हेस्सियन आव्यूह: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|(Mathematical) matrix of second derivatives}} | {{short description|(Mathematical) matrix of second derivatives}} | ||
{{Calculus|Multivariable}} | {{Calculus|Multivariable}} | ||
[[गणित]] में, हेसियन आव्यूह | |||
[[गणित]] में, '''हेसियन आव्यूह''' सामान्यतः एक अदिश वैल्यू [[फ़ंक्शन (गणित)|फलन (गणित)]] या [[अदिश क्षेत्र]] के द्वितीय क्रम के [[आंशिक व्युत्पन्न|आंशिक अवकलज]] का एक [[वर्ग मैट्रिक्स|वर्ग आव्यूह]] होता है। यह कई चर वाले फलन की स्थानीय वक्रता का वर्णन करता है। हेसियन आव्यूह को 19वीं शताब्दी में जर्मन गणितज्ञ [[लुडविग]] [[ओटो हेस्से]] द्वारा विकसित किया गया था और बाद में इसका नाम उनके नाम पर रखा गया था। हेस्से ने मूलतः कार्यात्मक सारणीक शब्द का प्रयोग किया था। | |||
== परिभाषाएँ और गुण == | == परिभाषाएँ और गुण == | ||
माना कि <math>f : \R^n \to \R</math> एक सदिश को इनपुट के रूप में लेने वाला एक फलन <math>\mathbf{x} \in \R^n</math> के रूप में होता है और एक अदिश राशि का आउटपुट <math> f(\mathbf{x}) \in \R.</math> के रूप में है। यदि सभी दूसरे क्रम के आंशिक अवकलज <math>f</math> एक्सिस्ट के रूप में होते है, तो <math>f</math> का हेस्सियन आव्यूह <math>\mathbf{H}</math> एक वर्ग <math>n \times n</math> का आव्यूह है। जिसे सामान्यतः परिभाषित और व्यवस्थित किया जाता है। | |||
<math display=block>\mathbf H_f= \begin{bmatrix} | <math display=block>\mathbf H_f= \begin{bmatrix} | ||
\dfrac{\partial^2 f}{\partial x_1^2} & \dfrac{\partial^2 f}{\partial x_1\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_1\,\partial x_n} \\[2.2ex] | \dfrac{\partial^2 f}{\partial x_1^2} & \dfrac{\partial^2 f}{\partial x_1\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_1\,\partial x_n} \\[2.2ex] | ||
Line 11: | Line 12: | ||
\vdots & \vdots & \ddots & \vdots \\[2.2ex] | \vdots & \vdots & \ddots & \vdots \\[2.2ex] | ||
\dfrac{\partial^2 f}{\partial x_n\,\partial x_1} & \dfrac{\partial^2 f}{\partial x_n\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_n^2} | \dfrac{\partial^2 f}{\partial x_n\,\partial x_1} & \dfrac{\partial^2 f}{\partial x_n\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_n^2} | ||
\end{bmatrix} | \end{bmatrix}.</math> | ||
अर्थात की एंट्री {{mvar|i}}वीं पंक्ति और {{mvar|j}}वाँ कॉलम के रूप में होते है। | |||
<math display=block>(\mathbf H_f)_{i,j} = \frac{\partial^2 f}{\partial x_i \, \partial x_j}.</math> | <math display=block>(\mathbf H_f)_{i,j} = \frac{\partial^2 f}{\partial x_i \, \partial x_j}.</math> | ||
यदि इसके अतिरिक्त | यदि इसके अतिरिक्त दूसरे आंशिक अवकलज सभी निरंतर रूप में होते है, तो हेसियन आव्यूह दूसरे अवकलज की समरूपता द्वारा एक [[सममित मैट्रिक्स|सममित आव्यूह]] के रूप में होता है। | ||
हेसियन आव्यूह के | हेसियन आव्यूह के सारणीक को हेसियन सारणीक कहा जाता है।<ref>{{cite book|last1=Binmore|first1=Ken|author-link1=Kenneth Binmore|last2=Davies|first2=Joan|year=2007|title=कैलकुलस अवधारणाएँ और विधियाँ|oclc=717598615|isbn=978-0-521-77541-0|publisher=Cambridge University Press|page=190}}</ref> | ||
किसी फलन का हेसियन आव्यूह <math>f</math> फलन के [[ ग्रेडियेंट |ग्रेडियेंट]] के [[जैकोबियन मैट्रिक्स|जैकोबियन आव्यूह]] का स्थानान्तरण <math>f</math> है; जो कि <math>\mathbf{H}(f(\mathbf{x})) = \mathbf{J}(\nabla f(\mathbf{x}))^T.</math>के रूप में होता है। | |||
== अनुप्रयोग == | |||
== | === इन्फ्लेक्शन बिंदु === | ||
=== | यदि <math>f</math> तीन चरों वाला एक होमोजीनीअस बहुपद है और इस प्रकार समीकरण <math>f = 0</math> एक [[समतल प्रक्षेप्य वक्र]] का [[निहित समीकरण|इम्प्लिसिट समीकरण]] है। वक्र के इम्प्लिसिट बिंदु पूर्णतया नॉन सिंगुलर बिंदु के रूप में होते है, जहां हेसियन सारणीक शून्य रूप में होते है। यह बेज़ौट के प्रमेय का अनुसरण करता है और इस प्रकार [[घन समतल वक्र]] का इम्प्लिसिट बिंदु अधिकतम <math>9</math> होता है। क्योंकि हेस्सियन सारणीक बहुपद की घात <math>3.</math> है | ||
=== द्वितीय-अवकलज परीक्षण === | |||
{{Main|दूसरा आंशिक अवकलज परीक्षण}} | |||
कॉन्वेक्स फलन का हेसियन आव्यूह [[सकारात्मक अर्ध-निश्चित मैट्रिक्स|धनात्मक सेमी डेफिनिट आव्यूह]] के रूप में होता है। इस गुणधर्म को परिष्कृत करने से हमें यह परीक्षण करने की अनुमति मिलती है कि क्या एक [[महत्वपूर्ण बिंदु (गणित)|महत्वपूर्ण गणित बिंदु]] <math>x</math> एक स्थानीय अधिकतम या स्थानीय न्यूनतम इस प्रकार का एक सैडल बिंदु होता है। | |||
