डिरिक्लेट समाकलन: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
<math display="block">\int_0^\infty \frac{\sin x}{x} \,dx = \frac{\pi}{2}.</math> | <math display="block">\int_0^\infty \frac{\sin x}{x} \,dx = \frac{\pi}{2}.</math> | ||
यह समाकलन पूर्णतया अभिसारी नहीं है, अर्थात् <math>\left| \frac{\sin x}{x} \right|</math> धनात्मक वास्तविक रेखा पर अनंत लेब्सग्यू या रीमैन अनुचित समाकलन है, इसलिए साइन फलन धनात्मक वास्तविक रेखा पर लेब्सग्यू पूर्णांक नहीं है। चूंकि, सिन फलन अनुचित [[ रीमैन अभिन्न |रीमैन]] समाकलन या सामान्यीकृत रीमैन या हेनस्टॉक-कुर्जवील समाकलन के अर्थ में एकीकृत है।<ref>{{cite journal |last=Bartle |first=Robert G. |author-link=Robert G. Bartle |date=10 June 1996 |title=रीमैन इंटीग्रल को लौटें|url=http://math.tut.fi/courses/73129/Bartle.pdf |journal=The American Mathematical Monthly |volume=103 |issue=8 |pages=625–632 |doi=10.2307/2974874 |jstor=2974874}}</ref><ref>{{Cite book|last=Bartle|first=Robert G.|title=वास्तविक विश्लेषण का परिचय|url=https://archive.org/details/introductiontore00bart_903|url-access=limited|last2=Sherbert|first2=Donald R.|publisher=John Wiley & Sons|year=2011|isbn=978-0-471-43331-6|pages=[https://archive.org/details/introductiontore00bart_903/page/n325 311]|chapter=Chapter 10: The Generalized Riemann Integral}}</ref> इसे | यह समाकलन पूर्णतया अभिसारी नहीं है, अर्थात् <math>\left| \frac{\sin x}{x} \right|</math> धनात्मक वास्तविक रेखा पर अनंत लेब्सग्यू या रीमैन अनुचित समाकलन है, इसलिए साइन फलन धनात्मक वास्तविक रेखा पर लेब्सग्यू पूर्णांक नहीं है। चूंकि, सिन फलन अनुचित [[ रीमैन अभिन्न |रीमैन]] समाकलन या सामान्यीकृत रीमैन या हेनस्टॉक-कुर्जवील समाकलन के अर्थ में एकीकृत है।<ref>{{cite journal |last=Bartle |first=Robert G. |author-link=Robert G. Bartle |date=10 June 1996 |title=रीमैन इंटीग्रल को लौटें|url=http://math.tut.fi/courses/73129/Bartle.pdf |journal=The American Mathematical Monthly |volume=103 |issue=8 |pages=625–632 |doi=10.2307/2974874 |jstor=2974874}}</ref><ref>{{Cite book|last=Bartle|first=Robert G.|title=वास्तविक विश्लेषण का परिचय|url=https://archive.org/details/introductiontore00bart_903|url-access=limited|last2=Sherbert|first2=Donald R.|publisher=John Wiley & Sons|year=2011|isbn=978-0-471-43331-6|pages=[https://archive.org/details/introductiontore00bart_903/page/n325 311]|chapter=Chapter 10: The Generalized Riemann Integral}}</ref> इसे डिरिचलेट के अनुचित समाकलन के परीक्षण का उपयोग करके देखा जा सकता है। | ||
