ग्लूऑन फ़ील्ड स्ट्रेंथ टेंसर: Difference between revisions

From Vigyanwiki
Line 88: Line 88:
===विद्युतचुंबकीय टेंसर के साथ तुलना===
===विद्युतचुंबकीय टेंसर के साथ तुलना===


यह लगभग [[विद्युत चुम्बकीय क्षेत्र टेंसर]] के समानांतर है (जिसे भी दर्शाया गया है)। {{math|''F'' }}) [[क्वांटम इलेक्ट्रोडायनामिक्स]] में, [[विद्युत चुम्बकीय चार-क्षमता]] द्वारा दिया गया {{math|''A''}} स्पिन-1 फोटॉन का वर्णन करना;
यह क्वांटम इलेक्ट्रोडायनामिक्स में इलेक्ट्रोमैग्नेटिक फील्ड टेंसर (जिसे {{math|''F'' }} भी कहा जाता है) के लगभग समानांतर है, जो स्पिन-1 फोटॉन का वर्णन करने वाले इलेक्ट्रोमैग्नेटिक चार-क्षमता {{math|''A''}} द्वारा दिया गया है;


:<math>F_{\alpha\beta}=\partial_{\alpha}A_{\beta}-\partial_{\beta}A_{\alpha}\,,</math>
:<math>F_{\alpha\beta}=\partial_{\alpha}A_{\beta}-\partial_{\beta}A_{\alpha}\,,</math>
Line 94: Line 94:


:<math>\mathbf{F} = \mathrm{d}\mathbf{A}\,.</math>
:<math>\mathbf{F} = \mathrm{d}\mathbf{A}\,.</math>
क्वांटम इलेक्ट्रोडायनामिक्स और क्वांटम क्रोमोडायनामिक्स के बीच मुख्य अंतर यह है कि ग्लूऑन क्षेत्र की ताकत में अतिरिक्त शब्द होते हैं जो ग्लूऑन और एसिम्प्टोटिक स्वतंत्रता के बीच आत्म-अंतर्क्रिया को जन्म देते हैं। यह मजबूत बल की एक जटिलता है जो इसे स्वाभाविक रूप से गैर-रैखिक प्रणाली बनाती है | गैर-रैखिक, विद्युत चुम्बकीय बल के रैखिक सिद्धांत के विपरीत। क्यूसीडी एक [[गैर-एबेलियन गेज सिद्धांत]] है। [[समूह सिद्धांत]] | समूह-सैद्धांतिक भाषा में गैर-एबेलियन शब्द का अर्थ है कि समूह संचालन क्रमविनिमेय संपत्ति नहीं है, जो संबंधित बीजगणित को गैर-तुच्छ बनाता है।
क्वांटम इलेक्ट्रोडायनामिक्स और क्वांटम क्रोमोडायनामिक्स के बीच मुख्य अंतर यह है कि ग्लूऑन क्षेत्र की ताकत में अतिरिक्त शर्तें होती हैं जो ग्लूऑन और एसिम्प्टोटिक स्वतंत्रता के बीच आत्म-अंतःक्रिया को उत्त्पन करती हैं। यह विद्युत चुम्बकीय बल के रैखिक सिद्धांत के विपरीत, मजबूत बल की एक जटिलता है जो इसे स्वाभाविक रूप से गैर-रैखिक बनाती है। क्यूसीडी एक गैर-एबेलियन गेज सिद्धांत है। समूह-सैद्धांतिक भाषा में नॉन-एबेलियन शब्द का अर्थ है कि समूह संचालन क्रमविनिमेय नहीं है, जिससे संबंधित लाई बीजगणित निरर्थक हो जाता है।


