मापन समस्या: Difference between revisions
No edit summary |
|||
Line 24: | Line 24: | ||
चौथा दृष्टिकोण [[उद्देश्य-पतन सिद्धांत]] उद्देश्य-पतन मॉडल द्वारा दिया गया है। ऐसे मॉडलों में, श्रोडिंगर समीकरण को संशोधित किया जाता है और गैर-रेखीय शब्द प्राप्त होते हैं। ये अरेखीय संशोधन [[स्टोकेस्टिक]] प्रकृति के हैं और ऐसे व्यवहार की ओर ले जाते हैं जो सूक्ष्म क्वांटम वस्तुओं के लिए होता है, उदाहरण के लिए। इलेक्ट्रॉन या परमाणु, सामान्य श्रोडिंगर समीकरण द्वारा दिए गए माप के बेहद करीब हैं। हालाँकि, स्थूल वस्तुओं के लिए, अरेखीय संशोधन महत्वपूर्ण हो जाता है और तरंग फलन के पतन को प्रेरित करता है। उद्देश्य-पतन मॉडल [[प्रभावी सिद्धांत]] हैं। ऐसा माना जाता है कि स्टोकेस्टिक संशोधन किसी बाहरी गैर-क्वांटम क्षेत्र से उत्पन्न होता है, लेकिन इस क्षेत्र की प्रकृति अज्ञात है। एक संभावित उम्मीदवार डिओसी और [[पेनरोज़ व्याख्या]] के मॉडल में गुरुत्वाकर्षण बातचीत है। अन्य दृष्टिकोणों की तुलना में उद्देश्य-पतन मॉडल का मुख्य अंतर यह है कि वे [[मिथ्याकरणीयता]] की भविष्यवाणी करते हैं जो मानक क्वांटम यांत्रिकी से भिन्न होती हैं। प्रयोग पहले से ही पैरामीटर शासन के करीब पहुंच रहे हैं जहां इन भविष्यवाणियों का परीक्षण किया जा सकता है।<ref>{{cite journal |author = Angelo Bassi | author2 = Kinjalk Lochan | author3 = Seema Satin | author4 = Tejinder P. Singh | author5 = Hendrik Ulbricht |title=तरंग-फ़ंक्शन पतन के मॉडल, अंतर्निहित सिद्धांत और प्रयोगात्मक परीक्षण|journal=[[Reviews of Modern Physics]] |year=2013 |volume=85 | issue = 2 |pages=471–527 |arxiv=1204.4325 |bibcode = 2013RvMP...85..471B |doi = 10.1103/RevModPhys.85.471 | s2cid = 119261020 }}</ref> [[घिरार्डी-रिमिनी-वेबर सिद्धांत]] घिरार्डी-रिमिनी-वेबर (जीआरडब्ल्यू) सिद्धांत का प्रस्ताव है कि तरंग फलन का पतन गतिशीलता के हिस्से के रूप में अनायास होता है। कणों में हर सौ मिलियन वर्ष में एक बार <nowiki>''</nowiki>हिट<nowiki>''</nowiki> होने, या तरंग फलन के सहज पतन से गुजरने की गैर-शून्य संभावना होती है।<ref>Bell, J. S. (2004). "Are there quantum jumps?". Speakable and Unspeakable in Quantum Mechanics: 201–212.</ref> यद्यपि पतन अत्यंत दुर्लभ है, माप प्रणाली में कणों की अत्यधिक संख्या का मतलब है कि सिस्टम में कहीं पतन होने की संभावना अधिक है। चूँकि संपूर्ण माप प्रणाली उलझी हुई है (क्वांटम उलझाव द्वारा), एक कण का पतन पूरे माप उपकरण के पतन की प्रारम्भ करता है। क्योंकि जीआरडब्ल्यू सिद्धांत कुछ स्थितियों में रूढ़िवादी क्वांटम यांत्रिकी से अलग भविष्यवाणियां करता है, यह सख्त अर्थों में क्वांटम यांत्रिकी की व्याख्या नहीं है। | चौथा दृष्टिकोण [[उद्देश्य-पतन सिद्धांत]] उद्देश्य-पतन मॉडल द्वारा दिया गया है। ऐसे मॉडलों में, श्रोडिंगर समीकरण को संशोधित किया जाता है और गैर-रेखीय शब्द प्राप्त होते हैं। ये अरेखीय संशोधन [[स्टोकेस्टिक]] प्रकृति के हैं और ऐसे व्यवहार की ओर ले जाते हैं जो सूक्ष्म क्वांटम वस्तुओं के लिए होता है, उदाहरण के लिए। इलेक्ट्रॉन या परमाणु, सामान्य श्रोडिंगर समीकरण द्वारा दिए गए माप के बेहद करीब हैं। हालाँकि, स्थूल वस्तुओं के लिए, अरेखीय