बृहत दीर्घवृत्त: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[ उपगोल ]] | [[ उपगोल | <big>'''उपगोल'''</big>]] | ||
एक बड़ा दीर्घवृत्त एक [[ अंडाकार | दीर्घवृत्त]] होता है जो दो [[ बिंदु (ज्यामिति) | बिंदुओं]] से होकर गुजरता है और वृत्त का [[ केंद्र (ज्यामिति) | केंद्र]] होता है। समान रूप से, वृत्त की [[ सतह (ज्यामिति) | सतह]] पर एक दीर्घवृत्त [[ मूल (ज्यामिति) | मूल]] रूप से होता है, इसके केंद्र से समतल द्वारा गोले को काटकर बनाया गया वक्र है।<ref> | एक बड़ा दीर्घवृत्त एक [[ अंडाकार | दीर्घवृत्त]] होता है जो दो [[ बिंदु (ज्यामिति) | बिंदुओं]] से होकर गुजरता है और वृत्त का [[ केंद्र (ज्यामिति) | केंद्र]] होता है। समान रूप से, वृत्त की [[ सतह (ज्यामिति) | सतह]] पर एक दीर्घवृत्त [[ मूल (ज्यामिति) | मूल]] रूप से होता है, इसके केंद्र से समतल द्वारा गोले को काटकर बनाया गया वक्र है।<ref> | ||
Line 73: | Line 73: | ||
==बाहरी संबंध== | |||
== बाहरी संबंध == | |||
* [http://www.mathworks.com/matlabcentral/fileexchange/50605 Matlab implementation of the solutions for the direct and inverse problems for great ellipses.] | * [http://www.mathworks.com/matlabcentral/fileexchange/50605 Matlab implementation of the solutions for the direct and inverse problems for great ellipses.] | ||
[[Category: ज्यामिति]] | [[Category: ज्यामिति]] |
Revision as of 22:41, 20 November 2022
एक बड़ा दीर्घवृत्त एक दीर्घवृत्त होता है जो दो बिंदुओं से होकर गुजरता है और वृत्त का केंद्र होता है। समान रूप से, वृत्त की सतह पर एक दीर्घवृत्त मूल रूप से होता है, इसके केंद्र से समतल द्वारा गोले को काटकर बनाया गया वक्र है।[1] इन बिंदुओं के लिए जो पृथ्वी की परिधि के लगभग एक चौथाई से भी कम दूरी पर हैं, बिंदुओं को जोड़ने वाले दीर्घवृत्त की लंबाई लगभग है।[2][3][4] इसलिए दीर्घवृत कभी-कभी समुद्री नौवहन के लिए मार्गदर्शन होता है। दीर्घवृत्त पृथ्वी खंड पथ का एक प्रकरण है।
परिचय
मान लें कि वृत्त, क्रांति का दीर्घवृत्त, एक भूमध्यरेखीय त्रिज्या और ध्रुवीय अर्ध-अक्ष . समतल को परिभाषित करें , विलक्षणता , और दूसरी विलक्षणता . दो बिंदुओं पर विचार करें: (भौगोलिक) अक्षांश पर और देशांतर तथा अक्षांश पर और देशांतर . दीर्घवृत्त को जोड़ने की ( से प्रति ) लंबाई है और दिगंश है तथा दो अंतिम बिंदुओं पर।
त्रिज्या a के क्षेत्र में दीर्घवृत्त को मानचित्रित करने के विभिन्न उपाय हैं जैसे कि दीर्घवृत्त को एक वृत्त में मापन के लिए, ग्रेट-सर्कल नेविगेशन का उपयोग करने की अनुमति देता है:
- दीर्घवृत्त को घूर्णन के अक्ष के समानांतर दिशा में खींचा जा सकता है; यह दीर्घवृत्त पर अक्षांश के बिंदु को गोले के एक बिंदु पर संरक्षित करता है।
- दीर्घवृत्त पर बिंदु को केंद्र के साथ जोड़ने वाली रेखा गोले पर रेडियल रूप से संरक्षित किया जा सकता है; दीर्घवृत्ताभ अक्षांश के एक बिंदु को अक्षांश, भूकेंद्रिक अक्षांश के साथ गोलाकार पर बिंदु पर मैप करता है।
- दीर्घवृत्त के ध्रुवीय अर्ध-अक्ष के साथ एक लम्बी दीर्घवृत्त में खींचा जा सकता है और बाद में गोले पर रेडियल रूप से संरक्षित किया जाता है I यह अक्षांश को सुरक्षित रखता है—क्षेत्र पर अक्षांश , को सुरक्षित रखता है।
अंतिम विधि दो ज्ञात बिंदुओं A और B को जोड़ने वाले दीर्घवृत्त पर मार्ग-बिंदुओं को उत्पन्न करने का एक आसान उपाय देती है. बड़े वृत्त के लिए हल करें तथा और इस तरह से ग्रेट-सर्कल नेविगेशन को बड़े वृत्त पर खोजें। यह मानचित्र संबंधित बड़े दीर्घवृत्त पर मार्ग-बिंदुओं में हैं।
बड़े दीर्घवृत्त को एक बड़े वृत्त में संरक्षित करना