यदि हेस्सियन <math>x,</math> [[सकारात्मक-निश्चित मैट्रिक्स|धनात्मक -निश्चित आव्यूह]] है, तो <math>f</math>, <math>x.</math>पर एक पृथक स्थानीय न्यूनतम के रूप में प्राप्त होता है। यदि हेस्सियन <math>x,</math>पर ऋणात्मक-निश्चित है, तो <math>f</math> पर एक पृथक स्थानीय अधिकतम प्राप्त करता है। <math>x.</math> यदि हेसियन में धनात्मक और ऋणात्मक दोनों [[eigenvalue|अभिलक्षणिक मान]] होते है, तो <math>x</math>, <math>f.</math> के लिए एक सैडल बिंदु है। अन्यथा परीक्षण अनिर्णायक रूप में होते है, इसका तात्पर्य यह है कि स्थानीय न्यूनतम पर हेसियन धनात्मक-अर्धनिश्चित है और स्थानीय अधिकतम पर हेसियन ऋणात्मक-अर्धनिश्चित है। | |||
धनात्मक सेमी डेफिनिट और ऋणात्मक सेमी डेफिनिट हेसियन के लिए परीक्षण अनिर्णायक रूप में होता है और इस प्रकार एक महत्वपूर्ण बिंदु जहां हेसियन सेमी डेफिनिट है लेकिन निश्चित नहीं है वह स्थानीय चरम या सैडल बिंदु होता है। चूंकि, [[मोर्स सिद्धांत]] के दृष्टिकोण से और भी बहुत कुछ कहा जा सकता है। | |||
एक और दो चर के फलनों के लिए [[दूसरा-व्युत्पन्न परीक्षण|दूसरा अवकलज परीक्षण]] सामान्य स्थिति की तुलना में सरल है। एक चर में, हेसियन में बिल्कुल एक दूसरा अवकलज होता है। यदि यह धनात्मक है, तो <math>x</math> एक स्थानीय न्यूनतम है और यदि यह ऋणात्मक है तो <math>x</math> एक स्थानीय अधिकतम है। यदि यह शून्य है तो परीक्षण अनिर्णायक रूप में होता है। दो चरों में सारणीक का उपयोग किया जा सकता है, क्योंकि सारणीक अभिलक्षणिक मान का उत्पाद है। यदि यह धनात्मक है तो अभिलक्षणिक मान दोनों धनात्मक या दोनों ऋणात्मक रूप में होते है। यदि यह ऋणात्मक है तो दोनों अभिलक्षणिक मान के भिन्न -भिन्न संकेत हैं। यदि यह शून्य है तो दूसरा-अवकलज परीक्षण अनिर्णायक रूप में होता है। | |||
समान रूप से, दूसरे क्रम की स्थितियाँ जो स्थानीय न्यूनतम या अधिकतम के लिए पर्याप्त रूप में होती है, हेसियन के सिद्धांत ऊपरी-बाएँ माइनर रैखिक बीजगणित उप समुच्चय के डीटरमीनेट के अनुक्रम के संदर्भ में व्यक्त की जा सकती हैं; ये स्थितियाँ प्रतिबंधित अनुकूलन के लिए सीमावर्ती हेसियन के लिए अगले भाग में दी गई स्थितियों का एक विशेष स्थितिया है और इस प्रकार वह स्थिति जिसमें बाधाओं की संख्या शून्य है। विशेष रूप से, न्यूनतम के लिए पर्याप्त शर्त यह है कि ये सभी प्रमुख अवयस्क धनात्मक रूप में होते है, जबकि अधिकतम के लिए पर्याप्त शर्त यह है कि अवयस्क संकेत में वैकल्पिक, <math>1 \times 1</math> माइनर ऋणात्मक रूप में होते है। | |||
=== क्रिटिकल बिंदु === | |||
यदि किसी फलन का ग्रेडिएंट आंशिक अवकलज का सदिश है और <math>f</math> किसी बिंदु पर शून्य है। तो <math>\mathbf{x},</math> <math>f</math> का एक {{em|क्रिटिकल बिंदु}} या स्टेशनरी बिंदु है और इस प्रकार <math>\mathbf{x}.</math> हेस्सियन का सारणीक कुछ सन्दर्भों में इसे [[विभेदक|डिस्क्रिमिनैंट]] कहा जाता है। यदि यह सारणिक शून्य है तो <math>\mathbf{x}</math> को {{em|डीजेनेरेट क्रिटिकल बिंदु}} कहा जाता है या <math>f.</math>का एक नॉन मोर्स महत्वपूर्ण बिंदु <math>f.</math>है, जो कि अन्यथा यह नॉन डीजेनेरेट है, और <math>f.</math> को मोर्स क्रिटिकल बिंदु कहा जाता है। | |||
=== | हेस्सियन आव्यूह मोर्स सिद्धांत और कैटास्ट्रोफे सिद्धांत में एक महत्वपूर्ण भूमिका निभाता है, क्योंकि इसके आव्यूह के कर्नेल और अभिलक्षणिक मान महत्वपूर्ण बिंदुओं के वर्गीकरण की अनुमति देते हैं।<ref>{{Cite book|url=https://books.google.com/books?id=geruGMKT9_UC&pg=PA248|title=Advanced Calculus: A Geometric View|last=Callahan|first=James J.|date=2010|publisher=Springer Science & Business Media|isbn=978-1-4419-7332-0|page=248|language=en}}</ref><ref>{{Cite book|url=https://books.google.com/books?id=Tcn3CAAAQBAJ&pg=PA178|title=सामान्य सापेक्षता में हालिया विकास|editor-last=Casciaro|editor-first=B.|editor-last2=Fortunato|editor-first2=D.|editor-last3=Francaviglia|editor-first3=M.|editor-last4=Masiello|editor-first4=A.|date=2011|publisher=Springer Science & Business Media|isbn=9788847021136|page=178|language=en}}</ref><ref>{{cite book|author1=Domenico P. L. Castrigiano|author2=Sandra A. Hayes|title=प्रलय सिद्धांत|year=2004|publisher=Westview Press|isbn=978-0-8133-4126-2|page=18}}</ref> | ||
हेसियन आव्यूह का डीटरमीनेट जब किसी फलन के महत्वपूर्ण बिंदु पर मूल्यांकन किया जाता है, तो फलन के गॉसियन वक्रता के बराबर होता है, जिसे मैनिफोल्ड के रूप में माना जाता है। उस बिंदु पर हेसियन के अभिलक्षणिक मान फलन की प्रमुख वक्रताएं होती है और अभिलक्षणिक सदिश वक्रता की प्रमुख दिशाओ के रूप में होती है। गॉसियन वक्रता § प्रमुख वक्रता से संबंध होता है। | |||
=== | === ऑप्टिमाइजेशन का उपयोग === | ||
हेसियन | हेसियन आव्यूह का उपयोग न्यूटन प्रकार की विधियों के भीतर बड़े पैमाने पर [[गणितीय अनुकूलन]] समस्याओं में किया जाता है क्योंकि वे एक फलन के स्थानीय [[टेलर विस्तार]] के द्विघात शब्द के गुणांक के रूप में होते है। वह इस प्रकार है, | ||