संशोधन महत्वपूर्ण हो जाता है और तरंग फलन के पतन को प्रेरित करता है। उद्देश्य-पतन मॉडल [[प्रभावी सिद्धांत]] हैं। ऐसा माना जाता है कि स्टोकेस्टिक संशोधन किसी बाहरी गैर-क्वांटम क्षेत्र से उत्पन्न होता है, लेकिन इस क्षेत्र की प्रकृति अज्ञात है। एक संभावित उम्मीदवार डिओसी और [[पेनरोज़ व्याख्या]] के मॉडल में गुरुत्वाकर्षण बातचीत है। अन्य दृष्टिकोणों की तुलना में उद्देश्य-पतन मॉडल का मुख्य अंतर यह है कि वे [[मिथ्याकरणीयता]] की भविष्यवाणी करते हैं जो मानक क्वांटम यांत्रिकी से भिन्न होती हैं। प्रयोग पहले से ही पैरामीटर शासन के करीब पहुंच रहे हैं जहां इन भविष्यवाणियों का परीक्षण किया जा सकता है।<ref>{{cite journal |author = Angelo Bassi | author2 = Kinjalk Lochan | author3 = Seema Satin | author4 = Tejinder P. Singh | author5 = Hendrik Ulbricht |title=तरंग-फ़ंक्शन पतन के मॉडल, अंतर्निहित सिद्धांत और प्रयोगात्मक परीक्षण|journal=[[Reviews of Modern Physics]] |year=2013 |volume=85 | issue = 2 |pages=471–527 |arxiv=1204.4325 |bibcode = 2013RvMP...85..471B |doi = 10.1103/RevModPhys.85.471 | s2cid = 119261020 }}</ref> [[घिरार्डी-रिमिनी-वेबर सिद्धांत]] घिरार्डी-रिमिनी-वेबर (जीआरडब्ल्यू) सिद्धांत का प्रस्ताव है कि तरंग फलन का पतन गतिशीलता के हिस्से के रूप में अनायास होता है। कणों में हर सौ मिलियन वर्ष में एक बार <nowiki>''</nowiki>हिट<nowiki>''</nowiki> होने, या तरंग फलन के सहज पतन से गुजरने की गैर-शून्य संभावना होती है।<ref>Bell, J. S. (2004). "Are there quantum jumps?". Speakable and Unspeakable in Quantum Mechanics: 201–212.</ref> यद्यपि पतन अत्यंत दुर्लभ है, माप प्रणाली में कणों की अत्यधिक संख्या का मतलब है कि सिस्टम में कहीं पतन होने की संभावना अधिक है। चूँकि संपूर्ण माप प्रणाली उलझी हुई है (क्वांटम उलझाव द्वारा), एक कण का पतन पूरे माप उपकरण के पतन की प्रारम्भ करता है। क्योंकि जीआरडब्ल्यू सिद्धांत कुछ स्थितियों में रूढ़िवादी क्वांटम यांत्रिकी से अलग भविष्यवाणियां करता है, यह सख्त अर्थों में क्वांटम यांत्रिकी की व्याख्या नहीं है। | ||
== | ==डीकोहेरेंस (असम्बद्धता) की भूमिका== | ||
एरिच जोस और हेंज-डाइटर ज़ेह का दावा है कि क्वांटम डीकोहेरेंस की घटना, जिसे 1980 के दशक में ठोस आधार पर रखा गया था, समस्या का समाधान करती है।<ref>{{cite journal |last1=Joos |first1=E. |last2=Zeh |first2=H. D. |title=पर्यावरण के साथ अंतःक्रिया के माध्यम से शास्त्रीय गुणों का उद्भव|journal=[[Zeitschrift für Physik B]] |date=June 1985 |volume=59 |issue=2 |pages=223–243 |doi=10.1007/BF01725541 |bibcode=1985ZPhyB..59..223J |s2cid=123425824 }}</ref> विचार यह है कि पर्यावरण स्थूल वस्तुओं की चिरसम्मत उपस्थिति का कारण बनता है। ज़ेह आगे दावा करते हैं कि डीकोहेरेंस क्वांटम माइक्रोवर्ल्ड और उस दुनिया के बीच अस्पष्ट सीमा की पहचान करना संभव बनाता है जहां चिरसम्मत अंतर्ज्ञान लागू होता है।