ट्रेस ऑपरेटर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 12: Line 12:
:'''<math>\int_\Omega \nabla u \cdot \nabla \varphi \,\mathrm dx = \int_\Omega f \varphi \,\mathrm dx</math> सभी के लिए <math display="inline">\varphi \in H^1_0(\Omega)</math>. <math display="inline">H^1(\Omega)</math>वें>- की नियमितता <math display="inline">u</math> इस अभिन्न समीकरण की अच्छी तरह से परिभाषित करने के लिए पर्याप्त है। हालाँकि, यह स्पष्ट नहीं है कि किस अर्थ में <math display="inline">u</math> सीमा शर्त को पूरा कर सकते हैं <math display="inline">u = g</math> पर <math display="inline">\partial \Omega</math>: परिभाषा से, <math display="inline">u \in H^1(\Omega) \subset L^2(\Omega)</math> फलनों का एक तुल्यता वर्ग है जिस पर मनमाना मान हो सकता है <math display="inline">\partial \Omega</math> चूंकि यह एन-आयामी लेबेस्गु माप के संबंध में एक शून्य सेट है।'''
:'''<math>\int_\Omega \nabla u \cdot \nabla \varphi \,\mathrm dx = \int_\Omega f \varphi \,\mathrm dx</math> सभी के लिए <math display="inline">\varphi \in H^1_0(\Omega)</math>. <math display="inline">H^1(\Omega)</math>वें>- की नियमितता <math display="inline">u</math> इस अभिन्न समीकरण की अच्छी तरह से परिभाषित करने के लिए पर्याप्त है। हालाँकि, यह स्पष्ट नहीं है कि किस अर्थ में <math display="inline">u</math> सीमा शर्त को पूरा कर सकते हैं <math display="inline">u = g</math> पर <math display="inline">\partial \Omega</math>: परिभाषा से, <math display="inline">u \in H^1(\Omega) \subset L^2(\Omega)</math> फलनों का एक तुल्यता वर्ग है जिस पर मनमाना मान हो सकता है <math display="inline">\partial \Omega</math> चूंकि यह एन-आयामी लेबेस्गु माप के संबंध में एक शून्य सेट है।'''


यदि <math display="inline">\Omega \subset \mathbb R^1</math> वहाँ रखती है <math display="inline">H^1(\Omega) \hookrightarrow C^0(\bar \Omega)</math> सोबोलेव असमानता द्वारा, सोबोलेव का एम्बेडिंग प्रमेय, जैसे कि <math display="inline">u</math> शास्त्रीय अर्थों में सीमा की स्थिति को संतुष्ट कर सकता है, अर्थात  <math display="inline">u</math> प्रति <math display="inline">\partial \Omega</math> समारोह से सहमत हैं <math display="inline">g</math> (अधिक सटीक रूप से : का एक प्रतिनिधि मौजूद है <math display="inline">u</math> में <math display="inline">C(\bar \Omega)</math> इस संपत्ति के साथ)।  <math display="inline">\Omega \subset \mathbb R^n</math> साथ <math display="inline">n > 1</math> के लिये ऐसा एम्बेडिंग मौजूद नहीं है और ट्रेस ऑपरेटर <math display="inline">T</math> का उपयोग <math display="inline">u |_{\partial \Omega}</math> का अर्थ देने के लिए किया जाना चाहिए | फिर <math display="inline">u \in H^1(\Omega)</math>  के साथ <math display="inline">T u = g</math> को सीमा मान समस्या का एक कमजोर समाधान कहा जाता है यदि ऊपर दिए गए अभिन्न समीकरण को संतुष्ट किया जाता है। ट्रेस ऑपरेटर की परिभाषा उचित होने के लिए, पर्याप्त रूप से नियमित  <math display="inline">T u = u |_{\partial \Omega}</math> के लिए <math display="inline">u</math> होना चाहिए |
यदि <math display="inline">\Omega \subset \mathbb R^1</math> वहाँ रखती है <math display="inline">H^1(\Omega) \hookrightarrow C^0(\bar \Omega)</math> सोबोलेव असमानता द्वारा, सोबोलेव का एम्बेडिंग प्रमेय, जैसे कि <math display="inline">u</math> शास्त्रीय अर्थों में सीमा की स्थिति को संतुष्ट कर सकता है, अर्थात  <math display="inline">u</math> प्रति <math display="inline">\partial \Omega</math> फलन से सहमत हैं <math display="inline">g</math> (अधिक सटीक रूप से : का एक प्रतिनिधि उपस्थित है <math display="inline">u</math> में <math display="inline">C(\bar \Omega)</math> इस संपत्ति के साथ)।  <math display="inline">\Omega \subset \mathbb R^n</math> साथ <math display="inline">n > 1</math> के लिये ऐसा एम्बेडिंग उपस्थित नहीं है और ट्रेस ऑपरेटर <math display="inline">T</math> का प्रयोग <math display="inline">u |_{\partial \Omega}</math> का अर्थ देने के लिए किया जाना चाहिए | फिर <math display="inline">u \in H^1(\Omega)</math>  के साथ <math display="inline">T u = g</math> को सीमा मान समस्या का एक कमजोर समाधान कहा जाता है यदि ऊपर दिए गए अभिन्न समीकरण को संतुष्ट किया जाता है। ट्रेस ऑपरेटर की परिभाषा उचित होने के लिए, पर्याप्त रूप से नियमित  <math display="inline">T u = u |_{\partial \Omega}</math> के लिए <math display="inline">u</math> होना चाहिए |