यह निश्चित समाकलन के मूल्यांकन के लिए विशेष तकनीकों का अच्छा उदाहरण है, अधिकांशतः जब एकीकृत के लिए प्राथमिक [[ antiderivative |प्रतिअवकलन]] की कमी के कारण गणना के मौलिक प्रमेय को प्रत्यक्ष प्रयुक्त करना उपयोगी नहीं होता है, [[साइन इंटीग्रल|साइन]] समाकलन के रूप में, साइन फलन का प्रतिअवकलन , कोई [[प्राथमिक कार्य]] नहीं है इस स्थिति में, अनुचित निश्चित समाकलन को विभिन्न विधियों से निर्धारित किया जा सकता है: लाप्लास समाकलित साइन कंटूर समाकलन और डिरिचलेट कर्नेल के अनुसार अंतर करते हुए दोहरा समाकलन को परिवर्तित कर देता है। | यह निश्चित समाकलन के मूल्यांकन के लिए विशेष तकनीकों का अच्छा उदाहरण है, अधिकांशतः जब एकीकृत के लिए प्राथमिक [[ antiderivative |प्रतिअवकलन]] की कमी के कारण गणना के मौलिक प्रमेय को प्रत्यक्ष प्रयुक्त करना उपयोगी नहीं होता है, [[साइन इंटीग्रल|साइन]] समाकलन के रूप में, साइन फलन का प्रतिअवकलन , कोई [[प्राथमिक कार्य]] नहीं है इस स्थिति में, अनुचित निश्चित समाकलन को विभिन्न विधियों से निर्धारित किया जा सकता है: लाप्लास समाकलित साइन कंटूर समाकलन और डिरिचलेट कर्नेल के अनुसार अंतर करते हुए दोहरा समाकलन को परिवर्तित कर देता है। | ||
Line 14: | Line 14: | ||
=== लाप्लास परिवर्तन === | === लाप्लास परिवर्तन === | ||
मान लीजिए कि <math>f(t)</math> एक फलन है जिसे <math>t \geq 0.</math> द्वारा परिभाषित किया गया है | मान लीजिए कि <math>f(t)</math> एक फलन है जिसे <math>t \geq 0.</math> द्वारा परिभाषित किया गया है तब इसका लाप्लास रूपांतरण द्वारा दिया जाता है | ||
<math display="block">\mathcal{L} \{f(t)\} = F(s) = \int_{0}^{\infty} e^{-st} f(t) \,dt,</math> | <math display="block">\mathcal{L} \{f(t)\} = F(s) = \int_{0}^{\infty} e^{-st} f(t) \,dt,</math> | ||
यदि समाकलन उपस्थित है.<ref>{{Cite book |last=Zill|first=Dennis G. |title=सीमा-मूल्य समस्याओं के साथ विभेदक समीकरण|url=https://archive.org/details/differentialequa00zill_769|url-access=limited|last2=Wright|first2=Warren S. |publisher=Cengage Learning |year=2013 |isbn=978-1-111-82706-9|pages=[https://archive.org/details/differentialequa00zill_769/page/n323 274]-5 |chapter=Chapter 7: The Laplace Transform}}</ref> लाप्लास रूपांतरण का गुण या अनुचित समाकलन का मूल्यांकन करना है | यदि समाकलन उपस्थित है.<ref>{{Cite book |last=Zill|first=Dennis G. |title=सीमा-मूल्य समस्याओं के साथ विभेदक समीकरण|url=https://archive.org/details/differentialequa00zill_769|url-access=limited|last2=Wright|first2=Warren S. |publisher=Cengage Learning |year=2013 |isbn=978-1-111-82706-9|pages=[https://archive.org/details/differentialequa00zill_769/page/n323 274]-5 |chapter=Chapter 7: The Laplace Transform}}</ref> लाप्लास रूपांतरण का गुण या अनुचित समाकलन का मूल्यांकन करना है | ||
Line 20: | Line 20: | ||
