव<ref>{{Citation

Revision as of 11:21, 29 November 2023

सामान्य सापेक्षता में आइंस्टीन-हिल्बर्ट वह क्रिया है जो स्थिर-क्रिया सिद्धांत के माध्यम से आइंस्टीन क्षेत्र समीकरण उत्पन्न करती है। (− + + +) मीट्रिक हस्ताक्षर के साथ, क्रिया का गुरुत्वाकर्षण भाग इस प्रकार दिया गया है;[1]

जहाँ मीट्रिक टेंसर आव्यूह का निर्धारक है, रिक्की अदिश राशि है, और आइंस्टीन गुरुत्वाकर्षण स्थिरांक है ( गुरुत्वाकर्षण स्थिरांक है और निर्वात में प्रकाश की गति है)। यदि यह अभिसरण होता है, तो अभिन्न को पूर्ण स्पेसटाइम पर प्राप्त किया जाता है। यदि यह अभिसरण नहीं होता है, अब उत्तम रूप से परिभाषित नहीं है, किन्तु संशोधित परिभाषा है जहां कोई इच्छानुसार बड़े, अपेक्षाकृत कॉम्पैक्ट डोमेन पर एकीकृत होता है, फिर भी आइंस्टीन समीकरण को आइंस्टीन-हिल्बर्ट क्रिया के यूलर-लैग्रेंज समीकरण के रूप में उत्पन्न करता है। इस क्रिया का प्रस्ताव[2] डेविड हिल्बर्ट द्वारा 1915 में गुरुत्वाकर्षण और विद्युत चुंबकत्व के संयोजन के लिए परिवर्तनशील सिद्धांत के अनुप्रयोग के भाग के रूप में किया गया था।[3]: 119 

विश्लेषण

किसी क्रिया से गति के समीकरण निकालने के अनेक लाभ हैं। सर्वप्रथम, यह अन्य शास्त्रीय क्षेत्र सिद्धांतों (जैसे मैक्सवेल सिद्धांत) के साथ सामान्य सापेक्षता के सरल एकीकरण की अनुमति देता है, जो क्रिया के संदर्भ में भी प्रस्तुत किए जाते हैं। इस प्रक्रिया में, व्युत्पत्ति मीट्रिक को पदार्थ क्षेत्रों से जोड़ते हुए स्रोत पद के लिए प्राकृतिक उम्मीदवार की पहचान करती है। इसके अतिरिक्त, क्रिया की समरूपता नोएदर के प्रमेय के माध्यम से संरक्षित मात्राओं की सरल पहचान की अनुमति देती है।

सामान्य सापेक्षता में, क्रिया को सामान्यतः मीट्रिक (और पदार्थ क्षेत्रों) का कार्यात्मक माना जाता है, और कनेक्शन (गणित) लेवी-सिविटा कनेक्शन द्वारा दिया जाता है। सामान्य सापेक्षता का पैलेटिनी क्रिया मीट्रिक और कनेक्शन को स्वतंत्र मानता है, और दोनों के संबंध में स्वतंत्र रूप से भिन्न होता है, जिससे अपूर्णांक स्पिन के साथ फर्मिओनिक पदार्थ क्षेत्रों को सम्मिलित करना संभव हो जाता है।

पदार्थ की उपस्थिति में आइंस्टीन समीकरण आइंस्टीन-हिल्बर्ट क्रिया में पदार्थ क्रिया को जोड़कर दिए गए हैं।

आइंस्टीन क्षेत्र समीकरणों की व्युत्पत्ति

मान लीजिए कि सिद्धांत की पूर्ण क्रिया आइंस्टीन-हिल्बर्ट पद और पद द्वारा दी गई है सिद्धांत में प्रकट होने वाले किसी भी पदार्थ क्षेत्र का वर्णन इस प्रकार है;

.

 

 

 

 

(1)

तब स्थिर-क्रिया सिद्धांत हमें बताता है कि भौतिक नियम को पुनर्प्राप्त करने के लिए, हमें यह करना चाहिए कि व्युत्क्रम मीट्रिक के संबंध में इस क्रिया की भिन्नता शून्य हो, जिससे परिणाम मिले;

.

चूँकि यह समीकरण किसी भी भिन्नता के लिए मान्य होना चाहिए, इसका तात्पर्य यह है;

 

 

 

 

(2)

मीट्रिक क्षेत्र के लिए गति का समीकरण है। इस समीकरण का दाहिना पक्ष (परिभाषा के अनुसार) तनाव-ऊर्जा टेंसर के समानुपाती होता है,[4]

.

समीकरण के बाएँ पक्ष की गणना करने के लिए हमें रिक्की अदिश की विविधताओं की आवश्यकता है और मीट्रिक का निर्धारक, इन्हें नीचे दिए गए मानक पाठ्यपुस्तक गणनाओं द्वारा प्राप्त किया जा सकता है, जो कैरोल (2004) में दी गई गणना पर आधारित है।[5]

रिक्की अदिश का रूपांतर

रिक्की स्केलर की भिन्नता रीमैन वक्रता टेंसर और फिर रिक्की वक्रता टेंसर में भिन्नता से होती है।

प्रथम पद पैलेटिनी पहचान द्वारा अधिकार कर लिया गया है;

.