<math display=block>y = f(\mathbf{x} + \Delta\mathbf{x})\approx f(\mathbf{x}) + \nabla f(\mathbf{x})^\mathrm{T} \Delta\mathbf{x} + \frac{1}{2} \, \Delta\mathbf{x}^\mathrm{T} \mathbf{H}(\mathbf{x}) \, \Delta\mathbf{x}</math> | <math display=block>y = f(\mathbf{x} + \Delta\mathbf{x})\approx f(\mathbf{x}) + \nabla f(\mathbf{x})^\mathrm{T} \Delta\mathbf{x} + \frac{1}{2} \, \Delta\mathbf{x}^\mathrm{T} \mathbf{H}(\mathbf{x}) \, \Delta\mathbf{x}</math> | ||
जहाँ <math>\nabla f</math> ढाल है <math>\left(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}\right).</math> संपूर्ण हेसियन आव्यूह की गणना और भंडारण के लिए बिग थीटा की आवश्यकता होती है। जिससे कि <math>\Theta\left(n^2\right)</math>मेमोरी, जो उच्च-आयामी फलनों जैसे कि [[कृत्रिम तंत्रिका नेटवर्क|न्यूरल नेट्स]] के लॉस फलन, [[सशर्त यादृच्छिक क्षेत्र]] और बड़ी संख्या में मापदंडों के साथ अन्य [[सांख्यिकीय मॉडल]] के लिए संभव नहीं है। ऐसी स्थितियों के लिए ट्रंकेटेड-न्यूटन और [[अर्ध-न्यूटन विधि|अर्ध-न्यूटन]] कलन विधि विकसित की गई है। कलन विधि का लेटर समूह हेसियन के सन्निकटन का उपयोग करता है और इस प्रकार सबसे लोकप्रिय अर्ध-न्यूटन कलन विधि में से एक ब्रोयडेन-फ्लेचर-गोल्डफार्ब-शैनो कलन विधि है।<ref>{{cite book|last1=Nocedal|first1=Jorge|author-link1=Jorge Nocedal|last2=Wright|first2=Stephen|year=2000|title=संख्यात्मक अनुकूलन|isbn=978-0-387-98793-4|publisher=Springer Verlag}}</ref> | |||
इस तरह के अनुमान इस तथ्य का उपयोग कर सकते हैं कि एक अनुकूलन कलन विधि हेसियन का उपयोग केवल एक [[रैखिक ऑपरेटर]] के रूप में करता है <math>\mathbf{H}(\mathbf{v}),</math> और पहले यह ध्यान देकर आगे बढ़ते है कि हेस्सियन ग्रेडिएंट के स्थानीय विस्तार के रूप में भी दिखाई देता है। | |||
<math display="block">\nabla f (\mathbf{x} + \Delta\mathbf{x}) = \nabla f (\mathbf{x}) + \mathbf{H}(\mathbf{x}) \, \Delta\mathbf{x} + \mathcal{O}(\|\Delta\mathbf{x}\|^2)</math> | |||
माना कि <math>\Delta \mathbf{x} = r \mathbf{v}</math> कुछ अदिश राशि के लिए <math>r,</math> के रूप में होता है | |||
<math display="block">\mathbf{H}(\mathbf{x}) \, \Delta\mathbf{x} = \mathbf{H}(\mathbf{x})r\mathbf{v} = r\mathbf{H}(\mathbf{x})\mathbf{v} = \nabla f (\mathbf{x} + r\mathbf{v}) - \nabla f (\mathbf{x}) + \mathcal{O}(r^2),</math> | |||
यदि, | |||
<math display="block">\mathbf{H}(\mathbf{x})\mathbf{v} = \frac{1}{r} \left[\nabla f(\mathbf{x} + r \mathbf{v}) - \nabla f(\mathbf{x})\right] + \mathcal{O}(r)</math> | |||
इसलिए यदि ग्रेडिएंट की गणना पहले ही की जा चुकी है, तो अनुमानित हेसियन की गणना अदिश ऑपरेशनों की एक रैखिक ग्रेडिएंट के आकार में संख्या द्वारा की जा सकती है और इस प्रकार प्रोग्राम के लिए सरल रूप में होते हुए भी यह सन्निकटन योजना संख्यात्मक रूप से स्थिर नहीं होती है और <math>r</math> के कारण होने वाली त्रुटि को रोकने के लिए इसे छोटा करना होता है <math>\mathcal{O}(r)</math> टर्म के रूप में है, लेकिन इसे घटाने से पहले टर्म में सटीकता खो जाती है।<ref>{{cite journal|last=Pearlmutter|first=Barak A.|title=हेस्सियन द्वारा तेजी से सटीक गुणा|journal=Neural Computation|volume=6|issue=1|year=1994|url=http://www.bcl.hamilton.ie/~barak/papers/nc-hessian.pdf|doi=10.1162/neco.1994.6.1.147|pages=147–160|s2cid=1251969 }}</ref>) | |||
यह परिणाम औपचारिक रूप से एकल | विशेष रूप से यादृच्छिक खोज अनुमान के संबंध में, [[विकास रणनीति|ईवलूशन रणनीति]] का कोवेरीअन्स आव्यूह एक अदिश कारक और छोटे यादृच्छिक उतार-चढ़ाव [[तक]] हेसियन आव्यूह के व्युत्क्रम के अनुकूल होता है। यह परिणाम औपचारिक रूप से एकल पैरेंट रणनीति और एक स्थिर मॉडल के लिए सिद्ध किया जाता है, जैसे-जैसे जनसंख्या का आकार बढ़ता है द्विघात सन्निकटन पर निर्भर होता है।<ref>{{cite journal | ||
| doi = 10.1016/j.tcs.2019.09.002 | | doi = 10.1016/j.tcs.2019.09.002 | ||
| first = O.M. | | first = O.M. | ||
| last = Shir | | last = Shir | ||
| author2 = A. Yehudayoff | | author2 = A. Yehudayoff | ||
| title = | | title = On the covariance-Hessian relation in evolution strategies | ||
| journal = Theoretical Computer Science | |||
| volume = 801 | | volume = 801 | ||
| pages = 157–174 | | pages = 157–174 | ||
Line 81: | Line 73: | ||
| doi-access = free | | doi-access = free | ||
}}</ref> | }}</ref> | ||
=== अन्य अनुप्रयोग === | === अन्य अनुप्रयोग === | ||