</math>किन्तु <math>\lim_{t \to 0} \frac{f(t)}{t}</math> उपस्थित हो | </math>किन्तु <math>\lim_{t \to 0} \frac{f(t)}{t}</math> उपस्थित हो | ||
निम्नलिखित में, किसी को परिणाम <math>\mathcal{L}\{\sin t\} = \frac{1}{s^2 + 1},</math> की आवश्यकता होती है जो फलन <math>\sin t</math> का लाप्लास रूपांतरण है (व्युत्पत्ति के लिए 'समाकलन साइन के अंतर्गत विभेदीकरण' अनुभाग देखें) साथ ही एबेल के प्रमेय का संस्करण (अंतिम मान प्रमेय का परिणाम या अनुचित रूप से पूर्णांकित कार्यों के लिए अंतिम मान प्रमेय (समाकलन के लिए एबेल का प्रमेय))। | |||
निम्नलिखित में, किसी को परिणाम <math>\mathcal{L}\{\sin t\} = \frac{1}{s^2 + 1},</math> की आवश्यकता होती है | |||
इसलिए, | इसलिए, | ||
Line 40: | Line 39: | ||
लाप्लास रूपांतरण का उपयोग करके डिरिचलेट समाकलन का मूल्यांकन करना समाकलन के क्रम (गणना) को परिवर्तित करके उसी दोहरे निश्चित समाकलन की गणना करने के समान है, अर्थात्, | लाप्लास रूपांतरण का उपयोग करके डिरिचलेट समाकलन का मूल्यांकन करना समाकलन के क्रम (गणना) को परिवर्तित करके उसी दोहरे निश्चित समाकलन की गणना करने के समान है, अर्थात्, | ||
<math display="block"> | <math display="block"> | ||
\left( I_1 = \int_0^\infty \int _0^\infty e^{-st} \sin t \,dt \,ds \right) = \left( I_2 = \int_0^\infty \int _0^\infty e^{-st} \sin t \,ds \,dt \right),</math> | \left( I_1 = \int_0^\infty \int _0^\infty e^{-st} \sin t \,dt \,ds \right) = \left( I_2 = \int_0^\infty \int _0^\infty e^{-st} \sin t \,ds \,dt \right),</math><math display="block">\left( I_1 = \int_0^\infty \frac{1}{s^2 + 1} \,ds = \frac{\pi}{2} \right) = \left( I_2 = \int_0^\infty \frac{\sin t}{t} \,dt \right), \text{ provided } s > 0. | ||
<math display="block">\left( I_1 = \int_0^\infty \frac{1}{s^2 + 1} \,ds = \frac{\pi}{2} \right) = \left( I_2 = \int_0^\infty \frac{\sin t}{t} \,dt \right), \text{ provided } s > 0. | |||
</math> | </math> | ||
आदेश में परिवर्तन इस तथ्य से स्पष्ट है कि सभी के लिए <math>s > 0</math>, समाकलन पूर्णतः अभिसरण है। | आदेश में परिवर्तन इस तथ्य से स्पष्ट है कि सभी के लिए <math>s > 0</math>, समाकलन पूर्णतः अभिसरण है। | ||
Line 70: | Line 68: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
<math>s</math> के संबंध में समाकलन | <math>s</math> के संबंध में समाकलन देता है | ||
<math display="block">f(s) = \int \frac{-ds}{s^2 + 1} = A - \arctan s,</math> | <math display="block">f(s) = \int \frac{-ds}{s^2 + 1} = A - \arctan s,</math> | ||
जहां <math>A</math> समाकलन का एक स्थिरांक है जिसे निर्धारित किया जाना है। चूँकि | जहां <math>A</math> समाकलन का एक स्थिरांक है जिसे निर्धारित किया जाना है। चूँकि <math>\lim_{s \to \infty} f(s) = 0,</math> <math>A = \lim_{s \to \infty} \arctan s = \frac{\pi}{2},</math> मूल मान का उपयोग कर रहा है। इसका कारण यह है कि <math>s > 0</math> के लिए | ||
