समानांतर परिवहन: Difference between revisions
No edit summary |
No edit summary |
||
Line 54: | Line 54: | ||
== रीमानियन ज्यामिति में समानांतर परिवहन== | == रीमानियन ज्यामिति में समानांतर परिवहन== | ||
मिथ्या रिमेंनियन ज्यामिति में [[मेट्रिक कनेक्शन]] एक ऐसा कनेक्शन है जिसके समांतर परिवहन के मापन में दूरीक प्रदिश को सुरक्षित रखा जाता है। इस प्रकार एक मीट्रिक कनेक्शन कोई भी कनेक्शन Γ है जैसे कि, किन्हीं दो वैक्टरों के लिए एक्स, वाई ∈ टी के लिए<sub>γ(s)</sub> | |||
:<math>\langle\Gamma(\gamma)_s^tX,\Gamma(\gamma)_s^tY\rangle_{\gamma(t)}=\langle X,Y\rangle_{\gamma(s)}.</math> | :<math>\langle\Gamma(\gamma)_s^tX,\Gamma(\gamma)_s^tY\rangle_{\gamma(t)}=\langle X,Y\rangle_{\gamma(s)}.</math> | ||
व्युत्पन्न को t = 0 पर लेते हुए, संबंधित अवकल संकारक ∇ को मीट्रिक के संबंध में एक उत्पाद नियम को पूरा करना चाहिए: | व्युत्पन्न को t = 0 पर लेते हुए, संबंधित अवकल संकारक ∇ को मीट्रिक के संबंध में एक उत्पाद नियम को पूरा करना चाहिए: | ||
:<math>Z\langle X,Y\rangle = \langle \nabla_ZX,Y\rangle + \langle X,\nabla_Z Y\rangle.</math> | :<math>Z\langle X,Y\rangle = \langle \nabla_ZX,Y\rangle + \langle X,\nabla_Z Y\rangle.</math> | ||
Line 62: | Line 62: | ||
===भूगणित === | ===भूगणित === | ||
यदि ∇ एक मीट्रिक कनेक्शन है, तो एफाइन जियोडेसिक्स रिमेंनियन ज्यामिति के सामान्य जियोडेसिक्स हैं और स्थानीय रूप से दूरी को कम करने वाले वक्र हैं। अधिक सटीक | यदि ∇ एक मीट्रिक कनेक्शन है, तो एफाइन जियोडेसिक्स रिमेंनियन ज्यामिति के सामान्य जियोडेसिक्स हैं और स्थानीय रूप से दूरी को कम करने वाले वक्र हैं। अधिक सटीक, पहले ध्यान दें कि यदि γ: I → M, जहां, जहां I एक खुला अंतराल है,एक जियोडेसिक है, तो वास्तव में,इसका मानदंड <math>\dot\gamma</math> I पर स्थिर है। | ||
:<math>\frac{d}{dt}\langle\dot\gamma(t),\dot\gamma(t)\rangle = 2\langle\nabla_{\dot\gamma(t)}\dot\gamma(t),\dot\gamma(t)\rangle =0.</math> | :<math>\frac{d}{dt}\langle\dot\gamma(t),\dot\gamma(t)\rangle = 2\langle\nabla_{\dot\gamma(t)}\dot\gamma(t),\dot\gamma(t)\rangle =0.</math> | ||
यह गॉस | यह गॉस के लेम्मा के एक आवेदन से निम्नानुसार है कि अगर ए का आदर्श है <math>\dot\gamma(t)</math> तो वक्र पर दो करीब पर्याप्त अंक के बीच मीट्रिक द्वारा प्रेरित दूरी γ(t<sub>1</sub>) और γ (टी<sub>2</sub>), द्वारा दि गई है। | ||
:<math>\mbox{dist}\big(\gamma(t_1),\gamma(t_2)\big) = A|t_1 - t_2|.</math> | :<math>\mbox{dist}\big(\gamma(t_1),\gamma(t_2)\big) = A|t_1 - t_2|.</math> | ||
ऊपर दिया गया सूत्र उन बिंदुओं के लिए सही नहीं हो सकता है जो पर्याप्त रूप से पास नहीं हैं क्योंकि जियोडेसिक उदाहरण के लिए कई गुना लपेट सकता है (उदाहरण के लिए एक गोले पर)। | ऊपर दिया गया सूत्र उन बिंदुओं के लिए सही नहीं हो सकता है जो पर्याप्त रूप से पास नहीं हैं क्योंकि जियोडेसिक उदाहरण के लिए कई गुना लपेट सकता है (उदाहरण के लिए एक गोले पर)। | ||
== सामान्यीकरण == | == सामान्यीकरण == | ||