== ट्रेस प्रमेय ==
== ट्रेस प्रमेय ==


ट्रेस ऑपरेटर को सोबोलेव स्पेस में कार्यों के लिए परिभाषित किया जा सकता है <math display="inline">W^{1,p}(\Omega)</math> साथ <math display="inline">1 \leq p < \infty</math>, अन्य स्थानों पर ट्रेस के संभावित विस्तार के लिए नीचे दिया गया अनुभाग देखें। होने देना <math display="inline">\Omega \subset \mathbb R^n</math> के लिये <math display="inline">n \in \mathbb N</math> Lipschitz सीमा के साथ एक परिबद्ध डोमेन हो। फिर<ref name="Gagliardo1957" />वहाँ एक परिबद्ध रेखीय ट्रेस ऑपरेटर मौजूद है
ट्रेस ऑपरेटर को सोबोलेव स्पेस में कार्यों के लिए परिभाषित किया जा सकता है <math display="inline">W^{1,p}(\Omega)</math> साथ <math display="inline">1 \leq p < \infty</math>, अन्य स्थानों पर ट्रेस के संभावित विस्तार के लिए नीचे दिया गया अनुभाग देखें। होने देना <math display="inline">\Omega \subset \mathbb R^n</math> के लिये <math display="inline">n \in \mathbb N</math> Lipschitz सीमा के साथ एक परिबद्ध डोमेन हो। फिर<ref name="Gagliardo1957" />वहाँ एक परिबद्ध रेखीय ट्रेस ऑपरेटर उपस्थित है
: <math>T\colon W^{1, p}(\Omega) \to L^p(\partial \Omega)</math>
: <math>T\colon W^{1, p}(\Omega) \to L^p(\partial \Omega)</math>
ऐसा है कि <math display="inline">T</math> शास्त्रीय ट्रेस का विस्तार करता है, अर्थात
ऐसा है कि <math display="inline">T</math> शास्त्रीय ट्रेस का विस्तार करता है, अर्थात
: <math>T u = u |_{\partial \Omega}</math> सभी के लिए <math display="inline">u \in W^{1, p}(\Omega) \cap C(\bar \Omega)</math>.
: <math>T u = u |_{\partial \Omega}</math> सभी के लिए <math display="inline">u \in W^{1, p}(\Omega) \cap C(\bar \Omega)</math>.
की निरंतरता <math display="inline">T</math> इसका आशय है
की निरंतरता <math display="inline">T</math> इसका आशय है
: <math>\| T u \|_{L^p(\partial \Omega)} \leq C \| u \|_{W^{1,p}(\Omega)}</math> सभी के लिए <math display="inline">u \in W^{1, p}(\Omega)</math> निरंतर के साथ ही निर्भर करता है <math display="inline">p</math> तथा <math display="inline">\Omega</math>. कार्यक्रम <math display="inline">T u</math> का निशान कहा जाता है <math display="inline">u</math> और अक्सर इसे केवल द्वारा निरूपित किया जाता है <math display="inline">u |_{\partial \Omega}</math>. के लिए अन्य सामान्य प्रतीक <math display="inline">T</math> शामिल <math display="inline">tr</math> तथा <math display="inline">\gamma</math>.
: <math>\| T u \|_{L^p(\partial \Omega)} \leq C \| u \|_{W^{1,p}(\Omega)}</math> सभी के लिए <math display="inline">u \in W^{1, p}(\Omega)</math> निरंतर के साथ ही निर्भर करता है <math display="inline">p</math> तथा <math display="inline">\Omega</math>. कार्यक्रम <math display="inline">T u</math> का निशान कहा जाता है <math display="inline">u</math> और अक्सर इसे केवल द्वारा निरूपित किया जाता है <math display="inline">u |_{\partial \Omega}</math>. के लिए अन्य सामान्य प्रतीक <math display="inline">T</math> सम्मालित <math display="inline">tr</math> तथा <math display="inline">\gamma</math>.