हेसियन मैट्रिक्स का उपयोग आमतौर पर [[इमेज प्रोसेसिंग]] और कंप्यूटर विज़न में इमेज प्रोसेसिंग ऑपरेटरों को व्यक्त करने के लिए किया जाता है, गौसियन (एलओजी) ब्लॉब डिटेक्टर के लाप्लासियन को हेसियन (डीओएच) ब्लॉब डिटेक्टर और [[अदिश स्थान]] के डीटरमीनेट के रूप में देखें जाते है। इसका उपयोग [[ अवरक्त स्पेक्ट्रोस्कोपी |अवरक्त स्पेक्ट्रोस्कोपी]] में विभिन्न आणविक आवृत्तियों की गणना करने के लिए [[सामान्य मोड]] विश्लेषण में किया जा सकता है।<ref>{{Cite journal|last1=Mott|first1=Adam J.|last2=Rez|first2=Peter|date=December 24, 2014|title=प्रोटीन के अवरक्त स्पेक्ट्रा की गणना|url=http://link.springer.com/10.1007/s00249-014-1005-6|journal=European Biophysics Journal|language=en|volume=44|issue=3|pages=103–112|doi=10.1007/s00249-014-1005-6|pmid=25538002 |s2cid=2945423 |issn=0175-7571}}</ref> इसका उपयोग स्थानीय संवेदनशीलता और सांख्यिकीय डायग्नोस्टिक में भी किया जाता है।<ref>{{cite journal|last1=Liu|first1=Shuangzhe |last2=Leiva|first2=Victor|last3=Zhuang|first3=Dan|last4=Ma|first4=Tiefeng | |||
|last5=Figueroa-Zúñiga|first5=Jorge I.|date=March 2022|title=मल्टीवेरिएट लीनियर मॉडल और इसके निदान में अनुप्रयोगों के साथ मैट्रिक्स डिफरेंशियल कैलकुलस|journal=Journal of Multivariate Analysis |volume=188|pages=104849|doi=10.1016/j.jmva.2021.104849|doi-access=free}}</ref> | |||
== सामान्यीकरण == | == सामान्यीकरण == | ||
=== | === बॉर्डर हेस्सियन === | ||
कुछ प्रतिबंधित ऑप्टिमाइज़ समस्याओं में दूसरे-अवकलज परीक्षण के लिए बॉर्डर वाले हेसियन का उपयोग किया जाता है। पहले से विचार किए गए फलन <math>f</math> को देखते हुए किया गया था, लेकिन एक कॉन्सट्रेंट फलन <math>g</math> को जोड़ा जाता है और इस प्रकार <math>g(\mathbf{x}) = c,</math> बॉर्डर हेसियन [[लैग्रेंज गुणक]] का हेसियन है <math>\Lambda(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda[g(\mathbf{x}) - c]:</math><ref>{{cite web|title=Econ 500: Quantitative Methods in Economic Analysis I|date=October 7, 2004|first=Arne|last=Hallam|url=https://www2.econ.iastate.edu/classes/econ500/hallam/documents/opt_con_gen_000.pdf|work=Iowa State}}</ref> | |||
<math display=block>\mathbf H(\Lambda) = | <math display=block>\mathbf H(\Lambda) = | ||
\begin{bmatrix} | \begin{bmatrix} | ||
Line 111: | Line 98: | ||
\left(\dfrac{\partial g}{\partial \mathbf x}\right)^{\mathsf{T}} & \dfrac{\partial^2 \Lambda}{\partial \mathbf x^2} | \left(\dfrac{\partial g}{\partial \mathbf x}\right)^{\mathsf{T}} & \dfrac{\partial^2 \Lambda}{\partial \mathbf x^2} | ||
\end{bmatrix}</math> | \end{bmatrix}</math> | ||
यदि <math>m</math> बाधाएं हैं, तो ऊपरी-बाएँ कोने में शून्य <math>m \times m</math> का ब्लॉक और <math>m</math> शीर्ष पर सीमा पंक्तियाँ और बाईं ओर <math>m</math> बॉर्डर कॉलम होते है। | |||
उपरोक्त नियम बताते हैं कि एक्स्ट्रेमा को एक | उपरोक्त नियम बताते हैं कि एक्स्ट्रेमा को एक धनात्मक निश्चित या ऋणात्मक निश्चित हेसियन द्वारा चित्रित किया जाता है, एक नॉन -सिंगुलर हेसियन के साथ महत्वपूर्ण बिंदुओं के बीच यह लागू नहीं हो सकता है। क्योंकि एक बॉर्डर हेसियन न तो ऋणात्मक निश्चित हो सकता है और न ही धनात्मक निश्चित हो सकता है, जैसा कि <math>\mathbf{z}^{\mathsf{T}} \mathbf{H} \mathbf{z} = 0</math> यदि <math>\mathbf{z}</math> कोई भी सदिश है जिसकी एकमात्र शून्य प्रविष्टि इसकी पहली है। | ||
दूसरे | दूसरे अवकलज परीक्षण यहां सीमाबद्ध हेसियन के एक निश्चित समूह के डीटरमीनेट के संकेत पर प्रतिबंध लगा देता है और इस प्रकार <math>n - m</math> सीमावर्ती हेस्सियन का उप समुच्चय,<ref>{{Cite book|last1=Neudecker|first1=Heinz|last2=Magnus|first2=Jan R.|title=सांख्यिकी और अर्थमिति में अनुप्रयोगों के साथ मैट्रिक्स डिफरेंशियल कैलकुलस|publisher=[[John Wiley & Sons]]|location=New York|isbn=978-0-471-91516-4|year=1988|page=136}}</ref> सहज रूप से, <math>m</math> बाधाओं को समस्या को कम करने के बारे में सोचा जा सकता है जिससे कि <math>n - m</math> मुक्त चर उदाहरण के लिए महत्तम मूल्यांकन <math>f\left(x_1, x_2, x_3\right)</math> के अधीन <math>x_1 + x_2 + x_3 = 1</math> के महत्तम मूल्यांकन को बिना किसी बाधा <math>f\left(x_1, x_2, 1 - x_1 - x_2\right)</math> के महत्तम मूल्यांकन तक कम किया जा सकता है। | ||