समांतर परिवहन को अन्य प्रकार के संयोजनों के लिए अधिक सामान्य स्थिति में परिभाषित किया जा सकता है न कि सदिश पूल में वर्णित। एक सामान्यीकरण प्रमुख कनेक्शनों ([[कोबाशी और नोमिजो]] [[1996]], वॉल्यूम 1, अध्याय द्वितीय) के लिए है। च → एम संरचना झूठ समूह जी और एक प्रमुख कनेक्शन ω के साथ कई गुना मीटर पर एक प्रमुख बंडल हो। वेक्टर बंडलों के मामले में, पी पर एक प्रमुख कनेक्शन ω परिभाषित करता है, एम में प्रत्येक वक्र γ के लिए, एक मैपिंग | समांतर परिवहन को अन्य प्रकार के संयोजनों के लिए अधिक सामान्य स्थिति में परिभाषित किया जा सकता है न कि सदिश पूल में वर्णित। एक सामान्यीकरण प्रमुख कनेक्शनों ([[कोबाशी और नोमिजो]] [[1996]], वॉल्यूम 1, अध्याय द्वितीय) के लिए है। च → एम संरचना झूठ समूह जी और एक प्रमुख कनेक्शन ω के साथ कई गुना मीटर पर एक प्रमुख बंडल हो। वेक्टर बंडलों के मामले में, पी पर एक प्रमुख कनेक्शन ω परिभाषित करता है, एम में प्रत्येक वक्र γ के लिए, एक मैपिंग | ||
:<math>\Gamma(\gamma)_s^t : P_{\gamma(s)} \rightarrow P_{\gamma(t)}</math> | :<math>\Gamma(\gamma)_s^t : P_{\gamma(s)} \rightarrow P_{\gamma(t)}</math> | ||
γ(s) से अधिक γ(t) से अधिक | फाइबर से γ(s) से अधिक γ(t) से अधिक, जो [[सजातीय स्थानों]] का एक समरूपता है:अर्थात। <math>\Gamma_{\gamma(s)} gu = g\Gamma_{\gamma(s)}</math> प्रत्येक g∈G के लिए। | ||
समानांतर | फिर से समानांतर यातायात के सामान्यीकरण भी संभव हो सकते हैं। अहरमैन संयोजन के संदर्भ में जहां कनेक्शन स्पर्शरेखा रिक्त स्थान के "क्षैतिज उठाने" की विशेष धारणा पर निर्भर करता है,कोई क्षैतिज लिफ्टों के माध्यम से समानांतर परिवहन को परिभाषित कर सकता है। कार्टन कनेक्शन अतिरिक्त संरचना के साथ एह्रेसमैन कनेक्शन हैं जो समानांतर परिवहन को कई गुना में वक्र के साथ एक निश्चित मॉडल स्थान "रोलिंग" मानचित्र के रूप में सोचने की अनुमति देता है। इस रोलिंग को [[विकास (अंतर ज्यामिति)]] कहा जाता है। | ||
== सन्निकटन: | == सन्निकटन: शिल्ड की सीढ़ी == | ||
[[Image:Schild's ladder step 4.svg|thumb|right|शिल्ड की सीढ़ी के दो पायदान। खंड ए<sub>1</sub>X<sub>1</sub> और ए<sub>2</sub>X<sub>2</sub> ए के समानांतर परिवहन के पहले क्रम का एक अनुमान है<sub>0</sub>X<sub>0</sub> वक्र के साथ।]] | [[Image:Schild's ladder step 4.svg|thumb|right|शिल्ड की सीढ़ी के दो पायदान। खंड ए<sub>1</sub>X<sub>1</sub> और ए<sub>2</sub>X<sub>2</sub> ए के समानांतर परिवहन के पहले क्रम का एक अनुमान है<sub>0</sub>X<sub>0</sub> वक्र के साथ।]] | ||
{{main|शिल्ड की सीढ़ी}} | {{main|शिल्ड की सीढ़ी}} |
Revision as of 13:52, 9 December 2022
ज्यामिति में समांतर परिवहन (या समांतर अनुवाद[lower-alpha 1]) कई गुना में सरल वक्रों के साथ ज्यामितीय डेटा के परिवहन का एक तरीका है। अगर विविध एक अफाइन कनेक्शन (एक प्रकार का व्युत्पन्न या स्पर्शरेखा बंडल पर कनेक्शन) से लैस है, तब यह संबंध एक को वक्र के साथ कई गुना के सदिश परिवहन की अनुमति देता है ताकि वे कनेक्शन के सापेक्ष समानांतर रहें।
