एन के मॉडल: Difference between revisions
(Created page with "{{context|date=April 2021}} एनके मॉडल एक गणितीय मॉडल है जिसे इसके प्राथमिक आविष्कार...") |
m (Arti Shah moved page एनसी मॉडल to एन के मॉडल without leaving a redirect) |
(No difference)
|
Revision as of 16:14, 1 December 2023
This article provides insufficient context for those unfamiliar with the subject.April 2021) (Learn how and when to remove this template message) ( |
एनके मॉडल एक गणितीय मॉडल है जिसे इसके प्राथमिक आविष्कारक स्टुअर्ट कॉफ़मैन ने एक ट्यूनेबल बीहड़ फिटनेस परिदृश्य के रूप में वर्णित किया है। ट्यून करने योग्य असभ्यता इस अंतर्ज्ञान को पकड़ती है कि परिदृश्य के समग्र आकार और इसकी स्थानीय पहाड़ियों और घाटियों की संख्या दोनों को इसके दो मापदंडों में परिवर्तन के माध्यम से समायोजित किया जा सकता है, और , साथ विकास की एक श्रृंखला की लंबाई होने के नाते और भूदृश्य की असभ्यता के स्तर का निर्धारण।
एनके मॉडल ने विभिन्न प्रकार के क्षेत्रों में आवेदन पाया है, जिसमें विकासवादी जीव विज्ञान, इम्मुनोलोगि , संयुक्त अनुकूलन, तकनीकी विकास और जटिल प्रणालियों का सैद्धांतिक अध्ययन शामिल है। मॉडल को [[संगठनात्मक सिद्धांत]] में भी अपनाया गया था, जहां इसका उपयोग यह वर्णन करने के लिए किया जाता है कि कैसे एक एजेंट-आधारित मॉडल स्वयं की विभिन्न विशेषताओं में हेरफेर करके एक परिदृश्य की खोज कर सकता है। उदाहरण के लिए, एक एजेंट एक संगठन हो सकता है, पहाड़ियाँ और घाटियाँ लाभ (अर्थशास्त्र) (या उसमें परिवर्तन) का प्रतिनिधित्व करती हैं, और परिदृश्य पर आंदोलन के लिए संगठनात्मक निर्णयों की आवश्यकता होती है (जैसे कि उत्पाद लाइनें जोड़ना या संगठनात्मक संरचना में बदलाव करना), जो बातचीत करते हैं एक दूसरे के साथ और जटिल तरीके से लाभ को प्रभावित करते हैं।[1] मॉडल का प्रारंभिक संस्करण, जिसे केवल सबसे सहज माना जाता था () और सबसे ऊबड़-खाबड़ () परिदृश्य, कॉफ़मैन और लेविन (1987) में प्रस्तुत किया गया था।[2] जिस मॉडल को वर्तमान में जाना जाता है वह पहली बार कॉफ़मैन और वेनबर्गर (1989) में दिखाई दिया।[3] मॉडल ने कॉम्बिनेटरियल ऑप्टिमाइज़ेशन में व्यापक ध्यान आकर्षित किया है, इसका एक कारण यह है कि यह तथाकथित एनपी-पूर्ण समस्या का एक विशेष रूप से सरल उदाहरण है।[4] जिसका अर्थ है कि वैश्विक ऑप्टिमा खोजना कठिन है। हाल ही में, यह दिखाया गया कि K > 1 के लिए NK मॉडल भी PLS (जटिलता)|PLS-पूर्ण है[5] जिसका मतलब है कि, सामान्य तौर पर, स्थानीय फिटनेस ऑप्टिमा भी ढूंढना मुश्किल है। ओपन-एंडेड विकास के अध्ययन के लिए इसके परिणाम हैं।
प्रोटोटाइपिक उदाहरण: प्लाज्मिड फिटनेस
प्लास्मिड कुछ कोशिकाओं के अंदर डीएनए का एक छोटा चक्र है जो अपने मेजबान कोशिकाओं से स्वतंत्र रूप से दोहरा सकता है। मान लीजिए हम प्लास्मिड की उपयुक्तता का अध्ययन करना चाहते हैं।
सरलता के लिए, हम एक प्लास्मिड को हमेशा एक ही क्रम में एन संभावित जीन की अंगूठी के रूप में मॉडल करते हैं, और प्रत्येक में दो संभावित अवस्थाएं हो सकती हैं (सक्रिय या निष्क्रिय, प्रकार एक्स या प्रकार वाई, आदि...)। फिर प्लास्मिड को लंबाई एन के साथ एक बाइनरी कोड स्ट्रिंग द्वारा मॉडल किया जाता है, और इसी तरह फिटनेस फ़ंक्शन होता है .