<math display="block">f(s) = \frac{\pi}{2} - \arctan s.</math> | <math display="block">f(s) = \frac{\pi}{2} - \arctan s.</math> | ||
अंत में <math>s = 0,</math> पर सततता से हमारे निकट पहले की तरह <math>f(0) = \frac{\pi}{2} - \arctan(0) = \frac{\pi}{2},</math> है। | अंत में <math>s = 0,</math> पर सततता से हमारे निकट पहले की तरह <math>f(0) = \frac{\pi}{2} - \arctan(0) = \frac{\pi}{2},</math> है। | ||
Line 83: | Line 81: | ||
<math display="block">g(z) = \frac{e^{iz}}{z + i\varepsilon}.</math> | <math display="block">g(z) = \frac{e^{iz}}{z + i\varepsilon}.</math> | ||
ध्रुव को ऋणात्मक काल्पनिक अक्ष पर ले जाया गया है जिससे <math>g(z)</math> को <math>z = 0</math> पर केन्द्रित त्रिज्या <math>z = 0</math> के अर्धवृत्त <math>\gamma</math> के साथ धनात्मक काल्पनिक दिशा में विस्तार करते हुए एकीकृत किया जा सके और वास्तविक अक्ष के साथ संवृत किया जा सके। अवशेष प्रमेय <math>\varepsilon \to 0.</math> द्वारा सम्मिश्र समाकलन शून्य है, पुनः एक सीमा <math>\gamma</math> लेता है<math display="block">0 = \int_\gamma g(z) \,dz = \int_{-R}^R \frac{e^{ix}}{x + i\varepsilon} \, dx + \int_0^\pi \frac{e^{i(Re^{i\theta} + \theta)}}{Re^{i\theta} + i\varepsilon} iR \, d\theta.</math> | ध्रुव को ऋणात्मक काल्पनिक अक्ष पर ले जाया गया है जिससे <math>g(z)</math> को <math>z = 0</math> पर केन्द्रित त्रिज्या <math>z = 0</math> के अर्धवृत्त <math>\gamma</math> के साथ धनात्मक काल्पनिक दिशा में विस्तार करते हुए एकीकृत किया जा सके और वास्तविक अक्ष के साथ संवृत किया जा सके। अवशेष प्रमेय <math>\varepsilon \to 0.</math> द्वारा सम्मिश्र समाकलन शून्य है, पुनः एक सीमा <math>\gamma</math> लेता है<math display="block">0 = \int_\gamma g(z) \,dz = \int_{-R}^R \frac{e^{ix}}{x + i\varepsilon} \, dx + \int_0^\pi \frac{e^{i(Re^{i\theta} + \theta)}}{Re^{i\theta} + i\varepsilon} iR \, d\theta.</math> | ||
जैसे ही <math>R</math> अनंत तक जाता है, दूसरा पद लुप्त हो जाता है। जहां तक पहले समाकलन का है, कोई सम्मिश्र-मान | जैसे ही <math>R</math> अनंत तक जाता है, दूसरा पद लुप्त हो जाता है। जहां तक पहले समाकलन का है, कोई सम्मिश्र-मान फलन {{mvar|f}} के लिए वास्तविक रेखा पर समाकलन के लिए सोखोटस्की-प्लेमेलज प्रमेय के एक संस्करण का उपयोग कर सकता है और वास्तविक रेखा और वास्तविक स्थिरांक <math>a</math> और <math>b</math> पर <math>a < 0 < b</math> एक खोज के साथ सतत भिन्न हो सकता है। | ||