<ref name="Zeh">{{cite book |title=क्वांटम सिद्धांत में एक शास्त्रीय दुनिया की विकृति और उपस्थिति|pages= 7 |chapter= Chapter 2: Basic Concepts and Their Interpretation |isbn=3-540-00390-8 |publisher=Springer-Verlag |year=2003 |edition=2nd |editor=E. Joos |author=H. D. Zeh |url=https://books.google.com/books?id=6eTHcxeNxdUC |arxiv=quant-ph/9506020 |bibcode=2003dacw.conf....7Z }}</ref><ref>{{cite journal |last1=Jaeger |first1=Gregg |title=What in the (quantum) world is macroscopic? |journal=[[American Journal of Physics]] |date=September 2014 |volume=82 |issue=9 |pages=896–905 |doi=10.1119/1.4878358 |bibcode= 2014AmJPh..82..896J }}</ref> लगातार इतिहास पर आधारित कोपेनहेगन व्याख्या के कुछ आधुनिक अद्यतनों में क्वांटम डीकोहेरेंस एक महत्वपूर्ण हिस्सा बन गया है।<ref name="Belavkin94">{{cite journal | |||
| author = V. P. Belavkin | | author = V. P. Belavkin | ||
| title= Nondemolition principle of quantum measurement theory | | title= Nondemolition principle of quantum measurement theory | ||
Line 45: | Line 45: | ||
| pages = 1–53 | | pages = 1–53 | ||
| doi = 10.1016/S0079-6727(00)00011-2 | | doi = 10.1016/S0079-6727(00)00011-2 | ||
| arxiv = quant-ph/0512208 |bibcode = 2001PQE....25....1B }}</ref> क्वांटम डीकोहेरेंस तरंग फलन के वास्तविक पतन का वर्णन नहीं करता है, लेकिन यह क्वांटम संभावनाओं (जो | | arxiv = quant-ph/0512208 |bibcode = 2001PQE....25....1B }}</ref> क्वांटम डीकोहेरेंस तरंग फलन के वास्तविक पतन का वर्णन नहीं करता है, लेकिन यह क्वांटम संभावनाओं (जो हस्तक्षेप (तरंग प्रसार) प्रभाव प्रदर्शित करता है) को सामान्य चिरसम्मत संभावनाओं में बदलने की व्याख्या करता है। उदाहरण के लिए देखें, ज़्यूरेक,<ref name="Zurek" /> [[हेंज-डाइटर ज़ेह|ज़ेह]] <ref name="Zeh" />और श्लोशाउर.<ref name="Schlosshauer">{{cite journal | ||
| author = Maximilian Schlosshauer | | author = Maximilian Schlosshauer | ||
| title=Decoherence, the measurement problem, and interpretations of quantum mechanics | | title=Decoherence, the measurement problem, and interpretations of quantum mechanics |
Revision as of 13:58, 29 November 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
क्वांटम यांत्रिकी |
---|
क्वांटम यांत्रिकी में, मापन समस्या यह है कि तरंग फलन पतन कैसे होता है या नहीं। इस तरह के पतन को सीधे देखने में असमर्थता ने क्वांटम यांत्रिकी की विभिन्न व्याख्याओं को उतपति दिया है और प्रश्नों का एक महत्वपूर्ण समूह खड़ा किया है जिसका प्रत्येक व्याख्या को उत्तर देना होगा।
क्वांटम यांत्रिकी में तरंग फलन विभिन्न राज्यों के रैखिक क्वांटम सुपरइम्पोज़िशन के रूप में श्रोडिंगर समीकरण के अनुसार नियतात्मक रूप से विकसित होता है। हालाँकि, वास्तविक माप हमेशा भौतिक प्रणाली को एक निश्चित स्थिति में पाते हैं। तरंग फलन का कोई भी भविष्य का विकास उस स्थिति पर आधारित होता है जिसमें सिस्टम तब खोजा गया था जब माप किया गया था, जिसका अर्थ है कि माप ने सिस्टम में ''कुछ किया'' जो स्पष्ट रूप से श्रोडिंगर विकास का परिणाम नहीं है। मापन समस्या यह वर्णन कर रही है कि ''वह चीज़ क्या है'', कैसे कई संभावित मानों का सुपरपोज़िशन एक एकल मापित मान बन जाता है।