उत्पाद नियम का उपयोग करते हुए, रिक्की अदिश की भिन्नता इस प्रकार है;

जहां हमने मीट्रिक अनुकूलता का भी उपयोग किया, और योग सूचकांकों का नाम परिवर्तित कर दिया गया अंतिम पद में है।

से गुणा करने पर पद, कुल व्युत्पन्न बन जाता है, चूँकि किसी भी सदिश के लिए, और कोई टेंसर घनत्व के लिए, हमें प्राप्त होता है;

या .

स्टोक्स के प्रमेय के अनुसार, एकीकृत होने पर यह केवल सीमारेखा पद उत्पन्न करता है। सीमारेखा पद सामान्यतः अशून्य है, क्योंकि समाकलन न केवल पर निर्भर करता है, किन्तु इसके आंशिक व्युत्पन्न पर भी निर्भर करता है; विवरण के लिए लेख गिबन्स-हॉकिंग-यॉर्क सीमारेखा पद देखें। चूँकि जब मीट्रिक की भिन्नता सीमारेखा के निकट से लुप्त हो जाता है या जब कोई सीमा नहीं होती है, तो यह पद क्रिया की भिन्नता में योगदान नहीं देता है। इस प्रकार, हम इस पद के विषय में भूल सकते हैं और प्राप्त कर सकते हैं

.

 

 

 

 

(3)

उन घटनाओं पर जो सीमारेखा के समापन में नहीं हैं।

निर्धारक का परिवर्तन

जैकोबी का सूत्र, सारणिक व्युत्पन्न को विभेदित करने का नियम देता है:

,

या किसी समन्वय प्रणाली में परिवर्तित हो सकता है विकर्ण है और फिर मुख्य विकर्ण पर कारकों के उत्पाद को अलग करने के लिए उत्पाद नियम प्रस्तावित किया जाता है। इसके प्रयोग से हमें प्राप्त होता है;

पिछली समानता में हमने इस तथ्य का प्रयोग किया था;

जो आव्यूह के व्युत्क्रम को विभेदित करने के नियम का अनुसरण करता है;

.

इस प्रकार हम यह निष्कर्ष निकालते हैं;

.

 

 

 

 

(4)

गति का समीकरण

अब चूँकि हमारे पास सभी आवश्यक विविधताएँ उपलब्ध हैं, हम मीट्रिक क्षेत्र प्राप्त करने के लिए गति के समीकरण (2) में (3) और (4) सम्मिलित कर सकते हैं;

,

 

 

 

 

(5)

जो आइंस्टीन क्षेत्र समीकरण है, और

इस प्रकार चयनित किया गया है कि गैर-सापेक्षतावादी सीमा न्यूटन के गुरुत्वाकर्षण के नियम का सामान्य रूप उत्पन्न करती है, जहां गुरुत्वाकर्षण स्थिरांक है (विवरण के लिए यहां देखें)।

ब्रह्माण्ड संबंधी स्थिरांक

जब ब्रह्माण्ड संबंधी स्थिरांक Λ को लैग्रेंजियन में सम्मिलित किया जाता है, तो क्रिया इस प्रकार है:

व्युत्क्रम मीट्रिक के संबंध में भिन्नताएँ लेना:

क्रिया सिद्धांत का उपयोग करना:

इस अभिव्यक्ति को प्रथम प्राप्त परिणामों के साथ जोड़ना:

हम प्राप्त कर सकते हैं:

, अभिव्यक्ति ब्रह्माण्ड संबंधी स्थिरांक के साथ क्षेत्र समीकरण बन जाता है:

यह भी देखें

टिप्पणियाँ

  1. Feynman, Richard P. (1995). गुरुत्वाकर्षण पर फेनमैन व्याख्यान. Addison-Wesley. p. 136, eq. (10.1.2). ISBN 0-201-62734-5.
  2. Hilbert, David (1915), "Die Grundlagen der Physik" [Foundations of Physics], Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen – Mathematisch-Physikalische Klasse (in German), 3: 395–407{{citation}}: CS1 maint: unrecognized language (link)
  3. Mehra, Jagdish; Symposium on the Development of the Physicist's Conception of Nature in the 20. Century, eds. (1987). "Einstein, Hilbert, and the Theory of Gravitation". The physicist's conception of nature: Symposium on the Development of the Physicist's Conception of Nature in the 20. Century held at the Internat. Centre for Theoret. Physics, Miramare, Trieste, Italy, 18 - 25 Sept. 1972 (Reprinted ed.). Dordrecht: Reidel. ISBN 978-90-277-2536-3.
  4. Blau, Matthias (July 27, 2020), Lecture Notes on General Relativity (PDF), p. 196
  5. Carroll, Sean M. (2004), Spacetime and Geometry: An Introduction to General Relativity, San Francisco: Addison-Wesley, ISBN 978-0-8053-8732-2

ग्रन्थसूची