==क्यूसीडी लैग्रेंजियन घनत्व==
==क्यूसीडी लैग्रेंजियन घनत्व==


{{see also|Classical field theory}}
{{see also|क्लासिकल फील्ड थ्योरी}}


क्षेत्र सिद्धांतों की विशेषता, क्षेत्र की ताकत की गतिशीलता को उपयुक्त [[लैग्रेंजियन घनत्व]] द्वारा संक्षेपित किया जाता है और यूलर-लैग्रेंज समीकरण (फ़ील्ड के लिए) में प्रतिस्थापन से गति का समीकरण प्राप्त होता है#तरंगों और क्षेत्रों के लिए एनालॉग। ग्लूऑन द्वारा बंधे द्रव्यमान रहित क्वार्क के लिए लैग्रेंजियन घनत्व है:<ref name="Greiner, Schäfer"/>
क्षेत्र सिद्धांतों की विशेषता, क्षेत्र की ताकत की गतिशीलता को उपयुक्त लैग्रेंजियन घनत्व द्वारा संक्षेपित किया जाता है और यूलर-लैग्रेंज समीकरण (क्षेत्रों के लिए) में प्रतिस्थापन से क्षेत्र के लिए गति का समीकरण प्राप्त होता है। ग्लूऑन द्वारा बंधे द्रव्यमान रहित क्वार्क के लिए लैग्रेंजियन घनत्व है:<ref name="Greiner, Schäfer"/>


:<math>\mathcal{L}=-\frac{1}{2}\mathrm{tr}\left(G_{\alpha\beta}G^{\alpha\beta}\right)+ \bar{\psi}\left(iD_\mu \right)\gamma^\mu\psi </math>
:<math>\mathcal{L}=-\frac{1}{2}\mathrm{tr}\left(G_{\alpha\beta}G^{\alpha\beta}\right)+ \bar{\psi}\left(iD_\mu \right)\gamma^\mu\psi </math>
जहां tr [[ट्रेस (रैखिक बीजगणित)]] को दर्शाता है {{gaps|3|×|3}} आव्यूह {{math|''G<sub>αβ</sub>G<sup>αβ</sup>''}}, और {{math|''γ<sup>μ</sup>''}} हैं {{gaps|4|×|4}} [[गामा मैट्रिक्स]]। फर्मिओनिक शब्द में <math>i\bar{\psi}\left(iD_\mu\right)\gamma^{\mu}\psi</math>, रंग और स्पिनर दोनों सूचकांक दबा दिए जाते हैं। स्पष्ट सूचकांकों के साथ, <math>\psi_{i,\alpha}</math> जहाँ <math>i=1,\ldots ,3</math> रंग सूचकांक हैं और <math>\alpha=1,\ldots,4</math> डिराक स्पिनर सूचकांक हैं।
जहां "tr" 3×3 मैट्रिक्स {{math|''G<sub>αβ</sub>G<sup>αβ</sup>''}} के ट्रेस को दर्शाता है, और {{math|''γ<sup>μ</sup>''}} 4×4 गामा मैट्रिक्स हैं। फर्मिओनिक शब्द <math>i\bar{\psi}\left(iD_\mu\right)\gamma^{\mu}\psi</math> में, रंग और स्पिनर दोनों सूचकांक दबा दिए जाते हैं। स्पष्ट सूचकांकों के साथ, <math>\psi_{i,\alpha}</math> जहां <math>i=1,\ldots ,3</math> रंग सूचकांक हैं और <math>\alpha=1,\ldots,4</math> डिराक स्पिनर सूचकांक हैं।


==गेज परिवर्तन==
==गेज परिवर्तन==


{{main|Gauge theory}}
{{main|गेज सिद्धांत}}


QED के विपरीत, ग्लूऑन फ़ील्ड स्ट्रेंथ टेंसर अपने आप में गेज अपरिवर्तनीय नहीं है। सभी सूचकांकों पर अनुबंधित केवल दो का उत्पाद ही गेज अपरिवर्तनीय है।<!--- to be filled in later, specifically for the gluon field strength tensor --->
क्यूईडी के विपरीत, ग्लूऑन फ़ील्ड स्ट्रेंथ टेंसर स्वयं गेज अपरिवर्तनीय नहीं है। केवल दो अनुबंधों का उत्पाद सभी सूचकांकों पर गेज अपरिवर्तनीय है।
==गति के समीकरण==
==गति के समीकरण==