विशेष रूप से, | विशेष रूप से, बॉर्डर हेसियन के प्रमुख माइनर ऊपरी बाएँ के लिए लिए न्यायसंगत उप समुच्चय के डीटरमीनेट के अनुक्रम पर संकेत की शर्तें लगाई जाती हैं, जिसके लिए सबसे पहले मुख्य माइनर <math>2 m</math> की उपेक्षा की जाती है और इस प्रकार सबसे छोटे माइनर को पहले काट दिया जाता है <math>2 m + 1</math> पंक्तियाँ और स्तंभ, अगले में पहले काटे गए <math>2 m + 2</math> पंक्तियाँ और स्तंभ और इसी तरह, अंतिम संपूर्ण बॉर्डर हेसियन के रूप में होते है; यदि <math>2 m + 1</math> से बड़ा है <math>n + m,</math> तो सबसे छोटा अग्रणी प्रमुख माइनर हेसियन के रूप में है।<ref>{{cite book|last=Chiang|first=Alpha C.|title=गणितीय अर्थशास्त्र की मौलिक विधियाँ|publisher=McGraw-Hill|edition=Third|year=1984|page=[https://archive.org/details/fundamentalmetho0000chia_b4p1/page/386 386]|isbn=978-0-07-010813-4|url=https://archive.org/details/fundamentalmetho0000chia_b4p1/page/386}}</ref> इस प्रकार <math>n - m</math> विचार करने के लिए माइनर, प्रत्येक का मूल्यांकन विशिष्ट बिंदु पर कैंडिडेट समाधान कैलकुलस के रूप में किया जा रहा है। चूंकि स्थानीय अधिकतम के लिए पर्याप्त स्थिति यह है कि ये लघु अवयस्क <math>(-1)^{m+1}.</math>चिन्ह वाले सबसे छोटे चिन्ह के साथ वैकल्पिक रूप से साइन इन करते हैं और इस प्रकार स्थानीय न्यूनतम के लिए पर्याप्त स्थिति यह है कि इन सभी माइनर <math>(-1)^m.</math>का चिन्ह है जिससे कि अप्रतिबंधित स्थितियों में <math>m=0</math> बिना सीमा वाले हेसियन के लिए क्रमशः ऋणात्मक निश्चित या धनात्मक निश्चित होने की शर्तों से मेल खाती हैं। | ||
=== | === सदिश मान फलन === | ||
यदि <math>f</math> | यदि <math>f</math> के अतिरिक्त एक [[वेक्टर फ़ील्ड|सदिश क्षेत्र]] <math>\mathbf{f} : \R^n \to \R^m,</math> है, तो यह है | ||
<math display=block>\mathbf f(\mathbf x) = \left(f_1(\mathbf x), f_2(\mathbf x), \ldots, f_m(\mathbf x)\right),</math> | <math display=block>\mathbf f(\mathbf x) = \left(f_1(\mathbf x), f_2(\mathbf x), \ldots, f_m(\mathbf x)\right),</math> | ||
तो दूसरे आंशिक | तो दूसरे आंशिक अवकलज का संग्रह <math>n \times n</math> आव्यूह नहीं है, अपितु एक तीसरे क्रम का [[टेन्सर]] होता है। इसे <math>m</math> हेस्सियन आव्यूह की एक सरणी के रूप में सोचा जा सकता है। जिससे कि <math>\mathbf{f}</math> के प्रत्येक घटक इस प्रकार है, | ||
<math display=block>\mathbf H(\mathbf f) = \left(\mathbf H(f_1), \mathbf H(f_2), \ldots, \mathbf H(f_m)\right).</math> | <math display=block>\mathbf H(\mathbf f) = \left(\mathbf H(f_1), \mathbf H(f_2), \ldots, \mathbf H(f_m)\right).</math> | ||
यह | जब यह टेंसर सामान्य हेसियन आव्यूह में बदल जाता है तो <math>m = 1.</math>के रूप में होता है | ||
=== मिश्रित स्थिति का सामान्यीकरण === | |||
[[कई जटिल चर]] के संदर्भ में, हेस्सियन को सामान्यीकृत किया जा सकता है। मान लीजिए कि <math>f\colon\Complex^n \to \Complex,</math> और लिखा <math>f\left(z_1, \ldots, z_n\right).</math> फिर सामान्यीकृत हेस्सियन के रूप में है <math>\frac{\partial^2f}{\partial z_i \partial\overline{z_j}}.</math> यदि <math>f</math> एन-आयामी कॉची-रीमैन समीकरणों को संतुष्ट करता है, कॉची-रीमैन स्थितियां फिर मिश्रित हेसियन आव्यूह के समान रूप में शून्य है। | |||
=== रीमैनियन मैनिफोल्ड्स का सामान्यीकरण === | |||
=== | मान लीजिए कि <math>(M,g)</math> एक [[रीमैनियन मैनिफोल्ड]] के रूप में बनें होते है और <math>\nabla</math> इसका [[लेवी-सिविटा कनेक्शन]] के रूप में होते है। माना कि <math>f : M \to \R</math> एक सुचारु फलन है इस प्रकार हेस्सियन टेंसर को परिभाषित करते है<math display=block>\operatorname{Hess}(f) \in \Gamma\left(T^*M \otimes T^*M\right) \quad \text{ by } \quad \operatorname{Hess}(f) := \nabla \nabla f = \nabla df,</math> | ||
जहां यह इस तथ्य का लाभ उठाता है कि किसी फलन का पहला सहसंयोजक अवकलज उसके सामान्य अंतर के समान है और इस प्रकार स्थानीय निर्देशांक को चुना जाता है <math>\left\{x^i\right\}</math> हेस्सियन के लिए एक स्थानीय अभिव्यक्ति देता है<math display="block">\operatorname{Hess}(f)=\nabla_i\, \partial_j f \ dx^i \!\otimes\! dx^j = \left(\frac{\partial^2 f}{\partial x^i \partial x^j} - \Gamma_{ij}^k \frac{\partial f}{\partial x^k}\right) dx^i \otimes dx^j</math> | |||
जहां <math>\Gamma^k_{ij}</math> कनेक्शन के क्रिस्टोफ़ेल प्रतीक के रूप में हैं। हेस्सियन के लिए अन्य समकक्ष रूप इस प्रकार दिए गए हैं,<math display="block">\operatorname{Hess}(f)(X, Y) = \langle \nabla_X \operatorname{grad} f,Y \rangle \quad \text{ and } \quad \operatorname{Hess}(f)(X,Y) = X(Yf)-df(\nabla_XY).</math> | |||
== यह भी देखें == | == यह भी देखें == | ||
{{Portal|Mathematics}} | |||
* | * हेसियन आव्यूह का सारणीक एक सहसंयोजक है; बाइनरी फॉर्म का अपरिवर्तनीय देखें | ||
* | * ध्रुवीकरण पहचान, हेसियन से जुड़ी तीव्र गणनाओं के लिए उपयोगी। | ||
* | * {{annotated link|Jacobian matrix}} | ||
* {{annotated link| | * {{annotated link|Hessian equation}} | ||
== टिप्पणियाँ == | == टिप्पणियाँ == | ||
Line 165: | Line 149: | ||
* {{springer|title=Hessian of a function|id=p/h047160}} | * {{springer|title=Hessian of a function|id=p/h047160}} | ||