परिस्थितियों को अलग ढंग से व्यक्त करने के लिए (स्टीवन वेनबर्ग की व्याख्या करते हुए),[1][2] श्रोडिंगर तरंग समीकरण किसी भी बाद के समय में तरंग फलन को निर्धारित करता है। यदि पर्यवेक्षकों और उनके माप उपकरण को स्वयं एक नियतात्मक तरंग फलन द्वारा वर्णित किया जाता है, तो हम माप के लिए सटीक परिणामों की भविष्यवाणी क्यों नहीं कर सकते, बल्कि केवल संभावनाओं की भविष्यवाणी कर सकते हैं? एक सामान्य प्रश्न के रूप में: कोई क्वांटम वास्तविकता और चिरसम्मत वास्तविकता के बीच एक पत्राचार कैसे स्थापित कर सकता है?[3]
श्रोडिंगर की बिल्ली
माप की समस्या को स्पष्ट करने के लिए प्रायः उपयोग किया जाने वाला एक विचार प्रयोग श्रोडिंगर की बिल्ली का ''विरोधाभास'' है। यदि कोई क्वांटम घटना, जैसे कि रेडियोधर्मी परमाणु का क्षय, घटित होती है, तो एक बिल्ली को मारने के लिए एक तंत्र की व्यवस्था की जाती है। इस प्रकार एक बड़े पैमाने की वस्तु, बिल्ली का भाग्य, एक क्वांटम वस्तु, परमाणु के भाग्य के साथ क्वांटम उलझाव है। अवलोकन से पहले, श्रोडिंगर समीकरण और कई कण प्रयोगों के अनुसार, परमाणु एक क्वांटम सुपरपोजिशन में है, जो क्षयग्रस्त और अविघटित अवस्थाओं का एक रैखिक संयोजन है, जो समय के साथ विकसित होता है। इसलिए, बिल्ली को भी एक सुपरपोज़िशन में होना चाहिए, राज्यों का एक रैखिक संयोजन जिसे एक ''जीवित बिल्ली'' के रूप में चित्रित किया जा सकता है और जिन राज्यों को एक ''मृत बिल्ली'' के रूप में चित्रित किया जा सकता है। इनमें से प्रत्येक संभावना एक विशिष्ट गैर-शून्य संभाव्यता आयाम से जुड़ी है। हालाँकि, बिल्ली के एकल, विशेष अवलोकन से कोई सुपरपोज़िशन नहीं मिलता है: यह हमेशा या तो एक जीवित बिल्ली, या एक मृत बिल्ली पाता है। माप के बाद बिल्ली निश्चित रूप से जीवित या मृत है। सवाल यह है: संभावनाओं को वास्तविक, अच्छी तरह से परिभाषित चिरसम्मत परिणाम में कैसे परिवर्तित किया जाता है?
व्याख्याएँ
कोपेनहेगन व्याख्या के रूप में प्रायः एक साथ समूहीकृत किए गए विचार सबसे पुराने और, सामूहिक रूप से, शायद क्वांटम यांत्रिकी के बारे में अभी भी सबसे व्यापक रूप से रखे गए दृष्टिकोण हैं।[4][5] एन डेविड मर्मिन ने वाक्यांश गढ़ा ''चुप रहो और हिसाब लगाओ!'' कोपेनहेगन-प्रकार के विचारों को संक्षेप में प्रस्तुत करने के लिए, एक कहावत को प्रायः रिचर्ड फेनमैन के लिए गलत बताया गया और जिसे बाद में मर्मिन ने अपर्याप्त रूप से सूक्ष्म पाया।[6][7]
सामान्यतः, कोपेनहेगन परंपरा में विचार अवलोकन के कार्य में कुछ प्रस्तुत करते हैं जिसके परिणामस्वरूप तरंग फलन ध्वस्त हो जाता है। इस अवधारणा को, हालांकि प्रायः नील्स बोह्र को जिम्मेदार ठहराया जाता है, वर्नर हाइजेनबर्ग के कारण था, जिनके बाद के लेखन ने उनके और बोह्र के बीच उनके सहयोग के दौरान हुई कई असहमतियों को अस्पष्ट कर दिया था और दोनों ने कभी इसका समाधान नहीं किया।[8][9] विचार के इन विद्यालयों में, तरंग कार्यों को क्वांटम प्रणाली के बारे में सांख्यिकीय जानकारी के रूप में माना जा सकता है, और तरंग फलन पतन नए डेटा के जवाब में उस जानकारी को अद्यतन करना है।[10][11] इस प्रक्रिया को वास्तव में कैसे समझा जाए यह विवाद का विषय बना हुआ है।[12]
बोह्र ने एक ऐसी व्याख्या पेश की जो व्यक्तिपरक पर्यवेक्षक, या माप, या पतन से स्वतंत्र है; इसके बजाय, एक ''अपरिवर्तनीय'' या प्रभावी रूप से अपरिवर्तनीय प्रक्रिया क्वांटम सुसंगतता के क्षय का कारण बनती है जो ''अवलोकन'' या ''माप'' का चिरसम्मत व्यवहार प्रदान करती है।[13][14][15][16]