=== निर्माण ===
=== निर्माण ===
Line 28: Line 28:


: <math>T:C^\infty(\bar \Omega)\to L^p(\partial \Omega)</math>
: <math>T:C^\infty(\bar \Omega)\to L^p(\partial \Omega)</math>
अंतरिक्ष के लिए <math display="inline">W^{1, p}(\Omega)</math>. के घने सेट द्वारा <math display="inline">C^\infty(\bar \Omega)</math> में <math display="inline">W^{1, p}(\Omega)</math> ऐसा विस्तार संभव है यदि <math display="inline">T</math> के संबंध में निरंतर है <math display="inline">W^{1, p}(\Omega)</math>-आदर्श। इसका प्रमाण, यानी कि मौजूद है <math display="inline">C > 0</math> (इस पर निर्भर करते हुए <math display="inline">\Omega</math> तथा <math display="inline">p</math>) ऐसा है कि
अंतरिक्ष के लिए <math display="inline">W^{1, p}(\Omega)</math>. के घने सेट द्वारा <math display="inline">C^\infty(\bar \Omega)</math> में <math display="inline">W^{1, p}(\Omega)</math> ऐसा विस्तार संभव है यदि <math display="inline">T</math> के संबंध में निरंतर है <math display="inline">W^{1, p}(\Omega)</math>-आदर्श। इसका प्रमाण, अर्थात् कि उपस्थित है <math display="inline">C > 0</math> (इस पर निर्भर करते हुए <math display="inline">\Omega</math> तथा <math display="inline">p</math>) ऐसा है कि


: <math>\|Tu\|_{L^{p}(\partial \Omega)}\le C \|u\|_{W^{1, p}(\Omega)}</math> सभी के लिए <math>u \in C^\infty(\bar \Omega).</math>
: <math>\|Tu\|_{L^{p}(\partial \Omega)}\le C \|u\|_{W^{1, p}(\Omega)}</math> सभी के लिए <math>u \in C^\infty(\bar \Omega).</math>
ट्रेस ऑपरेटर के निर्माण में केंद्रीय घटक है। के लिए इस अनुमान का एक स्थानीय संस्करण <math display="inline">C^1(\bar \Omega)</math>[[विचलन प्रमेय]] का उपयोग करते हुए स्थानीय रूप से सपाट सीमा के लिए -फंक्शन पहले सिद्ध होते हैं। परिवर्तन द्वारा, एक सामान्य <math display="inline">C^1</math>-इस मामले को कम करने के लिए सीमा को स्थानीय रूप से सीधा किया जा सकता है, जहां <math display="inline">C^1</math>-रूपांतरण की नियमितता के लिए आवश्यक है कि स्थानीय अनुमान धारण करे <math display="inline">C^1(\bar \Omega)</math>-कार्य।
ट्रेस ऑपरेटर के निर्माण में केंद्रीय घटक है। के लिए इस अनुमान का एक स्थानीय संस्करण <math display="inline">C^1(\bar \Omega)</math>[[विचलन प्रमेय]] का प्रयोग करते हुए स्थानीय रूप से सपाट सीमा के लिए -फंक्शन पहले सिद्ध होते हैं। परिवर्तन द्वारा, एक सामान्य <math display="inline">C^1</math>-इस मामले को कम करने के लिए सीमा को स्थानीय रूप से सीधा किया जा सकता है, जहां <math display="inline">C^1</math>-रूपांतरण की नियमितता के लिए आवश्यक है कि स्थानीय अनुमान धारण करे <math display="inline">C^1(\bar \Omega)</math>-कार्य।


ट्रेस ऑपरेटर की इस निरंतरता के साथ <math display="inline">C^\infty(\bar \Omega)</math> के लिए एक विस्तार <math display="inline">W^{1, p}(\Omega)</math> सार तर्कों से मौजूद है और <math display="inline">Tu</math> के लिये <math display="inline">u \in W^{1, p}(\Omega)</math> निम्नानुसार चित्रित किया जा सकता है। होने देना <math display="inline">u_k \in C^\infty(\bar \Omega)</math> अनुमानित अनुक्रम हो <math display="inline">u \in W^{1, p}(\Omega)</math> घनत्व से। की सिद्ध निरंतरता से <math display="inline">T</math> में <math display="inline">C^\infty(\bar \Omega)</math> क्रम <math display="inline">u_k |_{\partial \Omega}</math> में एक कॉची क्रम है <math display="inline">L^p(\partial \Omega)</math> तथा <math display="inline">T u = \lim_{k \to \infty} u_k |_{\partial \Omega}</math> सीमा में लिया गया <math display="inline">L^p(\partial \Omega)</math>.
ट्रेस ऑपरेटर की इस निरंतरता के साथ <math display="inline">C^\infty(\bar \Omega)</math> के लिए एक विस्तार <math display="inline">W^{1, p}(\Omega)</math> सार तर्कों से उपस्थित है और <math display="inline">Tu</math> के लिये <math display="inline">u \in W^{1, p}(\Omega)</math> निम्नानुसार चित्रित किया जा सकता है। होने देना <math display="inline">u_k \in C^\infty(\bar \Omega)</math> अनुमानित अनुक्रम हो <math display="inline">u \in W^{1, p}(\Omega)</math> घनत्व से। की सिद्ध निरंतरता से <math display="inline">T</math> में <math display="inline">C^\infty(\bar \Omega)</math> क्रम <math display="inline">u_k |_{\partial \Omega}</math> में एक कॉची क्रम है <math display="inline">L^p(\partial \Omega)</math> तथा <math display="inline">T u = \lim_{k \to \infty} u_k |_{\partial \Omega}</math> सीमा में लिया गया <math display="inline">L^p(\partial \Omega)</math>.