एक कनेक्शन के लिए समानांतर परिवहन इस प्रकार एक तरीका प्रदान करता है, कुछ मायने में, एक वक्र के साथ कई गुना स्थानीय ज्यामिति को खिसकाना: जो पास के बिन्दुओं की ज्यामिती को जोड़ने की है। समानांतर परिवहन के कई विचार उपलब्ध हो सकते हैं,लेकिन एक - एक वक्र पर बिंदुओं की ज्यामिति को जोड़ने का एक तरीका - एक कनेक्शन प्रदान करने के समान है। वास्तव में, संबंध की सामान्य धारणा समानांतर परिवहन का सूक्ष्मातिसूक्ष्म एनालॉग है। या इसके विपरीत समानांतर परिवहन एक कनेक्शन की स्थानीय प्राप्ति है।
जैसा कि समानांतर परिवहन से कनेक्शन का स्थानीय रूप से अहसास होता है, यह स्थानीय वक्रता का निर्माण भी करता है जिसे होलोनोमी कहते हैं। एम्ब्रोस गायक प्रमेय वक्रता और होलोनोमी के बीच इस संबंध को स्पष्ट करता है।
कनेक्शन की अन्य धारणाएँ भी अपनी समानांतर परिवहन प्रणालियों से सुसज्जित होती हैं। उदाहरणार्थ, एक सदिश पूल में कोसज़ुल संयोजन, वैक्टर की समानांतर परिवहन की अपेक्षा बहुत अधिक समान प्रकार के व्युत्पन्न के साथ भी उपलब्ध कराता है। एक एह्रेस्मान या कार्टन कनेक्शन कई गुना से मुख्य बंडल के कुल स्थान तक घटता उठाने की आपूर्ति करता है। इस प्रकार की वक्र उत्थापन कभी कभी संदर्भ संदर्भों का समानांतर परिवहन माना जाता है।
वेक्टर बंडल पर समानांतर परिवहन
चलो एम एक चिकनी कई गुना हो। चलो E→M सहसंयोजक व्युत्पन्न के साथ एक सदिश बंडल बनें ∇ और γ: I→M एक खुले अंतराल I द्वारा परिचालित एक वक्र। एक खंड (फाइबर बंडल) का साथ में γ को 'समानांतर' कहा जाता है यदि
उदाहरण के तौर पर अगर कई गुना के स्पर्शरेखा बंडल में एक स्पर्शरेखा स्थान है, इस अभिव्यक्ति का अर्थ है कि, प्रत्येक के लिए अंतराल में, स्पर्शरेखा वैक्टर में स्थिर होते हैं (व्युत्पन्न गायब हो जाते हैं) जब से एक अत्यल्प विस्थापन होता है स्पर्शरेखा वेक्टर की दिशा में पूरा हो गया है।
मान लीजिए कि हमें एक तत्व ई दिया गया है0 ∈ ईP पी = γ (0) ∈ एम पर, एक खंड के बजाय। ई का 'समानांतर परिवहन'0 साथ में γ ई का विस्तार है0 γ पर एक समानांतर खंड X के लिए। अधिक सटीक रूप से, X γ के साथ E का अद्वितीय भाग है जैसे कि
ध्यान दें कि किसी भी दिए गए समन्वय पैच में, (1) प्रारंभिक स्थिति (2) द्वारा दी गई एक साधारण अंतर समीकरण को परिभाषित करता है। इस प्रकार पिकार्ड-लिंडेलोफ प्रमेय समाधान के अस्तित्व और विशिष्टता की गारंटी देता है।
इस प्रकार कनेक्शन ∇ वक्र के साथ तंतुओं के चलने वाले तत्वों का एक तरीका परिभाषित करता है, और यह वक्र के साथ बिंदुओं पर तंतुओं के बीच रैखिक समरूपता प्रदान करता है:
सदिश स्थान से γ(s) के ऊपर स्थित γ(t) के ऊपर। इस समरूपता को वक्र से जुड़े 'समानांतर परिवहन' मानचित्र के रूप में जाना जाता है। इस तरह से प्राप्त तंतुओं के बीच समरूपता, सामान्य रूप से, वक्र की पसंद पर निर्भर करती है: यदि वे नहीं करते हैं, तो प्रत्येक वक्र के साथ समानांतर परिवहन का उपयोग सभी एम पर ई के समानांतर वर्गों को परिभाषित करने के लिए किया जा सकता है। यह केवल संभव है यदि ∇ का 'वक्रता रूप' शून्य है।