<math display="block">\lim_{\varepsilon \to 0^+} \int_a^b \frac{f(x)}{x \pm i \varepsilon} \,dx = \mp i \pi f(0) + \mathcal{P} \int_a^b \frac{f(x)}{x} \,dx,</math> | <math display="block">\lim_{\varepsilon \to 0^+} \int_a^b \frac{f(x)}{x \pm i \varepsilon} \,dx = \mp i \pi f(0) + \mathcal{P} \int_a^b \frac{f(x)}{x} \,dx,</math> | ||
जहाँ <math>\mathcal{P}</math> [[कॉची प्रमुख मूल्य|कॉची प्रमुख]] मान को दर्शाता है। उपरोक्त मूल गणना पर पुनः कोई भी लिख सकता है | जहाँ <math>\mathcal{P}</math> [[कॉची प्रमुख मूल्य|कॉची प्रमुख]] मान को दर्शाता है। उपरोक्त मूल गणना पर पुनः कोई भी लिख सकता है | ||
Line 91: | Line 89: | ||
अंत में, | अंत में, | ||
<math display="block">\lim_{\varepsilon \to 0} \int_\varepsilon^\infty \frac{\sin(x)}{x} \, dx = \int_0^\infty \frac{\sin(x)}{x} \, dx = \frac \pi 2.</math> | <math display="block">\lim_{\varepsilon \to 0} \int_\varepsilon^\infty \frac{\sin(x)}{x} \, dx = \int_0^\infty \frac{\sin(x)}{x} \, dx = \frac \pi 2.</math> | ||
वैकल्पिक रूप से, <math>f</math> के लिए समाकलन कंटूर के रूप में त्रिज्या | वैकल्पिक रूप से, <math>f</math> के लिए समाकलन कंटूर के रूप में त्रिज्या <math>\varepsilon</math> और <math>R</math> के ऊपरी अर्ध-समतल अर्धवृत्तों के मिलन को वास्तविक रेखा के दो खंडों के साथ चुनें जो उन्हें जोड़ते हैं। एक ओर कंटूर समाकलन <math>\varepsilon</math> और <math>R;</math> से स्वतंत्र रूप से शून्य है, दूसरी ओर <math>\varepsilon \to 0</math> और <math>R \to \infty</math> समाकलित का काल्पनिक भाग <math>2 I + \Im\big(\ln 0 - \ln(\pi i)\big) = 2I - \pi</math> में परिवर्तित होता है (यहां <math>\ln z</math> ऊपरी अर्ध तल पर लघुगणक की कोई शाखा है) जो <math>I = \frac{\pi}{2}.</math> की ओर ले जाता है | ||
Line 143: | Line 141: | ||
\left. \frac{1-\cos(x)}{x}\right|_a^b + \int_a^b \frac{1-\cos(x)}{x^2}dx | \left. \frac{1-\cos(x)}{x}\right|_a^b + \int_a^b \frac{1-\cos(x)}{x^2}dx | ||
</math> | </math> | ||
अब चूँकि | अब चूँकि <math>a \to 0</math> और <math> b \to \infty</math> बाईं ओर का शब्द बिना किसी समस्या के अभिसरण करता है। त्रिकोणमितीय फलनों की सीमाओं की सूची देखें। अब हम दिखाते हैं कि<math> \int_{-\infty}^{\infty} \frac{1-\cos(x)}{x^2}dx </math> पूर्णतः समाकलनीय है, जिसका अर्थ है कि सीमा उपस्थित है<ref>{{cite report |url=http://ramanujan.math.trinity.edu/rdaileda/teach/m4342f10/improper_integrals.pdf |title=अनुचित इंटीग्रल|author=R.C. Daileda}}</ref>सर्व प्रथम, हम मूल के निकट समाकलन को बाउंड करते हैं। शून्य के बारे में कोसाइन के टेलर-श्रृंखला विस्तार का उपयोग करते हुए, | ||
<math display="block"> | <math display="block"> |
Revision as of 19:11, 11 December 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