* {{MathWorld|Hessian|Hessian}} | * {{MathWorld|Hessian|Hessian}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
Line 177: | Line 159: | ||
[[Category:Collapse templates]] | [[Category:Collapse templates]] | ||
[[Category:Created On 24/11/2022]] | [[Category:Created On 24/11/2022]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | [[Category:Machine Translated Page]] | ||
[[Category:Navigational boxes| ]] | [[Category:Navigational boxes| ]] | ||
[[Category:Navigational boxes without horizontal lists]] | [[Category:Navigational boxes without horizontal lists]] | ||
[[Category:Pages using sidebar with the child parameter]] | |||
[[Category:Pages with empty portal template]] | [[Category:Pages with empty portal template]] | ||
[[Category:Pages with script errors]] | [[Category:Pages with script errors]] | ||
Line 186: | Line 170: | ||
[[Category:Sidebars with styles needing conversion]] | [[Category:Sidebars with styles needing conversion]] | ||
[[Category:Template documentation pages|Documentation/doc]] | [[Category:Template documentation pages|Documentation/doc]] | ||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates based on the Citation/CS1 Lua module]] | [[Category:Templates based on the Citation/CS1 Lua module]] | ||
[[Category:Templates generating COinS|Cite web]] | [[Category:Templates generating COinS|Cite web]] | ||
[[Category:Templates generating microformats]] | [[Category:Templates generating microformats]] | ||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | [[Category:Templates that are not mobile friendly]] | ||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates used by AutoWikiBrowser|Cite web]] | [[Category:Templates used by AutoWikiBrowser|Cite web]] | ||
[[Category:Templates using TemplateData]] | [[Category:Templates using TemplateData]] |
Revision as of 17:17, 12 July 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
गणित में, हेसियन आव्यूह सामान्यतः एक अदिश वैल्यू फलन (गणित) या अदिश क्षेत्र के द्वितीय क्रम के आंशिक अवकलज का एक वर्ग आव्यूह होता है। यह कई चर वाले फलन की स्थानीय वक्रता का वर्णन करता है। हेसियन आव्यूह को 19वीं शताब्दी में जर्मन गणितज्ञ लुडविग ओटो हेस्से द्वारा विकसित किया गया था और बाद में इसका नाम उनके नाम पर रखा गया था। हेस्से ने मूलतः कार्यात्मक सारणीक शब्द का प्रयोग किया था।
परिभाषाएँ और गुण
माना कि एक सदिश को इनपुट के रूप में लेने वाला एक फलन के रूप में होता है और एक अदिश राशि का आउटपुट के रूप में है। यदि सभी दूसरे क्रम के आंशिक अवकलज एक्सिस्ट के रूप में होते है, तो का हेस्सियन आव्यूह एक वर्ग का आव्यूह है। जिसे सामान्यतः परिभाषित और व्यवस्थित किया जाता है।
हेसियन आव्यूह के सारणीक को हेसियन सारणीक कहा जाता है।[1]
किसी फलन का हेसियन आव्यूह फलन के ग्रेडियेंट के जैकोबियन आव्यूह का स्थानान्तरण है; जो कि के रूप में होता है।
अनुप्रयोग
इन्फ्लेक्शन बिंदु
यदि तीन चरों वाला एक होमोजीनीअस बहुपद है और इस प्रकार समीकरण एक समतल प्रक्षेप्य वक्र का इम्प्लिसिट समीकरण है। वक्र के इम्प्लिसिट बिंदु पूर्णतया नॉन सिंगुलर बिंदु के रूप में होते है, जहां हेसियन सारणीक शून्य रूप में होते है। यह बेज़ौट के प्रमेय का अनुसरण करता है और इस प्रकार घन समतल वक्र का इम्प्लिसिट बिंदु अधिकतम होता है। क्योंकि हेस्सियन सारणीक बहुपद की घात है
द्वितीय-अवकलज परीक्षण
कॉन्वेक्स फलन का हेसियन आव्यूह धनात्मक सेमी डेफिनिट आव्यूह के रूप में होता है। इस गुणधर्म को परिष्कृत करने से हमें यह परीक्षण करने की अनुमति मिलती है कि क्या एक महत्वपूर्ण गणित बिंदु एक स्थानीय अधिकतम या स्थानीय न्यूनतम इस प्रकार का एक सैडल बिंदु होता है।
यदि हेस्सियन धनात्मक -निश्चित आव्यूह है, तो , पर एक पृथक स्थानीय न्यूनतम के रूप में प्राप्त होता है। यदि हेस्सियन पर ऋणात्मक-निश्चित है, तो पर एक पृथक स्थानीय अधिकतम प्राप्त करता है। यदि हेसियन में धनात्मक और ऋणात्मक दोनों अभिलक्षणिक मान होते है, तो , के लिए एक सैडल बिंदु है। अन्यथा परीक्षण अनिर्णायक रूप में होते है, इसका तात्पर्य यह है कि स्थानीय न्यूनतम पर हेसियन धनात्मक-अर्धनिश्चित है और स्थानीय अधिकतम पर हेसियन ऋणात्मक-अर्धनिश्चित है।
धनात्मक सेमी डेफिनिट और ऋणात्मक सेमी डेफिनिट हेसियन के लिए परीक्षण अनिर्णायक रूप में होता है और इस प्रकार एक महत्वपूर्ण बिंदु जहां हेसियन सेमी डेफिनिट है लेकिन निश्चित नहीं है वह स्थानीय चरम या सैडल बिंदु होता है। चूंकि, मोर्स सिद्धांत के दृष्टिकोण से और भी बहुत कुछ कहा जा सकता है।