एक शास्त्रीय क्षेत्र सिद्धांत के रूप में माना जाता है, गति के समीकरण<ref name="Yagi, Hatsuda, Miake"/>क्वार्क फ़ील्ड हैं:
एक चिरसमत क्षेत्र सिद्धांत के रूप में माने जाने पर,<ref name="Yagi, Hatsuda, Miake"/> क्वार्क क्षेत्रों के लिए गति के समीकरण हैं:


:<math>( i\hbar \gamma^\mu D_\mu - mc ) \psi = 0 </math>
:<math>( i\hbar \gamma^\mu D_\mu - mc ) \psi = 0 </math>
Line 118: Line 118:


:<math>\left[D_\mu , G^{\mu\nu} \right] = g_\text{s} j^\nu </math>
:<math>\left[D_\mu , G^{\mu\nu} \right] = g_\text{s} j^\nu </math>
जो [[मैक्सवेल समीकरण]]ों के समान हैं (जब टेंसर नोटेशन में लिखा जाता है)। अधिक विशेष रूप से, ये क्वार्क और ग्लूऑन क्षेत्रों के लिए यांग-मिल्स सिद्धांत|यांग-मिल्स समीकरण हैं। रंग चार्ज [[चार-वर्तमान]] ग्लूऑन क्षेत्र शक्ति टेंसर का स्रोत है, जो विद्युत चुम्बकीय टेंसर के स्रोत के रूप में विद्युत चुम्बकीय चार-धारा के अनुरूप है। यह द्वारा दिया गया है
जो मैक्सवेल समीकरणों के समान हैं (जब टेन्सर नोटेशन में लिखे गए हैं)। विशेष रूप से, ये क्वार्क और ग्लूऑन क्षेत्रों के लिए यांग-मिल्स समीकरण हैं। रंग आवेश चार-धारा ग्लूऑन क्षेत्र शक्ति टेंसर का स्रोत है, जो विद्युत चुम्बकीय टेंसर के स्रोत के रूप में विद्युत चुम्बकीय चार-धारा के अनुरूप है। यह द्वारा दिया जाता है


:<math>j^\nu = t^b  j_b^\nu \,, \quad j_b^\nu = \bar{\psi}\gamma^\nu t^b  \psi,</math>
:<math>j^\nu = t^b  j_b^\nu \,, \quad j_b^\nu = \bar{\psi}\gamma^\nu t^b  \psi,</math>
Line 125: Line 125:
:<math>D_\nu j^\nu = 0 \,.</math>
:<math>D_\nu j^\nu = 0 \,.</math>
==यह भी देखें==
==यह भी देखें==
*[[क्वार्क कारावास]]
*क्वॉर्क परिरोध
*गेल-मैन मैट्रिसेस
*गेल-मैन मैट्रिसेस
*[[क्षेत्र (भौतिकी)]]
*[[क्षेत्र (भौतिकी)]]
Line 134: Line 134:
*वेस-ज़ुमिनो गेज
*वेस-ज़ुमिनो गेज
*[[क्वांटम क्रोमोडायनामिक्स बाइंडिंग एनर्जी]]
*[[क्वांटम क्रोमोडायनामिक्स बाइंडिंग एनर्जी]]
*[[घुंघराले कलन]]
*रिक्की कैलकुलस
*विशेष एकात्मक समूह
*विशेष एकात्मक समूह



Revision as of 15:16, 1 December 2023

सैद्धांतिक कण भौतिकी में, ग्लूऑन फ़ील्ड स्ट्रेंथ टेंसर एक दूसरे क्रम का टेंसर फ़ील्ड है जो क्वार्कों के बीच ग्लूऑन इंटरैक्शन की विशेषता बताता है।