एक्सटेंशन संपत्ति <math display="inline">T u = u |_{\partial \Omega}</math> के लिए रखता है <math display="inline">u \in C^{\infty}(\bar \Omega)</math> निर्माण द्वारा, लेकिन किसी के लिए <math display="inline">u \in W^{1, p}(\Omega) \cap C(\bar \Omega)</math> एक क्रम होता है <math display="inline">u_k \in C^\infty(\bar \Omega)</math> जो समान रूप से अभिसरण करता है <math display="inline">\bar \Omega</math> प्रति <math display="inline">u</math>, बड़े सेट पर एक्सटेंशन प्रॉपर्टी की पुष्टि करना <math display="inline">W^{1, p}(\Omega) \cap C(\bar \Omega)</math>.
एक्सटेंशन संपत्ति <math display="inline">T u = u |_{\partial \Omega}</math> के लिए रखता है <math display="inline">u \in C^{\infty}(\bar \Omega)</math> निर्माण द्वारा, लेकिन किसी के लिए <math display="inline">u \in W^{1, p}(\Omega) \cap C(\bar \Omega)</math> एक क्रम होता है <math display="inline">u_k \in C^\infty(\bar \Omega)</math> जो समान रूप से अभिसरण करता है <math display="inline">\bar \Omega</math> प्रति <math display="inline">u</math>, बड़े सेट पर एक्सटेंशन प्रॉपर्टी की पुष्टि करना <math display="inline">W^{1, p}(\Omega) \cap C(\bar \Omega)</math>.
Line 39: Line 39:
=== मामला पी = ∞ ===
=== मामला पी = ∞ ===


यदि <math display="inline">\Omega</math> घिरा हुआ है और एक है <math display="inline">C^1</math>-सीमा तब मोरे की असमानता से एक सतत एम्बेडिंग मौजूद है <math display="inline">W^{1, \infty}(\Omega) \hookrightarrow C^{0, 1}(\Omega)</math>, कहाँ पे <math display="inline">C^{0, 1}(\Omega)</math> Lipschitz निरंतरता कार्यों के स्थान को दर्शाता है। विशेष रूप से, कोई समारोह <math display="inline">u \in W^{1, \infty}(\Omega)</math> एक शास्त्रीय निशान है <math display="inline">u |_{\partial \Omega} \in C(\partial \Omega)</math> और वहाँ रखती है
यदि <math display="inline">\Omega</math> घिरा हुआ है और एक है <math display="inline">C^1</math>-सीमा तब मोरे की असमानता से एक सतत एम्बेडिंग उपस्थित है <math display="inline">W^{1, \infty}(\Omega) \hookrightarrow C^{0, 1}(\Omega)</math>, कहाँ पे <math display="inline">C^{0, 1}(\Omega)</math> Lipschitz निरंतरता कार्यों के स्थान को दर्शाता है। विशेष रूप से, कोई फलन <math display="inline">u \in W^{1, \infty}(\Omega)</math> एक शास्त्रीय निशान है <math display="inline">u |_{\partial \Omega} \in C(\partial \Omega)</math> और वहाँ रखती है


: <math>\| u |_{\partial \Omega} \|_{C(\partial \Omega)} \leq \| u \|_{C^{0, 1}(\Omega)} \leq C \| u \|_{W^{1, \infty}(\Omega)}.</math>
: <math>\| u |_{\partial \Omega} \|_{C(\partial \Omega)} \leq \| u \|_{C^{0, 1}(\Omega)} \leq C \| u \|_{W^{1, \infty}(\Omega)}.</math>
Line 55: Line 55:
=== पी> 1 === के लिए
=== पी> 1 === के लिए


ट्रेस ऑपरेटर पर विशेषण नहीं है <math display="inline">L^p(\partial \Omega)</math> यदि <math display="inline">p > 1</math>, यानी हर समारोह में नहीं <math display="inline">L^p(\partial \Omega)</math> में एक समारोह का निशान है <math display="inline">W^{1, p}(\Omega)</math>. जैसा कि नीचे दी गई छवि में ऐसे कार्य शामिल हैं जो एक को संतुष्ट करते हैं <math display="inline">L^p</math>-होल्डर स्थिति का संस्करण|होल्डर निरंतरता।
ट्रेस ऑपरेटर पर विशेषण नहीं है <math display="inline">L^p(\partial \Omega)</math> यदि <math display="inline">p > 1</math>, अर्थात् हर फलन में नहीं <math display="inline">L^p(\partial \Omega)</math> में एक फलन का निशान है <math display="inline">W^{1, p}(\Omega)</math>. जैसा कि नीचे दी गई छवि में ऐसे कार्य सम्मालित हैं जो एक को संतुष्ट करते हैं <math display="inline">L^p</math>-होल्डर स्थिति का संस्करण|होल्डर निरंतरता।


==== सार लक्षण वर्णन ====
==== सार लक्षण वर्णन ====
Line 68: Line 68:
: <math>T\colon W^{1, p}(\Omega) \to W^{1, p}(\Omega) / W^{1, p}_0(\Omega) </math>.
: <math>T\colon W^{1, p}(\Omega) \to W^{1, p}(\Omega) / W^{1, p}_0(\Omega) </math>.