एक और दो चर के फलनों के लिए दूसरा अवकलज परीक्षण सामान्य स्थिति की तुलना में सरल है। एक चर में, हेसियन में बिल्कुल एक दूसरा अवकलज होता है। यदि यह धनात्मक है, तो एक स्थानीय न्यूनतम है और यदि यह ऋणात्मक है तो एक स्थानीय अधिकतम है। यदि यह शून्य है तो परीक्षण अनिर्णायक रूप में होता है। दो चरों में सारणीक का उपयोग किया जा सकता है, क्योंकि सारणीक अभिलक्षणिक मान का उत्पाद है। यदि यह धनात्मक है तो अभिलक्षणिक मान दोनों धनात्मक या दोनों ऋणात्मक रूप में होते है। यदि यह ऋणात्मक है तो दोनों अभिलक्षणिक मान के भिन्न -भिन्न संकेत हैं। यदि यह शून्य है तो दूसरा-अवकलज परीक्षण अनिर्णायक रूप में होता है।
समान रूप से, दूसरे क्रम की स्थितियाँ जो स्थानीय न्यूनतम या अधिकतम के लिए पर्याप्त रूप में होती है, हेसियन के सिद्धांत ऊपरी-बाएँ माइनर रैखिक बीजगणित उप समुच्चय के डीटरमीनेट के अनुक्रम के संदर्भ में व्यक्त की जा सकती हैं; ये स्थितियाँ प्रतिबंधित अनुकूलन के लिए सीमावर्ती हेसियन के लिए अगले भाग में दी गई स्थितियों का एक विशेष स्थितिया है और इस प्रकार वह स्थिति जिसमें बाधाओं की संख्या शून्य है। विशेष रूप से, न्यूनतम के लिए पर्याप्त शर्त यह है कि ये सभी प्रमुख अवयस्क धनात्मक रूप में होते है, जबकि अधिकतम के लिए पर्याप्त शर्त यह है कि अवयस्क संकेत में वैकल्पिक, माइनर ऋणात्मक रूप में होते है।
क्रिटिकल बिंदु
यदि किसी फलन का ग्रेडिएंट आंशिक अवकलज का सदिश है और किसी बिंदु पर शून्य है। तो का एक क्रिटिकल बिंदु या स्टेशनरी बिंदु है और इस प्रकार हेस्सियन का सारणीक कुछ सन्दर्भों में इसे डिस्क्रिमिनैंट कहा जाता है। यदि यह सारणिक शून्य है तो को डीजेनेरेट क्रिटिकल बिंदु कहा जाता है या का एक नॉन मोर्स महत्वपूर्ण बिंदु है, जो कि अन्यथा यह नॉन डीजेनेरेट है, और को मोर्स क्रिटिकल बिंदु कहा जाता है।
हेस्सियन आव्यूह मोर्स सिद्धांत और कैटास्ट्रोफे सिद्धांत में एक महत्वपूर्ण भूमिका निभाता है, क्योंकि इसके आव्यूह के कर्नेल और अभिलक्षणिक मान महत्वपूर्ण बिंदुओं के वर्गीकरण की अनुमति देते हैं।[2][3][4]
हेसियन आव्यूह का डीटरमीनेट जब किसी फलन के महत्वपूर्ण बिंदु पर मूल्यांकन किया जाता है, तो फलन के गॉसियन वक्रता के बराबर होता है, जिसे मैनिफोल्ड के रूप में माना जाता है। उस बिंदु पर हेसियन के अभिलक्षणिक मान फलन की प्रमुख वक्रताएं होती है और अभिलक्षणिक सदिश वक्रता की प्रमुख दिशाओ के रूप में होती है। गॉसियन वक्रता § प्रमुख वक्रता से संबंध होता है।
ऑप्टिमाइजेशन का उपयोग
हेसियन आव्यूह का उपयोग न्यूटन प्रकार की विधियों के भीतर बड़े पैमाने पर गणितीय अनुकूलन समस्याओं में किया जाता है क्योंकि वे एक फलन के स्थानीय टेलर विस्तार के द्विघात शब्द के गुणांक के रूप में होते है। वह इस प्रकार है,
इस तरह के अनुमान इस तथ्य का उपयोग कर सकते हैं कि एक अनुकूलन कलन विधि हेसियन का उपयोग केवल एक रैखिक ऑपरेटर के रूप में करता है और पहले यह ध्यान देकर आगे बढ़ते है कि हेस्सियन ग्रेडिएंट के स्थानीय विस्तार के रूप में भी दिखाई देता है।
विशेष रूप से यादृच्छिक खोज अनुमान के संबंध में, ईवलूशन रणनीति का कोवेरीअन्स आव्यूह एक अदिश कारक और छोटे यादृच्छिक उतार-चढ़ाव तक हेसियन आव्यूह के व्युत्क्रम के अनुकूल होता है। यह परिणाम औपचारिक रूप से एकल पैरेंट रणनीति और एक स्थिर मॉडल के लिए सिद्ध किया जाता है, जैसे-जैसे जनसंख्या का आकार बढ़ता है द्विघात सन्निकटन पर निर्भर होता है।[7]
अन्य अनुप्रयोग
हेसियन मैट्रिक्स का उपयोग आमतौर पर इमेज प्रोसेसिंग और कंप्यूटर विज़न में इमेज प्रोसेसिंग ऑपरेटरों को व्यक्त करने के लिए किया जाता है, गौसियन (एलओजी) ब्लॉब डिटेक्टर के लाप्लासियन को हेसियन (डीओएच) ब्लॉब डिटेक्टर और अदिश स्थान के डीटरमीनेट के रूप में देखें जाते है। इसका उपयोग अवरक्त स्पेक्ट्रोस्कोपी में विभिन्न आणविक आवृत्तियों की गणना करने के लिए सामान्य मोड विश्लेषण में किया जा सकता है।[8] इसका उपयोग स्थानीय संवेदनशीलता और सांख्यिकीय डायग्नोस्टिक में भी किया जाता है।[9]
सामान्यीकरण
बॉर्डर हेस्सियन
कुछ प्रतिबंधित ऑप्टिमाइज़ समस्याओं में दूसरे-अवकलज परीक्षण के लिए बॉर्डर वाले हेसियन का उपयोग किया जाता है। पहले से विचार किए गए फलन को देखते हुए किया गया था, लेकिन एक कॉन्सट्रेंट फलन को जोड़ा जाता है और इस प्रकार बॉर्डर हेसियन लैग्रेंज गुणक का हेसियन है [10]
उपरोक्त नियम बताते हैं कि एक्स्ट्रेमा को एक धनात्मक निश्चित या ऋणात्मक निश्चित हेसियन द्वारा चित्रित किया जाता है, एक नॉन -सिंगुलर हेसियन के साथ महत्वपूर्ण बिंदुओं के बीच यह लागू नहीं हो सकता है। क्योंकि एक बॉर्डर हेसियन न तो ऋणात्मक निश्चित हो सकता है और न ही धनात्मक निश्चित हो सकता है, जैसा कि यदि कोई भी सदिश है जिसकी एकमात्र शून्य प्रविष्टि इसकी पहली है।
दूसरे अवकलज परीक्षण यहां सीमाबद्ध हेसियन के एक निश्चित समूह के डीटरमीनेट के संकेत पर प्रतिबंध लगा देता है और इस प्रकार सीमावर्ती हेस्सियन का उप समुच्चय,[11] सहज रूप से, बाधाओं को समस्या को कम करने के बारे में सोचा जा सकता है जिससे कि मुक्त चर उदाहरण के लिए महत्तम मूल्यांकन के अधीन के महत्तम मूल्यांकन को बिना किसी बाधा के महत्तम मूल्यांकन तक कम किया जा सकता है।