सबसे सरल मॉडल में जीन एक-दूसरे के साथ बातचीत नहीं करेंगे, और इसलिए हम प्राप्त करते हैं
एपिस्टासिस को मॉडल करने के लिए, हम एक अन्य कारक K का परिचय देते हैं, अन्य जीनों की संख्या जिनके साथ एक जीन इंटरैक्ट करता है। यह मानना उचित है कि एक प्लास्मिड पर, दो जीन परस्पर क्रिया करते हैं यदि वे आसन्न हों, इस प्रकार देते हैं
एनके मॉडल मनमाने ढंग से परिमित K, N की अनुमति देकर, साथ ही जीन की आसन्नता की मनमानी परिभाषा की अनुमति देकर इसे सामान्य बनाता है (जीन आवश्यक रूप से एक वृत्त या रेखा खंड पर स्थित नहीं होते हैं)।
गणितीय परिभाषा
एनके मॉडल एक संयोजन चरण स्थान को परिभाषित करता है, जिसमें लंबाई की प्रत्येक स्ट्रिंग (किसी दिए गए वर्णमाला से चुनी गई) शामिल होती है . इस खोज स्थान में प्रत्येक स्ट्रिंग के लिए, एक अदिश (गणित) मान (जिसे फिटनेस कार्य कहा जाता है) परिभाषित किया गया है। यदि तारों के बीच एक दूरी मीट्रिक (गणित) परिभाषित की जाती है, तो परिणामी संरचना एक परिदृश्य है।
फिटनेस मूल्यों को मॉडल के विशिष्ट अवतार के अनुसार परिभाषित किया गया है, लेकिन एनके मॉडल की मुख्य विशेषता यह है कि किसी दिए गए स्ट्रिंग की फिटनेस प्रत्येक स्थान से योगदान का योग है स्ट्रिंग में:
और सामान्यतः प्रत्येक लोकस का योगदान उसकी स्थिति और स्थिति पर निर्भर करता है अन्य लोकी,:
कहाँ का सूचकांक है ठिकाने का पड़ोसी .
इसलिए, फिटनेस फ़ंक्शन लंबाई K + 1 और स्केलर के तारों के बीच एक मानचित्र (गणित) है, जिसे वेनबर्गर का बाद का काम फिटनेस योगदान कहता है। ऐसे फिटनेस योगदानों को अक्सर कुछ निर्दिष्ट संभाव्यता वितरण से यादृच्छिक रूप से चुना जाता है।
उदाहरण: कांच घूमाओ मॉडल
स्पिन ग्लास का 1D आइसिंग मॉडल आमतौर पर इस प्रकार लिखा जाता है
हम इसे K=1 के साथ NK मॉडल के एक विशेष मामले के रूप में दोबारा तैयार कर सकते हैं:
चूँकि K मोटे तौर पर फिटनेस परिदृश्य की असभ्यता को मापता है (नीचे देखें), हम देखते हैं कि जैसे-जैसे आइसिंग मॉडल का आयाम बढ़ता है, इसकी असभ्यता भी बढ़ती है।
कब , यह एडवर्ड्स-एंडरसन मॉडल है, जो बिल्कुल हल करने योग्य है।
शेरिंगटन-किर्कपैट्रिक मॉडल स्पिन के सभी संभावित जोड़े को इंटरैक्ट करने की इजाजत देकर आइसिंग मॉडल को सामान्यीकृत करता है (जाली ग्राफ के बजाय, पूर्ण ग्राफ का उपयोग करें), इस प्रकार यह एक एनके मॉडल भी है .
केवल जोड़ों के बजाय, स्पिन के सभी संभावित अनुक्रमों को इंटरैक्ट करने की अनुमति देकर, हम अनंत-श्रेणी मॉडल प्राप्त करते हैं, जो एक एनके मॉडल भी है .