विशेष रूप से, बिंदु x पर शुरू होने वाले एक बंद वक्र के समानांतर समानांतर परिवहन x पर स्पर्शरेखा स्थान के एक automorphism को परिभाषित करता है जो आवश्यक रूप से तुच्छ नहीं है। एक्स पर आधारित सभी बंद वक्रों द्वारा परिभाषित समांतर परिवहन ऑटोमोर्फिज्म एक परिवर्तन समूह बनाते हैं जिसे एक्स पर ∇ का होलोनॉमी समूह कहा जाता है। इस समूह और x पर ∇ की वक्रता के मान के बीच घनिष्ठ संबंध है; यह होलोनॉमी#एम्ब्रोस–सिंगर प्रमेय|एम्ब्रोस–सिंगर होलोनॉमी प्रमेय की सामग्री है।
समानांतर परिवहन से कनेक्शन पुनर्प्राप्त करना
एक सहसंयोजक व्युत्पन्न ∇ दिया गया है, वक्र γ के साथ समानांतर परिवहन स्थिति को एकीकृत करके प्राप्त किया जाता है . इसके विपरीत, यदि समानांतर परिवहन की एक उपयुक्त धारणा उपलब्ध है, तो विभेदीकरण द्वारा एक संगत संबंध प्राप्त किया जा सकता है। यह दृष्टिकोण, अनिवार्य रूप से, के कारण है Knebelman (1951); देखना Guggenheimer (1977). Lumiste (2001) भी यह तरीका अपनाते हैं।
मैपिंग के संग्रह के कई गुना में प्रत्येक वक्र γ के लिए एक असाइनमेंट पर विचार करें
ऐसा है कि
- , ई की पहचान परिवर्तनγ(s).
- Γ की γ, s, और t पर निर्भरता सहज है।
स्थिति 3 में चिकनाई की धारणा को ठीक करना थोड़ा मुश्किल है (फाइबर बंडलों में समानांतर परिवहन की चर्चा नीचे देखें)। विशेष रूप से, कोबायाशी और नोमिजु जैसे आधुनिक लेखक आम तौर पर कनेक्शन के समानांतर परिवहन को किसी अन्य अर्थ में कनेक्शन से आने के रूप में देखते हैं, जहां सहजता अधिक आसानी से व्यक्त की जाती है।
फिर भी, समानांतर परिवहन के लिए इस तरह के एक नियम को देखते हुए, ई में संबद्ध अतिसूक्ष्म कनेक्शन को निम्नानुसार पुनर्प्राप्त करना संभव है। γ प्रारंभिक बिंदु γ(0) और प्रारंभिक स्पर्शरेखा सदिश X = γ′(0) के साथ एम में एक भिन्न वक्र हो। यदि V, γ के ऊपर E का एक खंड है, तो मान लीजिए
यह संबद्ध अत्यल्प संबंध को परिभाषित करता है ∇ ई पर। कोई इस अतिसूक्ष्म संबंध से समान समानांतर परिवहन Γ पुनर्प्राप्त करता है।
विशेष मामला: स्पर्शरेखा बंडल
चलो एम एक चिकनी कई गुना हो। फिर एम के स्पर्शरेखा बंडल पर एक कनेक्शन, जिसे एफ़िन कनेक्शन कहा जाता है, वक्रों के एक वर्ग को अलग करता है जिसे (एफ़ाइन) geodesic्स कहा जाता है।[2] एक चिकनी वक्र γ: I → M एक 'affine geodesic' है यदि समानांतर ले जाया जाता है , वह है
समय के संबंध में व्युत्पन्न लेने पर, यह अधिक परिचित रूप लेता है
रीमानियन ज्यामिति में समानांतर परिवहन
मिथ्या रिमेंनियन ज्यामिति में मेट्रिक कनेक्शन एक ऐसा कनेक्शन है जिसके समांतर परिवहन के मापन में दूरीक प्रदिश को सुरक्षित रखा जाता है। इस प्रकार एक मीट्रिक कनेक्शन कोई भी कनेक्शन Γ है जैसे कि, किन्हीं दो वैक्टरों के लिए एक्स, वाई ∈ टी के लिएγ(s)
व्युत्पन्न को t = 0 पर लेते हुए, संबंधित अवकल संकारक ∇ को मीट्रिक के संबंध में एक उत्पाद नियम को पूरा करना चाहिए:
भूगणित
यदि ∇ एक मीट्रिक कनेक्शन है, तो एफाइन जियोडेसिक्स रिमेंनियन ज्यामिति के सामान्य जियोडेसिक्स हैं और स्थानीय रूप से दूरी को कम करने वाले वक्र हैं। अधिक सटीक, पहले ध्यान दें कि यदि γ: I → M, जहां, जहां I एक खुला अंतराल है,एक जियोडेसिक है, तो वास्तव में,इसका मानदंड I पर स्थिर है।