मजबूत अंतःक्रिया प्रकृति की मूलभूत अंतःक्रियाओं में से एक है, और इसका वर्णन करने के लिए क्वांटम क्षेत्र सिद्धांत (क्यूएफटी) को क्वांटम क्रोमोडायनामिक्स (क्यूसीडी) कहा जाता है। क्वार्क ग्लूऑन द्वारा मध्यस्थ अपने रंग आवेश के कारण मजबूत बल द्वारा एक दूसरे के साथ बातचीत करते हैं। ग्लून्स में स्वयं रंग आवेश होता है और वे परस्पर परस्पर क्रिया कर सकते हैं।

ग्लूऑन फ़ील्ड स्ट्रेंथ टेंसर क्रोमोडायनामिकल एसयू (3) गेज समूह के सहायक बंडल में मूल्यों के साथ स्पेसटाइम पर एक रैंक 2 टेंसर फ़ील्ड है (आवश्यक परिभाषाओं के लिए वेक्टर बंडल देखें)।

कन्वेंशन

इस पूरे लेख में, लैटिन सूचकांक (आमतौर पर a, b, c, n) आठ ग्लूऑन रंग आवेशों के लिए मान 1, 2, ..., 8 लेते हैं, जबकि ग्रीक सूचकांक (आमतौर पर α, β, μ, ν) टाइमलाइक घटकों के लिए मान 0 लें और चार-वेक्टर और चार-आयामी स्पेसटाइम टेंसर के स्पेसलाइक घटकों के लिए 1, 2, 3 लें। सभी समीकरणों में, सभी रंगों और टेंसर सूचकांकों पर संक्षेपण कन्वेंशन का उपयोग किया जाता है, जब तक कि पाठ स्पष्ट रूप से यह नहीं बताता कि कोई योग नहीं लिया जाना है (जैसे कि "कोई योग नहीं")।

परिभाषा

परिभाषाओं के नीचे (और अधिकांश संकेतन) के. यागी, टी. हत्सुडा, वाई. मियाके[1] और ग्रीनर, शेफ़र का अनुसरण करते हैं।[2]

टेन्सर घटक

टेंसर को G, (या F, F, या कुछ प्रकार) से दर्शाया जाता है, और इसके घटक क्वार्क सहसंयोजक व्युत्पन्न Dμ के कम्यूटेटर के आनुपातिक रूप से परिभाषित होते हैं:[2][3]

जहाँ:

जिसमें

  • i काल्पनिक इकाई है;
  • gs प्रबल बल का युग्मन स्थिरांक है;
  • ta = λa/2 गेल-मैन मैट्रिक्स हैं λa 2 से विभाजित;
  • a SU(3) के आसन्न प्रतिनिधित्व में एक रंग सूचकांक है जो समूह के आठ जेनरेटर, अर्थात् गेल-मैन मैट्रिसेस के लिए मान 1, 2, ..., 8 लेता है;
  • μ एक स्पेसटाइम इंडेक्स है, टाइमलाइक घटकों के लिए 0 और स्पेसलाइक घटकों के लिए 1, 2, 3 है;
  • ग्लूऑन फ़ील्ड, एक स्पिन-1 गेज फ़ील्ड या, विभेदक-ज्यामितीय भाषा में, SU(3) प्रिंसिपल बंडल में एक कनेक्शन को व्यक्त करता है;
  • इसके चार (समन्वय-प्रणाली पर निर्भर) घटक हैं, जो एक निश्चित गेज में 3×3 ट्रेसलेस हर्मिटियन मैट्रिक्स-मूल्यवान फ़ंक्शन हैं, जबकि 32 वास्तविक-मूल्यवान फ़ंक्शन हैं, आठ चार-वेक्टर फ़ील्ड में से प्रत्येक के लिए चार घटक।

विभिन्न लेखक अलग-अलग संकेत चुनते हैं।

कम्यूटेटर का विस्तार देता है;