ह्यूग एवरेट की कई-दुनिया की व्याख्या यह सुझाव देकर समस्या को हल करने का प्रयास करती है कि केवल एक तरंग फलन है, पूरे ब्रह्मांड का सुपरपोजिशन, और यह कभी नष्ट नहीं होता है - इसलिए कोई माप समस्या नहीं है। इसके बजाय, माप का कार्य केवल क्वांटम संस्थाओं के बीच एक अंतःक्रिया है, उदाहरण के लिए पर्यवेक्षक, मापने का उपकरण, इलेक्ट्रॉन/पॉज़िट्रॉन इत्यादि, जो एक बड़ी इकाई बनाने के लिए उलझते हैं, उदाहरण के लिए जीवित बिल्ली/खुश वैज्ञानिक। एवरेट ने यह प्रदर्शित करने का भी प्रयास किया कि क्वांटम यांत्रिकी की संभाव्य प्रकृति माप में कैसे दिखाई देगी, इस कार्य को बाद में ब्राइस डेविट द्वारा विस्तारित किया गया। हालाँकि, एवरेटियन कार्यक्रम के समर्थक संभावनाओं की गणना के लिए बोर्न नियम के उपयोग को उचित ठहराने के सही तरीके के बारे में अभी तक आम सहमति पर नहीं पहुँच पाए हैं।[17][18]
डी ब्रोगली-बोहम सिद्धांत माप समस्या को बहुत अलग तरीके से हल करने का प्रयास करता है: सिस्टम का वर्णन करने वाली जानकारी में न केवल तरंग फलन सम्मिलित है, बल्कि कण (कणों) की स्थिति बताने वाला पूरक डेटा (एक प्रक्षेपवक्र) भी सम्मिलित है। तरंग फलन की भूमिका कणों के लिए वेग क्षेत्र उत्पन्न करना है। ये वेग ऐसे हैं कि कण के लिए संभाव्यता वितरण रूढ़िवादी क्वांटम यांत्रिकी की भविष्यवाणियों के अनुरूप रहता है। डी ब्रोगली-बोहम सिद्धांत के अनुसार, माप प्रक्रिया के दौरान पर्यावरण के साथ बातचीत कॉन्फ़िगरेशन स्थान में तरंग पैकेट को अलग करती है, जहां से स्पष्ट तरंग फलन पतन होता है, भले ही कोई वास्तविक पतन न हो।[19]
चौथा दृष्टिकोण उद्देश्य-पतन सिद्धांत उद्देश्य-पतन मॉडल द्वारा दिया गया है। ऐसे मॉडलों में, श्रोडिंगर समीकरण को संशोधित किया जाता है और गैर-रेखीय शब्द प्राप्त होते हैं। ये अरेखीय संशोधन स्टोकेस्टिक प्रकृति के हैं और ऐसे व्यवहार की ओर ले जाते हैं जो सूक्ष्म क्वांटम वस्तुओं के लिए होता है, उदाहरण के लिए। इलेक्ट्रॉन या परमाणु, सामान्य श्रोडिंगर समीकरण द्वारा दिए गए माप के बेहद करीब हैं। हालाँकि, स्थूल वस्तुओं के लिए, अरेखीय संशोधन महत्वपूर्ण हो जाता है और तरंग फलन के पतन को प्रेरित करता है। उद्देश्य-पतन मॉडल प्रभावी सिद्धांत हैं। ऐसा माना जाता है कि स्टोकेस्टिक संशोधन किसी बाहरी गैर-क्वांटम क्षेत्र से उत्पन्न होता है, लेकिन इस क्षेत्र की प्रकृति अज्ञात है। एक संभावित उम्मीदवार डिओसी और पेनरोज़ व्याख्या के मॉडल में गुरुत्वाकर्षण बातचीत है। अन्य दृष्टिकोणों की तुलना में उद्देश्य-पतन मॉडल का मुख्य अंतर यह है कि वे मिथ्याकरणीयता की भविष्यवाणी करते हैं जो मानक क्वांटम यांत्रिकी से भिन्न होती हैं। प्रयोग पहले से ही पैरामीटर शासन के करीब पहुंच रहे हैं जहां इन भविष्यवाणियों का परीक्षण किया जा सकता है।[20] घिरार्डी-रिमिनी-वेबर सिद्धांत घिरार्डी-रिमिनी-वेबर (जीआरडब्ल्यू) सिद्धांत का प्रस्ताव है कि तरंग फलन का पतन गतिशीलता के हिस्से के रूप में अनायास होता है। कणों में हर सौ मिलियन वर्ष में एक बार ''हिट'' होने, या तरंग फलन के सहज पतन से गुजरने की गैर-शून्य संभावना होती है।[21] यद्यपि पतन अत्यंत दुर्लभ है, माप प्रणाली में कणों की अत्यधिक संख्या का मतलब है कि सिस्टम में कहीं पतन होने की संभावना अधिक है। चूँकि संपूर्ण माप प्रणाली उलझी हुई है (क्वांटम उलझाव द्वारा), एक कण का पतन पूरे माप उपकरण के पतन की प्रारम्भ करता है। क्योंकि जीआरडब्ल्यू सिद्धांत कुछ स्थितियों में रूढ़िवादी क्वांटम यांत्रिकी से अलग भविष्यवाणियां करता है, यह सख्त अर्थों में क्वांटम यांत्रिकी की व्याख्या नहीं है।