==== सोबोलेव-स्लोबोडेकिज रिक्त स्थान का उपयोग करते हुए अभिलक्षणन ====
==== सोबोलेव-स्लोबोडेकिज रिक्त स्थान का प्रयोग करते हुए अभिलक्षणन ====


की छवि का अधिक ठोस प्रतिनिधित्व <math display="inline">T</math> सोबोलेव स्पेस#सोबोलेव-स्लोबोडेकिज स्पेस का उपयोग करके दिया जा सकता है|सोबोलेव-स्लोबोडेकिज स्पेस जो धारक के निरंतर कार्यों की अवधारणा को सामान्यीकृत करता है <math display="inline">L^p</math>-स्थापना। तब से <math display="inline">\partial \Omega</math> एक (n-1)-आयामी लिप्सचिट्ज़ [[टोपोलॉजिकल मैनिफोल्ड]] में एम्बेडेड है <math display="inline">\mathbb R^n</math> इन स्थानों का एक स्पष्ट लक्षण वर्णन तकनीकी रूप से शामिल है। सरलता के लिए पहले एक समतलीय डोमेन पर विचार करें <math display="inline">\Omega' \subset \mathbb R^{n-1}</math>. के लिये <math display="inline">v \in L^p(\Omega')</math> (संभवतः अनंत) मानक को परिभाषित करें
की छवि का अधिक ठोस प्रतिनिधित्व <math display="inline">T</math> सोबोलेव स्पेस#सोबोलेव-स्लोबोडेकिज स्पेस का प्रयोग करके दिया जा सकता है|सोबोलेव-स्लोबोडेकिज स्पेस जो धारक के निरंतर कार्यों की अवधारणा को सामान्यीकृत करता है <math display="inline">L^p</math>-स्थापना। तब से <math display="inline">\partial \Omega</math> एक (n-1)-आयामी लिप्सचिट्ज़ [[टोपोलॉजिकल मैनिफोल्ड]] में एम्बेडेड है <math display="inline">\mathbb R^n</math> इन स्थानों का एक स्पष्ट लक्षण वर्णन तकनीकी रूप से सम्मालित है। सरलता के लिए पहले एक समतलीय डोमेन पर विचार करें <math display="inline">\Omega' \subset \mathbb R^{n-1}</math>. के लिये <math display="inline">v \in L^p(\Omega')</math> (संभवतः अनंत) मानक को परिभाषित करें


: <math>\| v \|_{W^{1-1/p, p}(\Omega')} = \left( \|v\|_{L^p(\Omega')}^p + \int_{\Omega' \times \Omega'} \frac{ | v(x) - v(y) |^p }{|x - y|^{(1 - 1/p) p + (n-1)}}\,\mathrm d(x, y) \right)^{1/p} </math>
: <math>\| v \|_{W^{1-1/p, p}(\Omega')} = \left( \|v\|_{L^p(\Omega')}^p + \int_{\Omega' \times \Omega'} \frac{ | v(x) - v(y) |^p }{|x - y|^{(1 - 1/p) p + (n-1)}}\,\mathrm d(x, y) \right)^{1/p} </math>
Line 93: Line 93:
== राइट-इनवर्स: ट्रेस एक्सटेंशन ऑपरेटर ==
== राइट-इनवर्स: ट्रेस एक्सटेंशन ऑपरेटर ==


ट्रेस ऑपरेटर कई कार्यों के बाद से इंजेक्शन नहीं है <math display="inline">W^{1, p}(\Omega)</math> एक ही निशान हो सकता है (या समकक्ष, <math display="inline">W^{1, p}_0(\Omega) \neq 0</math>). हालांकि ट्रेस ऑपरेटर के पास एक अच्छी तरह से व्यवहार करने वाला राइट-इनवर्स है, जो सीमा पर परिभाषित फ़ंक्शन को पूरे डोमेन तक बढ़ाता है। विशेष तौर पर <math display="inline">1 < p < \infty</math> एक परिबद्ध, रैखिक ट्रेस एक्सटेंशन ऑपरेटर मौजूद है<ref name="Necas1967" />
ट्रेस ऑपरेटर कई कार्यों के बाद से इंजेक्शन नहीं है <math display="inline">W^{1, p}(\Omega)</math> एक ही निशान हो सकता है (या समकक्ष, <math display="inline">W^{1, p}_0(\Omega) \neq 0</math>). हालांकि ट्रेस ऑपरेटर के पास एक अच्छी तरह से व्यवहार करने वाला राइट-इनवर्स है, जो सीमा पर परिभाषित फ़ंक्शन को पूरे डोमेन तक बढ़ाता है। विशेष तौर पर <math display="inline">1 < p < \infty</math> एक परिबद्ध, रैखिक ट्रेस एक्सटेंशन ऑपरेटर उपस्थित है<ref name="Necas1967" />