विशेष रूप से, बॉर्डर हेसियन के प्रमुख माइनर ऊपरी बाएँ के लिए लिए न्यायसंगत उप समुच्चय के डीटरमीनेट के अनुक्रम पर संकेत की शर्तें लगाई जाती हैं, जिसके लिए सबसे पहले मुख्य माइनर की उपेक्षा की जाती है और इस प्रकार सबसे छोटे माइनर को पहले काट दिया जाता है पंक्तियाँ और स्तंभ, अगले में पहले काटे गए पंक्तियाँ और स्तंभ और इसी तरह, अंतिम संपूर्ण बॉर्डर हेसियन के रूप में होते है; यदि से बड़ा है तो सबसे छोटा अग्रणी प्रमुख माइनर हेसियन के रूप में है।[12] इस प्रकार विचार करने के लिए माइनर, प्रत्येक का मूल्यांकन विशिष्ट बिंदु पर कैंडिडेट समाधान कैलकुलस के रूप में किया जा रहा है। चूंकि स्थानीय अधिकतम के लिए पर्याप्त स्थिति यह है कि ये लघु अवयस्क चिन्ह वाले सबसे छोटे चिन्ह के साथ वैकल्पिक रूप से साइन इन करते हैं और इस प्रकार स्थानीय न्यूनतम के लिए पर्याप्त स्थिति यह है कि इन सभी माइनर का चिन्ह है जिससे कि अप्रतिबंधित स्थितियों में बिना सीमा वाले हेसियन के लिए क्रमशः ऋणात्मक निश्चित या धनात्मक निश्चित होने की शर्तों से मेल खाती हैं।
सदिश मान फलन
यदि के अतिरिक्त एक सदिश क्षेत्र है, तो यह है
मिश्रित स्थिति का सामान्यीकरण
कई जटिल चर के संदर्भ में, हेस्सियन को सामान्यीकृत किया जा सकता है। मान लीजिए कि और लिखा फिर सामान्यीकृत हेस्सियन के रूप में है यदि एन-आयामी कॉची-रीमैन समीकरणों को संतुष्ट करता है, कॉची-रीमैन स्थितियां फिर मिश्रित हेसियन आव्यूह के समान रूप में शून्य है।
रीमैनियन मैनिफोल्ड्स का सामान्यीकरण
मान लीजिए कि एक रीमैनियन मैनिफोल्ड के रूप में बनें होते है और इसका लेवी-सिविटा कनेक्शन के रूप में होते है। माना कि एक सुचारु फलन है इस प्रकार हेस्सियन टेंसर को परिभाषित करते है
जहां यह इस तथ्य का लाभ उठाता है कि किसी फलन का पहला सहसंयोजक अवकलज उसके सामान्य अंतर के समान है और इस प्रकार स्थानीय निर्देशांक को चुना जाता है हेस्सियन के लिए एक स्थानीय अभिव्यक्ति देता है
जहां कनेक्शन के क्रिस्टोफ़ेल प्रतीक के रूप में हैं। हेस्सियन के लिए अन्य समकक्ष रूप इस प्रकार दिए गए हैं,
यह भी देखें
- हेसियन आव्यूह का सारणीक एक सहसंयोजक है; बाइनरी फॉर्म का अपरिवर्तनीय देखें
- ध्रुवीकरण पहचान, हेसियन से जुड़ी तीव्र गणनाओं के लिए उपयोगी।
- Jacobian matrix
- Hessian equation
टिप्पणियाँ
- ↑ Binmore, Ken; Davies, Joan (2007). कैलकुलस अवधारणाएँ और विधियाँ. Cambridge University Press. p. 190. ISBN 978-0-521-77541-0. OCLC 717598615.
- ↑ Callahan, James J. (2010). Advanced Calculus: A Geometric View (in English). Springer Science & Business Media. p. 248. ISBN 978-1-4419-7332-0.
- ↑ Casciaro, B.; Fortunato, D.; Francaviglia, M.; Masiello, A., eds. (2011). सामान्य सापेक्षता में हालिया विकास (in English). Springer Science & Business Media. p. 178. ISBN 9788847021136.
- ↑ Domenico P. L. Castrigiano; Sandra A. Hayes (2004). प्रलय सिद्धांत. Westview Press. p. 18. ISBN 978-0-8133-4126-2.
- ↑ Nocedal, Jorge; Wright, Stephen (2000). संख्यात्मक अनुकूलन. Springer Verlag. ISBN 978-0-387-98793-4.
- ↑ Pearlmutter, Barak A. (1994). "हेस्सियन द्वारा तेजी से सटीक गुणा" (PDF). Neural Computation. 6 (1): 147–160. doi:10.1162/neco.1994.6.1.147. S2CID 1251969.
- ↑ Shir, O.M.; A. Yehudayoff (2020). "On the covariance-Hessian relation in evolution strategies". Theoretical Computer Science. Elsevier. 801: 157–174. doi:10.1016/j.tcs.2019.09.002.
- ↑ Mott, Adam J.; Rez, Peter (December 24, 2014). "प्रोटीन के अवरक्त स्पेक्ट्रा की गणना". European Biophysics Journal (in English). 44 (3): 103–112. doi:10.1007/s00249-014-1005-6. ISSN 0175-7571. PMID 25538002. S2CID 2945423.
- ↑ Liu, Shuangzhe; Leiva, Victor; Zhuang, Dan; Ma, Tiefeng; Figueroa-Zúñiga, Jorge I. (March 2022). "मल्टीवेरिएट लीनियर मॉडल और इसके निदान में अनुप्रयोगों के साथ मैट्रिक्स डिफरेंशियल कैलकुलस". Journal of Multivariate Analysis. 188: 104849. doi:10.1016/j.jmva.2021.104849.
- ↑ Hallam, Arne (October 7, 2004). "Econ 500: Quantitative Methods in Economic Analysis I" (PDF). Iowa State.
- ↑ Neudecker, Heinz; Magnus, Jan R. (1988). सांख्यिकी और अर्थमिति में अनुप्रयोगों के साथ मैट्रिक्स डिफरेंशियल कैलकुलस. New York: John Wiley & Sons. p. 136. ISBN 978-0-471-91516-4.
- ↑ Chiang, Alpha C. (1984). गणितीय अर्थशास्त्र की मौलिक विधियाँ (Third ed.). McGraw-Hill. p. 386. ISBN 978-0-07-010813-4.
अग्रिम पठन
- Lewis, David W. (1991). Matrix Theory. Singapore: World Scientific. ISBN 978-981-02-0689-5.
- Magnus, Jan R.; Neudecker, Heinz (1999). "The Second Differential". Matrix Differential Calculus : With Applications in Statistics and Econometrics (Revised ed.). New York: Wiley. pp. 99–115. ISBN 0-471-98633-X.