यदि दूरियों और शीर्षकों की आवश्यकता है, तो मानचित्रण का उपयोग करना सबसे सरल है।[5] विस्तार से, मानचित्रण इस प्रकार है):[6]
- भौगोलिक अक्षांश दीर्घवृत्ताभ मानचित्रों पर पैरामीट्रिक अक्षांश पर गोले पर, जहाँ
- देशांतर अपरिवर्तित है।
- अज़ीमुथ दीर्घवृत्ताकार मानचित्रों पर अज़ीमुथ के लिए उस गोले पर जहां
और चतुर्थांश तथा समान हैं। - त्रिज्या के बड़े वृत्त पर स्थिति चाप लंबाई द्वारा पैरामीट्रिज्ड हैं भूमध्य रेखा के उत्तर की तरफ से मापा जाता है। बड़े दीर्घवृत्त में अर्ध-अक्ष होता है तथा , यहां पे उत्तर की ओर भूमध्य रेखा की उत्तर की ओर क्रॉसिंग पर ग्रेट-सर्कल दिगंश है, और दीर्घवृत्त पर पैरामीट्रिक कोण है।
एक दीर्घवृत्त पर भूगणित के समाधान में सहायक क्षेत्र के समान मानचित्रण किया जाता है। अंतर यह है कि दिगंश मानचित्रण में संरक्षित है, जबकि देशांतर एक गोलाकार देशांतर के नक्शे . दूरी की गणना के लिए उपयोग किए जाने वाले समतुल्य दीर्घवृत्त में अर्ध-अक्ष होते हैं तथा .)
उलटी समस्या का समाधान
व्युत्क्रम समस्या का निर्धारण है , , तथा , के पदों को देखते हुए तथा . यह कंप्यूटिंग द्वारा हल किया जाता है तथा और ग्रेट-सर्कल के बीच तथा को ग्रेट-सर्कल नेविगेशन के लिए हल करना|
गोलाकार दिगंश को दोबारा लेबल किया गया है (से ) इस प्रकार , , तथा और भूमध्य रेखा पर गोलाकार दिगंश और तथा . महान दीर्घवृत्त के अंतिम बिंदुओं के दिगंश, तथा , से गणना की जाती है तथा .
महान दीर्घवृत्त को अर्ध-अक्ष के मान का उपयोग करके पाया जा सकता है .
बड़े वृत्त की समस्या का समाधान निर्धारित चाप की लंबाई हैं, तथा , जो भूमध्य रेखा को पार करने से मापा जाता है तथा . दूरी पैरामीट्रिक अक्षांश के संदर्भ में मेरिडियन चाप श्रृंखला देने वाले सूत्र का उपयोग करके अंडाकार के परिधि के एक हिस्से की लंबाई की गणना करके पाया जाता है। इस सूत्र को लागू करने में, दीर्घवृत्त के लिए अर्ध-अक्ष का उपयोग करें और स्थानापन्न करें तथा के लिये .
प्रत्यक्ष समस्या का समाधान, की स्थिति का निर्धारण दिया गया , , तथा , इसी तरह पाया जा सकता है (इसके लिए, इसके अलावा, मेरिडियन चाप दीर्घवृत्त के लिए व्युत्क्रम मेरिडियन समस्या की आवश्यकता होती है)। यह व्युत्क्रम समस्या के समाधान में मार्ग-बिंदुओं (जैसे, समान दूरी वाले मध्यवर्ती बिंदुओं की एक श्रृंखला) को भी सक्षम बनाता है।
यह भी देखें
- पृथ्वी खंड पथ
- ग्रेट-सर्कल नेविगेशन
- एक दीर्घवृत्त पर जियोडेसिक्स
- मेरिडियन आर्क
- रंब लाइन
संदर्भ
- ↑ American Society of Civil Engineers (1994), Glossary of Mapping Science, ASCE Publications, p. 172, ISBN 9780784475706.
- ↑ Bowring, B. R. (1984). "The direct and inverse solutions for the great elliptic line on the reference ellipsoid". Bulletin Géodésique. 58 (1): 101–108. Bibcode:1984BGeod..58..101B. doi:10.1007/BF02521760. S2CID 123161737.
- ↑ Williams, R. (1996). "The Great Ellipse on the Surface of the Spheroid". Journal of Navigation. 49 (2): 229–234. Bibcode:1996JNav...49..229W. doi:10.1017/S0373463300013333.
- ↑ Walwyn, P. R. (1999). "The Great Ellipse Solution for Distances and Headings to Steer between Waypoints". Journal of Navigation. 52 (3): 421–424. Bibcode:1999JNav...52..421W. doi:10.1017/S0373463399008516.
- ↑ Sjöberg, L. E. (2012c). "महान दीर्घवृत्त पर प्रत्यक्ष और व्युत्क्रम नेविगेशन समस्याओं का समाधान". Journal of Geodetic Science. 2 (3): 200–205. Bibcode:2012JGeoS...2..200S. doi:10.2478/v10156-011-0040-9.
- ↑ Karney, C. F. F. (2014). "महान दीर्घवृत्त". From the documentation of GeographicLib 1.38.
{{cite web}}
: CS1 maint: postscript (link)