को प्रतिस्थापित करना और गेल-मान मैट्रिक्स के लिए रूपान्तरण संबंध का उपयोग करना (सूचकांकों की पुनः लेबलिंग के साथ), जिसमें f abc SU(3) के संरचना स्थिरांक हैं, प्रत्येक ग्लूऑन क्षेत्र शक्ति घटकों को गेल-मैन मैट्रिसेस के रैखिक संयोजन के रूप में निम्नानुसार व्यक्त किया जा सकता है:

इसलिए कि::[4][5]

जहाँ फिर से a, b, c = 1, 2, ..., 8 रंग सूचकांक हैं। ग्लूऑन क्षेत्र की तरह, एक विशिष्ट समन्वय प्रणाली और निश्चित गेज में Gαβ 3×3 ट्रेसलेस हर्मिटियन मैट्रिक्स-मूल्यवान फ़ंक्शन हैं, जबकि Gaαβ वास्तविक-मूल्यवान फ़ंक्शन हैं, आठ चार-आयामी दूसरे क्रम टेंसर फ़ील्ड के घटक हैं।

विभेदक रूप

ग्लूऑन रंग क्षेत्र को विभेदक रूपों की भाषा का उपयोग करके वर्णित किया जा सकता है, विशेष रूप से एक सहायक बंडल-मूल्यवान वक्रता 2-रूप के रूप में (ध्यान दें कि आसन्न बंडल के फाइबर su(3) लाई बीजगणित हैं);

जहां ग्लूऑन फ़ील्ड है, G और के अनुरूप एक वेक्टर क्षमता 1-फ़ॉर्म इस बीजगणित का (एंटीसिमेट्रिक) वेज उत्पाद है, जो संरचना स्थिरांक f abc का उत्पादन करता है। फ़ील्ड फॉर्म का कार्टन-व्युत्पन्न (अर्थात अनिवार्य रूप से फ़ील्ड का विचलन) "ग्लूऑन शर्तों" की अनुपस्थिति में शून्य होगा, अर्थात जो SU(3) के गैर-एबेलियन चरित्र का प्रतिनिधित्व करता है।

इन्हीं विचारों की गणितीय रूप से अधिक औपचारिक व्युत्पत्ति (लेकिन थोड़ी बदली हुई सेटिंग) मीट्रिक कनेक्शन पर लेख में पाई जा सकती है।

विद्युतचुंबकीय टेंसर के साथ तुलना

यह क्वांटम इलेक्ट्रोडायनामिक्स में इलेक्ट्रोमैग्नेटिक फील्ड टेंसर (जिसे F भी कहा जाता है) के लगभग समानांतर है, जो स्पिन-1 फोटॉन का वर्णन करने वाले इलेक्ट्रोमैग्नेटिक चार-क्षमता A द्वारा दिया गया है;

या विभेदक रूपों की भाषा में:

क्वांटम इलेक्ट्रोडायनामिक्स और क्वांटम क्रोमोडायनामिक्स के बीच मुख्य अंतर यह है कि ग्लूऑन क्षेत्र की ताकत में अतिरिक्त शर्तें होती हैं जो ग्लूऑन और एसिम्प्टोटिक स्वतंत्रता के बीच आत्म-अंतःक्रिया को उत्त्पन करती हैं। यह विद्युत चुम्बकीय बल के रैखिक सिद्धांत के विपरीत, मजबूत बल की एक जटिलता है जो इसे स्वाभाविक रूप से गैर-रैखिक बनाती है। क्यूसीडी एक गैर-एबेलियन गेज सिद्धांत है। समूह-सैद्धांतिक भाषा में नॉन-एबेलियन शब्द का अर्थ है कि समूह संचालन क्रमविनिमेय नहीं है, जिससे संबंधित लाई बीजगणित निरर्थक हो जाता है।