गणित में, विभिन्न समाकलन हैं जिन्हें जर्मन गणितज्ञ पीटर गुस्ताव लेज्यून डिरिचलेट के पश्चात् डिरिचलेट समाकलन के नाम से जाना जाता है, जिनमें से धनात्मक वास्तविक रेखा पर सिन फलन का अनुचित समाकलन है:
यह निश्चित समाकलन के मूल्यांकन के लिए विशेष तकनीकों का अच्छा उदाहरण है, अधिकांशतः जब एकीकृत के लिए प्राथमिक प्रतिअवकलन की कमी के कारण गणना के मौलिक प्रमेय को प्रत्यक्ष प्रयुक्त करना उपयोगी नहीं होता है, साइन समाकलन के रूप में, साइन फलन का प्रतिअवकलन , कोई प्राथमिक कार्य नहीं है इस स्थिति में, अनुचित निश्चित समाकलन को विभिन्न विधियों से निर्धारित किया जा सकता है: लाप्लास समाकलित साइन कंटूर समाकलन और डिरिचलेट कर्नेल के अनुसार अंतर करते हुए दोहरा समाकलन को परिवर्तित कर देता है।
मूल्यांकन
लाप्लास परिवर्तन
मान लीजिए कि एक फलन है जिसे द्वारा परिभाषित किया गया है तब इसका लाप्लास रूपांतरण द्वारा दिया जाता है
निम्नलिखित में, किसी को परिणाम की आवश्यकता होती है जो फलन का लाप्लास रूपांतरण है (व्युत्पत्ति के लिए 'समाकलन साइन के अंतर्गत विभेदीकरण' अनुभाग देखें) साथ ही एबेल के प्रमेय का संस्करण (अंतिम मान प्रमेय का परिणाम या अनुचित रूप से पूर्णांकित कार्यों के लिए अंतिम मान प्रमेय (समाकलन के लिए एबेल का प्रमेय))।
इसलिए,
दोहरा समाकलन
लाप्लास रूपांतरण का उपयोग करके डिरिचलेट समाकलन का मूल्यांकन करना समाकलन के क्रम (गणना) को परिवर्तित करके उसी दोहरे निश्चित समाकलन की गणना करने के समान है, अर्थात्,
समाकलन साइन के अंतर्गत विभेदन (फेनमैन की विधि)
पहले समाकलन को अतिरिक्त वेरिएबल के एक फलन के रूप में पुनः लिखें, अर्थात् का लाप्लास रूपांतरण
सम्मिश्र कंटूर समाकलन
विचार कीजिये
पुनः नया फलन परिभाषित करें [4]
डिरिचलेट कर्नेल
डिरिचलेट कर्नेल के प्रसिद्ध सूत्र पर विचार करें:[5]
स्पष्ट रूप से सतत है जब 0 पर इसकी सततता देखने के लिए एल'होपिटल का नियम प्रयुक्त करें:
हम गणना करना चाहेंगे:
हमारे निकट उपस्थित भागों द्वारा समाकलन का उपयोग किया जाता है
यह भी देखें
संदर्भ
- ↑ Bartle, Robert G. (10 June 1996). "रीमैन इंटीग्रल को लौटें" (PDF). The American Mathematical Monthly. 103 (8): 625–632. doi:10.2307/2974874. JSTOR 2974874.
- ↑ Bartle, Robert G.; Sherbert, Donald R. (2011). "Chapter 10: The Generalized Riemann Integral". वास्तविक विश्लेषण का परिचय. John Wiley & Sons. pp. 311. ISBN 978-0-471-43331-6.
- ↑ Zill, Dennis G.; Wright, Warren S. (2013). "Chapter 7: The Laplace Transform". सीमा-मूल्य समस्याओं के साथ विभेदक समीकरण. Cengage Learning. pp. 274-5. ISBN 978-1-111-82706-9.
- ↑ Appel, Walter. Mathematics for Physics and Physicists. Princeton University Press, 2007, p. 226. ISBN 978-0-691-13102-3.
- ↑ Chen, Guo (26 June 2009). वास्तविक विश्लेषण के तरीकों के माध्यम से डिरिचलेट इंटीग्रल का एक उपचार (PDF) (Report).
- ↑ R.C. Daileda. अनुचित इंटीग्रल (PDF) (Report).