डीकोहेरेंस (असम्बद्धता) की भूमिका
एरिच जोस और हेंज-डाइटर ज़ेह का दावा है कि क्वांटम डीकोहेरेंस की घटना, जिसे 1980 के दशक में ठोस आधार पर रखा गया था, समस्या का समाधान करती है।[22] विचार यह है कि पर्यावरण स्थूल वस्तुओं की चिरसम्मत उपस्थिति का कारण बनता है। ज़ेह आगे दावा करते हैं कि डीकोहेरेंस क्वांटम माइक्रोवर्ल्ड और उस दुनिया के बीच अस्पष्ट सीमा की पहचान करना संभव बनाता है जहां चिरसम्मत अंतर्ज्ञान लागू होता है।[23][24] लगातार इतिहास पर आधारित कोपेनहेगन व्याख्या के कुछ आधुनिक अद्यतनों में क्वांटम डीकोहेरेंस एक महत्वपूर्ण हिस्सा बन गया है।[25][26] क्वांटम डीकोहेरेंस तरंग फलन के वास्तविक पतन का वर्णन नहीं करता है, लेकिन यह क्वांटम संभावनाओं (जो हस्तक्षेप (तरंग प्रसार) प्रभाव प्रदर्शित करता है) को सामान्य चिरसम्मत संभावनाओं में बदलने की व्याख्या करता है। उदाहरण के लिए देखें, ज़्यूरेक,[3] ज़ेह [23]और श्लोशाउर.[27]
वर्तमान स्थिति धीरे-धीरे स्पष्ट हो रही है, जिसका वर्णन श्लॉशाउर द्वारा 2006 के एक लेख में इस प्रकार किया गया है:[28]
संभावनाओं के अर्थ को स्पष्ट करने और जन्मे नियम पर पहुंचने के लिए अतीत में कई असंगत-असंबंधित प्रस्ताव सामने रखे गए हैं... यह कहना उचित है कि इसकी सफलता के बारे में कोई निर्णायक निष्कर्ष नहीं निकला है। ये व्युत्पत्तियाँ. ... जैसा कि सर्वविदित है, [बोहर के कई पेपर चिरसम्मत अवधारणाओं की मौलिक भूमिका पर जोर देते हैं]। तेजी से बड़ी लंबाई के पैमाने पर मैक्रोस्कोपिक रूप से अलग-अलग राज्यों के सुपरपोजिशन के लिए प्रयोगात्मक साक्ष्य इस तरह के सिद्धांत का खंडन करते हैं। सुपरपोज़िशन नवीन और व्यक्तिगत रूप से विद्यमान अवस्थाएँ प्रतीत होती हैं, प्रायः बिना किसी चिरसम्मत समकक्ष के। केवल प्रणालियों के बीच भौतिक अंतःक्रिया ही प्रत्येक विशेष प्रणाली के दृष्टिकोण से चिरसम्मत अवस्थाओं में एक विशेष अपघटन का निर्धारण करती है। इस प्रकार चिरसम्मत अवधारणाओं को सापेक्ष-स्थिति के अर्थ में स्थानीय रूप से उभरने के रूप में समझा जाना चाहिए और अब भौतिक सिद्धांत में मौलिक भूमिका का दावा नहीं करना चाहिए।
यह भी देखें
विषय में सम्मिलित गणित के अधिक तकनीकी उपचार के लिए, क्वांटम यांत्रिकी में मापन देखें।
- पूर्ण समय और स्थान
- निर्माता सिद्धांत
- आइंस्टीन के विचार प्रयोग
- ईपीआर विरोधाभास
- ग्लीसन का प्रमेय
- प्रेक्षक प्रभाव (भौतिकी)
- प्रेक्षक (क्वांटम भौतिकी)
- भौतिकी का दर्शन
- क्वांटम अनुभूति
- क्वांटम छद्म टेलीपैथी
- क्वांटम ज़ेनो प्रभाव
- विग्नर का दोस्त
सन्दर्भ और नोट्स
- ↑ Weinberg, Steven (1998). "The Great Reduction: Physics in the Twentieth Century". In Michael Howard & William Roger Louis (eds.). बीसवीं सदी का ऑक्सफोर्ड इतिहास. Oxford University Press. p. 26. ISBN 0-19-820428-0.