ट्यून करने योग्य टोपोलॉजी
K का मान NK मॉडल में एपिस्टासिस की डिग्री को नियंत्रित करता है, या अन्य लोकी किसी दिए गए लोकस के फिटनेस योगदान को कितना प्रभावित करते हैं। K = 0 के साथ, किसी दिए गए स्ट्रिंग की फिटनेस लोकी के व्यक्तिगत योगदान का एक सरल योग है: गैर-तुच्छ फिटनेस कार्यों के लिए, एक वैश्विक इष्टतम मौजूद है और इसका पता लगाना आसान है (यदि f(0) > f(1) तो सभी 0 का जीनोम ), या सभी 1 यदि f(1) > f(0)). गैर-शून्य K के लिए, एक स्ट्रिंग की फिटनेस सबस्ट्रिंग की फिटनेस का योग है, जो सिस्टम की ज्यामितीय हताशा के साथ बातचीत कर सकती है (ऊपर के उदाहरण में इष्टतम फिटनेस कैसे प्राप्त करें, इस पर विचार करें)। इस प्रकार K बढ़ने से फिटनेस परिदृश्य की कठोरता बढ़ जाती है।
तटस्थ स्थानों के साथ भिन्नताएं
नंगे एनके मॉडल तटस्थ स्थान की घटना का समर्थन नहीं करता है - अर्थात, एकल उत्परिवर्तन द्वारा जुड़े जीनोम के सेट जिनका फिटनेस मूल्य समान है। आणविक विकास के इस तटस्थ सिद्धांत को शामिल करने के लिए दो अनुकूलन प्रस्तावित किए गए हैं। एनकेपी मॉडल एक पैरामीटर पेश करता है : एक अनुपात की फिटनेस योगदान शून्य पर सेट है, जिससे कई आनुवंशिक रूपांकनों का योगदान ख़राब हो जाता है[citation needed]. एनकेक्यू मॉडल एक पैरामीटर पेश करता है और संभावित फिटनेस योगदान मूल्यों पर विवेकाधिकार लागू करता है ताकि प्रत्येक योगदान में से एक हो संभावित मूल्य, फिर से कुछ आनुवंशिक रूपांकनों के योगदान में गिरावट का परिचय देते हैं[citation needed]. नंगे एनके मॉडल से मेल खाता है और इन मापदंडों के तहत मामले।
ज्ञात परिणाम
1991 में, वेनबर्गर ने एक विस्तृत विश्लेषण प्रकाशित किया[6] जिस मामले में और फिटनेस योगदान को यादृच्छिक रूप से चुना जाता है। स्थानीय ऑप्टिमा की संख्या का उनका विश्लेषणात्मक अनुमान बाद में त्रुटिपूर्ण पाया गया[citation needed]. हालाँकि, वेनबर्गर के विश्लेषण में शामिल संख्यात्मक प्रयोग उनके विश्लेषणात्मक परिणाम का समर्थन करते हैं कि एक स्ट्रिंग की अपेक्षित फिटनेस आम तौर पर लगभग माध्य के साथ वितरित की जाती है
और लगभग का एक भिन्नता
.
अनुप्रयोग
एनके मॉडल को कई क्षेत्रों में उपयोग मिला है, जिसमें चश्मा घुमाओ का अध्ययन, सामूहिक समस्या समाधान,[7] विकासवादी जीव विज्ञान में एपिस्टासिस और pleiotropy, और कॉम्बिनेटरियल अनुकूलन।
संदर्भ
- ↑ Levinthal, D. A. (1997). "ऊबड़-खाबड़ परिदृश्यों पर अनुकूलन". Management Science. 43 (7): 934–950. doi:10.1287/mnsc.43.7.934.
- ↑ Kauffman, S.; Levin, S. (1987). "ऊबड़-खाबड़ भूदृश्यों पर अनुकूली चलने के एक सामान्य सिद्धांत की ओर". Journal of Theoretical Biology. 128 (1): 11–45. Bibcode:1987JThBi.128...11K. doi:10.1016/s0022-5193(87)80029-2. PMID 3431131.
- ↑ Kauffman, S.; Weinberger, E. (1989). "बीहड़ फिटनेस परिदृश्य का एनके मॉडल और प्रतिरक्षा प्रतिक्रिया की परिपक्वता के लिए इसका अनुप्रयोग". Journal of Theoretical Biology. 141 (2): 211–245. Bibcode:1989JThBi.141..211K. doi:10.1016/s0022-5193(89)80019-0. PMID 2632988.
- ↑ Weinberger, E. (1996), "NP-completeness of Kauffman's N-k model, a Tuneably Rugged Fitness Landscape", Santa Fe Institute Working Paper, 96-02-003.
- ↑ Kaznatcheev, Artem (2019). "विकास पर अंतिम बाधा के रूप में कम्प्यूटेशनल जटिलता". Genetics. 212 (1): 245–265. doi:10.1534/genetics.119.302000. PMC 6499524. PMID 30833289.
- ↑ Weinberger, Edward (November 15, 1991). "Local properties of Kauffman's N-k model: A tunably rugged energy landscape". Physical Review A. 10. 44 (10): 6399–6413. Bibcode:1991PhRvA..44.6399W. doi:10.1103/physreva.44.6399. PMID 9905770.
- ↑ Boroomand, A. and Smaldino, P.E., 2021. Hard Work, Risk-Taking, and Diversity in a Model of Collective Problem Solving. Journal of Artificial Societies and Social Simulation, 24(4).