क्यूसीडी लैग्रेंजियन घनत्व

क्षेत्र सिद्धांतों की विशेषता, क्षेत्र की ताकत की गतिशीलता को उपयुक्त लैग्रेंजियन घनत्व द्वारा संक्षेपित किया जाता है और यूलर-लैग्रेंज समीकरण (क्षेत्रों के लिए) में प्रतिस्थापन से क्षेत्र के लिए गति का समीकरण प्राप्त होता है। ग्लूऑन द्वारा बंधे द्रव्यमान रहित क्वार्क के लिए लैग्रेंजियन घनत्व है:[2]

जहां "tr" 3×3 मैट्रिक्स GαβGαβ के ट्रेस को दर्शाता है, और γμ 4×4 गामा मैट्रिक्स हैं। फर्मिओनिक शब्द में, रंग और स्पिनर दोनों सूचकांक दबा दिए जाते हैं। स्पष्ट सूचकांकों के साथ, जहां रंग सूचकांक हैं और डिराक स्पिनर सूचकांक हैं।

गेज परिवर्तन

क्यूईडी के विपरीत, ग्लूऑन फ़ील्ड स्ट्रेंथ टेंसर स्वयं गेज अपरिवर्तनीय नहीं है। केवल दो अनुबंधों का उत्पाद सभी सूचकांकों पर गेज अपरिवर्तनीय है।

गति के समीकरण

एक चिरसमत क्षेत्र सिद्धांत के रूप में माने जाने पर,[1] क्वार्क क्षेत्रों के लिए गति के समीकरण हैं:

जो डिराक समीकरण की तरह है, और ग्लूऑन (गेज) क्षेत्रों के लिए गति के समीकरण हैं:

जो मैक्सवेल समीकरणों के समान हैं (जब टेन्सर नोटेशन में लिखे गए हैं)। विशेष रूप से, ये क्वार्क और ग्लूऑन क्षेत्रों के लिए यांग-मिल्स समीकरण हैं। रंग आवेश चार-धारा ग्लूऑन क्षेत्र शक्ति टेंसर का स्रोत है, जो विद्युत चुम्बकीय टेंसर के स्रोत के रूप में विद्युत चुम्बकीय चार-धारा के अनुरूप है। यह द्वारा दिया जाता है

जो एक संरक्षित धारा है क्योंकि रंग आवेश संरक्षित है। दूसरे शब्दों में, रंग चार-धारा को निरंतरता समीकरण को संतुष्ट करना चाहिए:

यह भी देखें

संदर्भ

टिप्पणियाँ

  1. 1.0 1.1 Yagi, K.; Hatsuda, T.; Miake, Y. (2005). Quark-Gluon Plasma: From Big Bang to Little Bang. Cambridge monographs on particle physics, nuclear physics, and cosmology. Vol. 23. Cambridge University Press. pp. 17–18. ISBN 978-0-521-561-082.
  2. 2.0 2.1 2.2 Greiner, W.; Schäfer, G. (1994). "4". क्वांटम क्रोमोडायनामिक्स. Springer. ISBN 978-3-540-57103-2.
  3. Bilson-Thompson, S.O.; Leinweber, D.B.; Williams, A.G. (2003). "Highly improved lattice field-strength tensor". Annals of Physics. 304 (1): 1–21. arXiv:hep-lat/0203008. Bibcode:2003AnPhy.304....1B. doi:10.1016/s0003-4916(03)00009-5. S2CID 119385087.
  4. M. Eidemüller; H.G. Dosch; M. Jamin (2000) [1999]. "The field strength correlator from QCD sum rules". Nucl. Phys. B Proc. Suppl. Heidelberg, Germany. 86 (1–3): 421–425. arXiv:hep-ph/9908318. Bibcode:2000NuPhS..86..421E. doi:10.1016/S0920-5632(00)00598-3.
  5. M. Shifman (2012). Advanced Topics in Quantum Field Theory: A Lecture Course. Cambridge University Press. ISBN 978-0521190848.


अग्रिम पठन

किताबें

चयनित कागजात

बाहरी संबंध