- ↑ Weinberg, Steven (November 2005). "आइंस्टीन की गलतियाँ". Physics Today. 58 (11): 31–35. Bibcode:2005PhT....58k..31W. doi:10.1063/1.2155755. S2CID 120594692.
- ↑ 3.0 3.1 Zurek, Wojciech Hubert (22 May 2003). "डिकोहेरेंस, ईइन्सेलेक्शन, और शास्त्रीय की क्वांटम उत्पत्ति". Reviews of Modern Physics. 75 (3): 715–775. arXiv:quant-ph/0105127. Bibcode:2003RvMP...75..715Z. doi:10.1103/RevModPhys.75.715. S2CID 14759237.
- ↑ Schlosshauer, Maximilian; Kofler, Johannes; Zeilinger, Anton (August 2013). "क्वांटम यांत्रिकी के प्रति मूलभूत दृष्टिकोण का एक स्नैपशॉट". Studies in History and Philosophy of Science Part B. 44 (3): 222–230. arXiv:1301.1069. Bibcode:2013SHPMP..44..222S. doi:10.1016/j.shpsb.2013.04.004. S2CID 55537196.
- ↑ Ball, Philip (2013). "क्वांटम सिद्धांत का क्या अर्थ है, इस बारे में विशेषज्ञ अभी भी विभाजित हैं". Nature. doi:10.1038/nature.2013.12198. S2CID 124012568.
- ↑ Mermin, N. David (1989). "What's Wrong with this Pillow?". Physics Today. 42 (4): 9. Bibcode:1989PhT....42d...9D. doi:10.1063/1.2810963.
- ↑ Mermin, N. David (2004). "Could Feynman have said this?". Physics Today. 57 (5): 10–11. Bibcode:2004PhT....57e..10M. doi:10.1063/1.1768652.
- ↑ Howard, Don (December 2004). "Who Invented the "Copenhagen Interpretation"? A Study in Mythology". Philosophy of Science (in English). 71 (5): 669–682. doi:10.1086/425941. ISSN 0031-8248. S2CID 9454552.
- ↑ Camilleri, Kristian (May 2009). "कोपेनहेगन व्याख्या के मिथक का निर्माण". Perspectives on Science (in English). 17 (1): 26–57. doi:10.1162/posc.2009.17.1.26. ISSN 1063-6145. S2CID 57559199.
- ↑ Englert, Berthold-Georg (2013-11-22). "क्वांटम सिद्धांत पर". The European Physical Journal D (in English). 67 (11): 238. arXiv:1308.5290. Bibcode:2013EPJD...67..238E. doi:10.1140/epjd/e2013-40486-5. ISSN 1434-6079. S2CID 119293245.
- ↑ Peierls, Rudolf (1991). ""माप" के बचाव में". Physics World (in English). 4 (1): 19–21. doi:10.1088/2058-7058/4/1/19. ISSN 2058-7058.
- ↑ Healey, Richard (2016). "Quantum-Bayesian and Pragmatist Views of Quantum Theory". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University.