: <math>E\colon W^{1-1/p, p}(\partial \Omega) \to W^{1, p}(\Omega)</math>,
: <math>E\colon W^{1-1/p, p}(\partial \Omega) \to W^{1, p}(\Omega)</math>,


पिछले अनुभाग से ट्रेस ऑपरेटर की छवि के सोबोलेव-स्लोबोडेकिज लक्षण वर्णन का उपयोग करते हुए, जैसे कि
पिछले अनुभाग से ट्रेस ऑपरेटर की छवि के सोबोलेव-स्लोबोडेकिज लक्षण वर्णन का प्रयोग करते हुए, जैसे कि


: <math>T (E v) = v</math> सभी के लिए <math display="inline">v \in W^{1-1/p, p}(\partial \Omega)</math>
: <math>T (E v) = v</math> सभी के लिए <math display="inline">v \in W^{1-1/p, p}(\partial \Omega)</math>
और, निरंतरता से, मौजूद है <math display="inline">C > 0</math> साथ
और, निरंतरता से, उपस्थित है <math display="inline">C > 0</math> साथ


: <math>\| E v \|_{W^{1, p}(\Omega)} \leq C \| v \|_{W^{1-1/p, p}(\partial \Omega)}</math>.
: <math>\| E v \|_{W^{1, p}(\Omega)} \leq C \| v \|_{W^{1-1/p, p}(\partial \Omega)}</math>.
Line 113: Line 113:
तब से <math display="inline">u |_{\partial \Omega}</math> केवल सामान्य व्युत्पन्न स्पर्शरेखा दिशा में विभेदीकरण गुणों को सांकेतिक शब्दों में बदल सकते हैं <math display="inline">\partial_N u |_{\partial \Omega}</math> ट्रेस थ्योरी के लिए अतिरिक्त रुचि है <math display="inline">m = 2</math>. इसी तरह के तर्क उच्च-क्रम के डेरिवेटिव के लिए लागू होते हैं <math display="inline">m > 2</math>.
तब से <math display="inline">u |_{\partial \Omega}</math> केवल सामान्य व्युत्पन्न स्पर्शरेखा दिशा में विभेदीकरण गुणों को सांकेतिक शब्दों में बदल सकते हैं <math display="inline">\partial_N u |_{\partial \Omega}</math> ट्रेस थ्योरी के लिए अतिरिक्त रुचि है <math display="inline">m = 2</math>. इसी तरह के तर्क उच्च-क्रम के डेरिवेटिव के लिए लागू होते हैं <math display="inline">m > 2</math>.


होने देना <math display="inline">1 < p < \infty</math> तथा <math display="inline">\Omega \subset \mathbb R^n</math> के साथ एक परिबद्ध डोमेन हो <math display="inline">C^{m, 1}</math>-सीमा। फिर<ref name="Necas1967" />वहाँ एक विशेषण, परिबद्ध रैखिक उच्च-क्रम ट्रेस ऑपरेटर मौजूद है
होने देना <math display="inline">1 < p < \infty</math> तथा <math display="inline">\Omega \subset \mathbb R^n</math> के साथ एक परिबद्ध डोमेन हो <math display="inline">C^{m, 1}</math>-सीमा। फिर<ref name="Necas1967" />वहाँ एक विशेषण, परिबद्ध रैखिक उच्च-क्रम ट्रेस ऑपरेटर उपस्थित है


: <math>T_m\colon W^{m, p}(\Omega) \to \prod_{l = 0}^{m-1} W^{m-l-1/p,p}(\partial \Omega)</math>
: <math>T_m\colon W^{m, p}(\Omega) \to \prod_{l = 0}^{m-1} W^{m-l-1/p,p}(\partial \Omega)</math>
Line 120: Line 120:


: <math>T_m u = \left(u |_{\partial \Omega}, \partial_N u |_{\partial \Omega}, \ldots, \partial_N^{m-1} u |_{\partial \Omega}\right)</math> सभी के लिए <math display="inline">u \in W^{m, p}(\Omega) \cap C^{m-1}(\bar \Omega).</math>
: <math>T_m u = \left(u |_{\partial \Omega}, \partial_N u |_{\partial \Omega}, \ldots, \partial_N^{m-1} u |_{\partial \Omega}\right)</math> सभी के लिए <math display="inline">u \in W^{m, p}(\Omega) \cap C^{m-1}(\bar \Omega).</math>
इसके अलावा, का एक परिबद्ध, रैखिक दाएँ-प्रतिलोम मौजूद है <math display="inline">T_m</math>, एक उच्च-क्रम ट्रेस एक्सटेंशन ऑपरेटर<ref name="Necas1967" />
इसके अलावा, का एक परिबद्ध, रैखिक दाएँ-प्रतिलोम उपस्थित है <math display="inline">T_m</math>, एक उच्च-क्रम ट्रेस एक्सटेंशन ऑपरेटर<ref name="Necas1967" />