यह गॉस के लेम्मा के एक आवेदन से निम्नानुसार है कि अगर ए का आदर्श है तो वक्र पर दो करीब पर्याप्त अंक के बीच मीट्रिक द्वारा प्रेरित दूरी γ(t1) और γ (टी2), द्वारा दि गई है।
ऊपर दिया गया सूत्र उन बिंदुओं के लिए सही नहीं हो सकता है जो पर्याप्त रूप से पास नहीं हैं क्योंकि जियोडेसिक उदाहरण के लिए कई गुना लपेट सकता है (उदाहरण के लिए एक गोले पर)।
सामान्यीकरण
समांतर परिवहन को अन्य प्रकार के संयोजनों के लिए अधिक सामान्य स्थिति में परिभाषित किया जा सकता है न कि सदिश पूल में वर्णित। एक सामान्यीकरण प्रमुख कनेक्शनों (कोबाशी और नोमिजो 1996, वॉल्यूम 1, अध्याय द्वितीय) के लिए है। च → एम संरचना झूठ समूह जी और एक प्रमुख कनेक्शन ω के साथ कई गुना मीटर पर एक प्रमुख बंडल हो। वेक्टर बंडलों के मामले में, पी पर एक प्रमुख कनेक्शन ω परिभाषित करता है, एम में प्रत्येक वक्र γ के लिए, एक मैपिंग
फाइबर से γ(s) से अधिक γ(t) से अधिक, जो सजातीय स्थानों का एक समरूपता है:अर्थात। प्रत्येक g∈G के लिए।
फिर से समानांतर यातायात के सामान्यीकरण भी संभव हो सकते हैं। अहरमैन संयोजन के संदर्भ में जहां कनेक्शन स्पर्शरेखा रिक्त स्थान के "क्षैतिज उठाने" की विशेष धारणा पर निर्भर करता है,कोई क्षैतिज लिफ्टों के माध्यम से समानांतर परिवहन को परिभाषित कर सकता है। कार्टन कनेक्शन अतिरिक्त संरचना के साथ एह्रेसमैन कनेक्शन हैं जो समानांतर परिवहन को कई गुना में वक्र के साथ एक निश्चित मॉडल स्थान "रोलिंग" मानचित्र के रूप में सोचने की अनुमति देता है। इस रोलिंग को विकास (अंतर ज्यामिति) कहा जाता है।
सन्निकटन: शिल्ड की सीढ़ी
समानांतर परिवहन को शिल्ड की सीढ़ी द्वारा विवेकपूर्ण रूप से अनुमानित किया जा सकता है, जो एक वक्र के साथ परिमित कदम उठाता है, और लेवी-सिविता समांतर चतुर्भुजों को अनुमानित समांतर चतुर्भुजों द्वारा अनुमानित करता है।
यह भी देखें
- घुमावदार स्पेसटाइम के गणित का मूल परिचय
- कनेक्शन (गणित)
- विकास (अंतर ज्यामिति)
- एफ़िन कनेक्शन
- सहपरिवर्ती व्युत्पन्न
- जियोडेसिक (सामान्य सापेक्षता)
- ज्यामितीय चरण
- व्युत्पन्न झूठ
- बालक की सीढ़ी
- लेवी-सीविटा समांतर चतुर्भुज
- समानांतर वक्र, समान नाम, लेकिन अलग धारणा
टिप्पणियाँ
उद्धरण
- ↑ Spivak 1999, p. 234, Vol. 2, Ch. 6.
- ↑ (Kobayashi & Nomizu 1996, Volume 1, Chapter III)
संदर्भ
- Guggenheimer, Heinrich (1977), Differential Geometry, Dover, ISBN 0-486-63433-7
- Knebelman (1951), "Spaces of relative parallelism", Annals of Mathematics, 2, The Annals of Mathematics, Vol. 53, No. 3, 53 (3): 387–399, doi:10.2307/1969562, JSTOR 1969562
- Kobayashi, Shoshichi; Nomizu, Katsumi (1996), Foundations of Differential Geometry, Volume 1, Wiley-Interscience, ISBN 0-471-15733-3; Volume 2, ISBN 0-471-15732-5.
- Lumiste, Ü. (2001) [1994], "Connections on a manifold", Encyclopedia of Mathematics, EMS Press
- Spivak, Michael (1999). A Comprehensive Introduction to Differential Geometry, Vol. II. Publish-or-Perish Press. ISBN 0914098713.
बाहरी संबंध
- Spherical Geometry Demo. An applet demonstrating parallel transport of tangent vectors on a sphere.