- ↑ John Bell (1990), "Against 'measurement'", Physics World, 3 (8): 33–41, doi:10.1088/2058-7058/3/8/26
- ↑ Niels Bohr (1985) [May 16, 1947], Jørgen Kalckar (ed.), Niels Bohr: Collected Works, vol. 6: Foundations of Quantum Physics I (1926-1932), pp. 451–454
- ↑ Stig Stenholm (1983), "To fathom space and time", in Pierre Meystre (ed.), Quantum Optics, Experimental Gravitation, and Measurement Theory, Plenum Press, p. 121,
The role of irreversibility in the theory of measurement has been emphasized by many. Only this way can a permanent record be obtained. The fact that separate pointer positions must be of the asymptotic nature usually associated with irreversibility has been utilized in the measurement theory of Daneri, Loinger and Prosperi (1962). It has been accepted as a formal representation of Bohr's ideas by Rosenfeld (1966).
- ↑ Fritz Haake (April 1, 1993), "Classical motion of meter variables in the quantum theory of measurement", Physical Review A, 47 (4): 2506–2517, Bibcode:1993PhRvA..47.2506H, doi:10.1103/PhysRevA.47.2506, PMID 9909217
- ↑ Kent, Adrian (2010). "One world versus many: the inadequacy of Everettian accounts of evolution, probability, and scientific confirmation". Many Worlds?. Oxford University Press. pp. 307–354. arXiv:0905.0624. ISBN 9780199560561. OCLC 696602007.
- ↑ Barrett, Jeffrey (2018). "Everett's Relative-State Formulation of Quantum Mechanics". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University.
- ↑ Sheldon, Goldstein (2017). "Bohmian Mechanics". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University.
- ↑ Angelo Bassi; Kinjalk Lochan; Seema Satin; Tejinder P. Singh; Hendrik Ulbricht (2013). "तरंग-फ़ंक्शन पतन के मॉडल, अंतर्निहित सिद्धांत और प्रयोगात्मक परीक्षण". Reviews of Modern Physics. 85 (2): 471–527. arXiv:1204.4325. Bibcode:2013RvMP...85..471B. doi:10.1103/RevModPhys.85.471. S2CID 119261020.
- ↑ Bell, J. S. (2004). "Are there quantum jumps?". Speakable and Unspeakable in Quantum Mechanics: 201–212.
- ↑ Joos, E.; Zeh, H. D. (June 1985). "पर्यावरण के साथ अंतःक्रिया के माध्यम से शास्त्रीय गुणों का उद्भव". Zeitschrift für Physik B. 59 (2): 223–243. Bibcode:1985ZPhyB..59..223J. doi:10.1007/BF01725541. S2CID 123425824.
- ↑ 23.0 23.1 H. D. Zeh (2003). "Chapter 2: Basic Concepts and Their Interpretation". In E. Joos (ed.). क्वांटम सिद्धांत में एक शास्त्रीय दुनिया की विकृति और उपस्थिति (2nd ed.). Springer-Verlag. p. 7. arXiv:quant-ph/9506020. Bibcode:2003dacw.conf....7Z. ISBN 3-540-00390-8.
- ↑ Jaeger, Gregg (September 2014). "What in the (quantum) world is macroscopic?". American Journal of Physics. 82 (9): 896–905. Bibcode:2014AmJPh..82..896J. doi:10.1119/1.4878358.
- ↑ V. P. Belavkin (1994). "Nondemolition principle of quantum measurement theory". Foundations of Physics. 24 (5): 685–714. arXiv:quant-ph/0512188. Bibcode:1994FoPh...24..685B. doi:10.1007/BF02054669. S2CID 2278990.
- ↑ V. P. Belavkin (2001). "Quantum noise, bits and jumps: uncertainties, decoherence, measurements and filtering". Progress in Quantum Electronics. 25 (1): 1–53. arXiv:quant-ph/0512208. Bibcode:2001PQE....25....1B. doi:10.1016/S0079-6727(00)00011-2.
- ↑ Maximilian Schlosshauer (2005). "Decoherence, the measurement problem, and interpretations of quantum mechanics". Reviews of Modern Physics. 76 (4): 1267–1305. arXiv:quant-ph/0312059. Bibcode:2004RvMP...76.1267S. doi:10.1103/RevModPhys.76.1267. S2CID 7295619.
- ↑ Maximilian Schlosshauer (January 2006). "न्यूनतम नो-पतन क्वांटम यांत्रिकी में प्रायोगिक प्रेरणा और अनुभवजन्य स्थिरता". Annals of Physics. 321 (1): 112–149. arXiv:quant-ph/0506199. Bibcode:2006AnPhy.321..112S. doi:10.1016/j.aop.2005.10.004. S2CID 55561902.