: <math>E_m\colon \prod_{l = 0}^{m-1} W^{m-l-1/p,p}(\partial \Omega) \to W^{m, p}(\Omega)</math>.
: <math>E_m\colon \prod_{l = 0}^{m-1} W^{m-l-1/p,p}(\partial \Omega) \to W^{m, p}(\Omega)</math>.
Line 143: Line 143:
:<math>\| v \|_{E_p(\Omega)} = \left( \| v \|_{L^p(\Omega)}^p + \| \operatorname{div} v \|_{L^p(\Omega)}^p \right)^{1/p}</math>.
:<math>\| v \|_{E_p(\Omega)} = \left( \| v \|_{L^p(\Omega)}^p + \| \operatorname{div} v \|_{L^p(\Omega)}^p \right)^{1/p}</math>.


होने देना <math display="inline">N</math> बाहरी इकाई सामान्य क्षेत्र को निरूपित करें <math display="inline">\partial \Omega</math>. फिर<ref name="Sohr2001,normal traces" />वहाँ एक परिबद्ध रैखिक संचालिका मौजूद है
होने देना <math display="inline">N</math> बाहरी इकाई सामान्य क्षेत्र को निरूपित करें <math display="inline">\partial \Omega</math>. फिर<ref name="Sohr2001,normal traces" />वहाँ एक परिबद्ध रैखिक संचालिका उपस्थित है


: <math>T_N\colon E_p(\Omega) \to (W^{1-1/q, q}(\partial \Omega))'</math>,
: <math>T_N\colon E_p(\Omega) \to (W^{1-1/q, q}(\partial \Omega))'</math>,
Line 171: Line 171:
=== कमजोर समाधानों का अस्तित्व और विशिष्टता ===
=== कमजोर समाधानों का अस्तित्व और विशिष्टता ===


की सीमा का लक्षण वर्णन <math display="inline">T</math> तात्पर्य है कि के लिए <math display="inline">T u = g</math> नियमितता धारण करना <math display="inline">g \in H^{1/2}(\partial \Omega)</math> आवश्यक है। यह नियमितता एक दुर्बल विलयन के अस्तित्व के लिए भी पर्याप्त है, जिसे निम्न प्रकार से देखा जा सकता है। ट्रेस एक्सटेंशन प्रमेय द्वारा मौजूद है <math display="inline">Eg \in H^1(\Omega)</math> ऐसा है कि <math display="inline">T(Eg) = g</math>. परिभाषित <math display="inline">u_0</math> द्वारा <math display="inline">u_0 = u - Eg</math> हमारे पास वह है <math display="inline">T u_0 = Tu - T(Eg) = 0</math> और इस तरह <math display="inline">u_0 \in H^1_0(\Omega)</math> के लक्षण वर्णन से <math display="inline">H^1_0(\Omega)</math> ट्रेस शून्य के स्थान के रूप में। कार्यक्रम <math display="inline">u_0 \in H^1_0(\Omega)</math> फिर अभिन्न समीकरण को संतुष्ट करता है
की सीमा का लक्षण वर्णन <math display="inline">T</math> तात्पर्य है कि के लिए <math display="inline">T u = g</math> नियमितता धारण करना <math display="inline">g \in H^{1/2}(\partial \Omega)</math> आवश्यक है। यह नियमितता एक दुर्बल विलयन के अस्तित्व के लिए भी पर्याप्त है, जिसे निम्न प्रकार से देखा जा सकता है। ट्रेस एक्सटेंशन प्रमेय द्वारा उपस्थित है <math display="inline">Eg \in H^1(\Omega)</math> ऐसा है कि <math display="inline">T(Eg) = g</math>. परिभाषित <math display="inline">u_0</math> द्वारा <math display="inline">u_0 = u - Eg</math> हमारे पास वह है <math display="inline">T u_0 = Tu - T(Eg) = 0</math> और इस तरह <math display="inline">u_0 \in H^1_0(\Omega)</math> के लक्षण वर्णन से <math display="inline">H^1_0(\Omega)</math> ट्रेस शून्य के स्थान के रूप में। कार्यक्रम <math display="inline">u_0 \in H^1_0(\Omega)</math> फिर अभिन्न समीकरण को संतुष्ट करता है


:<math>\int_\Omega \nabla u_0 \cdot \nabla \varphi \,\mathrm dx = \int_\Omega \nabla (u - Eg) \cdot \nabla \varphi \, \mathrm dx = \int_\Omega f \varphi \,\mathrm dx - \int_\Omega \nabla Eg \cdot \nabla \varphi \,\mathrm dx</math> सभी के लिए <math display="inline">\varphi \in H^1_0(\Omega)</math>.
:<math>\int_\Omega \nabla u_0 \cdot \nabla \varphi \,\mathrm dx = \int_\Omega \nabla (u - Eg) \cdot \nabla \varphi \, \mathrm dx = \int_\Omega f \varphi \,\mathrm dx - \int_\Omega \nabla Eg \cdot \nabla \varphi \,\mathrm dx</math> सभी के लिए <math display="inline">\varphi \in H^1_0(\Omega)</math>.


इस प्रकार विषम सीमा मूल्यों के साथ समस्या <math display="inline">u</math> सजातीय सीमा मूल्यों के साथ एक समस्या के लिए कम किया जा सकता है <math display="inline">u_0</math>, एक तकनीक जिसे किसी रैखिक अंतर समीकरण पर लागू किया जा सकता है। [[रिज प्रतिनिधित्व प्रमेय]] के अनुसार एक अनूठा समाधान मौजूद है <math display="inline">u_0</math> इस समस्या के लिए। अपघटन की विशिष्टता से <math display="inline">u = u_0 + Eg</math>, यह एक अद्वितीय कमजोर समाधान के अस्तित्व के बराबर है <math display="inline">u</math> विषम सीमा मान समस्या के लिए।
इस प्रकार विषम सीमा मूल्यों के साथ समस्या <math display="inline">u</math> सजातीय सीमा मूल्यों के साथ एक समस्या के लिए कम किया जा सकता है <math display="inline">u_0</math>, एक तकनीक जिसे किसी रैखिक अंतर समीकरण पर लागू किया जा सकता है। [[रिज प्रतिनिधित्व प्रमेय]] के अनुसार एक अनूठा समाधान उपस्थित है <math display="inline">u_0</math> इस समस्या के लिए। अपघटन की विशिष्टता से <math display="inline">u = u_0 + Eg</math>, यह एक अद्वितीय कमजोर समाधान के अस्तित्व के बराबर है <math display="inline">u</math> विषम सीमा मान समस्या के लिए।


=== डेटा पर निरंतर निर्भरता ===
=== डेटा पर निरंतर निर्भरता ===
Line 182: Line 182:


: <math>\| u_0 \|_{H^1_0(\Omega)} \leq c_1 \left( \|f\|_{H^{-1}(\Omega)} + \|Eg\|_{H^1(\Omega)} \right)</math>
: <math>\| u_0 \|_{H^1_0(\Omega)} \leq c_1 \left( \|f\|_{H^{-1}(\Omega)} + \|Eg\|_{H^1(\Omega)} \right)</math>
और इस प्रकार, उसका उपयोग करना <math display="inline">\| u_0 \|_{H^1_0(\Omega)} \leq c_2 \| u_0 \|_{H^1(\Omega)}</math> तथा <math display="inline">\| E g \|_{H^1(\Omega)} \leq c_3 \| g \|_{H^{1/2}(\Omega)}</math> ट्रेस एक्सटेंशन ऑपरेटर की निरंतरता से, यह इस प्रकार है
और इस प्रकार, उसका प्रयोग करना <math display="inline">\| u_0 \|_{H^1_0(\Omega)} \leq c_2 \| u_0 \|_{H^1(\Omega)}</math> तथा <math display="inline">\| E g \|_{H^1(\Omega)} \leq c_3 \| g \|_{H^{1/2}(\Omega)}</math> ट्रेस एक्सटेंशन ऑपरेटर की निरंतरता से, यह इस प्रकार है


: <math>\begin{align}\| u \|_{H^1(\Omega)} &\leq \| u_0 \|_{H^1(\Omega)} + \| Eg \|_{H^1(\Omega)} \leq c_1 c_2 \|f\|_{H^{-1}(\Omega)} + (1+c_1 c_2) \|Eg\|_{H^1(\Omega)} \\
: <math>\begin{align}\| u \|_{H^1(\Omega)} &\leq \| u_0 \|_{H^1(\Omega)} + \| Eg \|_{H^1(\Omega)} \leq c_1 c_2 \|f\|_{H^{-1}(\Omega)} + (1+c_1 c_2) \|Eg\|_{H^1(\Omega)} \\
Line 201: Line 201:
*अंक शास्त्र
*अंक शास्त्र
*आंशिक विभेदक समीकरण
*आंशिक विभेदक समीकरण
*समारोह प्रतिबंध
*फलन प्रतिबंध
*डोमेन (गणितीय विश्लेषण)
*डोमेन (गणितीय विश्लेषण)
*घना सेट
*घना सेट
*लिपशिट्ज निरंतरता
*लिपशिट्ज निरंतरता
*परीक्षण समारोह
*परीक्षण फलन
*संयुग्मी प्रतिपादक
*संयुग्मी प्रतिपादक
*निरंतर दोहरी जगह
*निरंतर दोहरी जगह

Revision as of 10:52, 5 December 2022

एक आयत पर परिभाषित एक फ़ंक्शन (शीर्ष आकृति, लाल रंग में), और इसका निशान (निचला आंकड़ा, लाल रंग में)।

गणित में, ट्रेस ऑपरेटर प्रोग्राम की धारणा को उसके डोमेन की सीमा तक सोबोलेव स्पेस में सामान्यीकृत प्रोग्राम तक बढ़ाता है। यह विशेष रूप से निर्धारित सीमा स्थितियों (सीमा मूल्य समस्याओं) के साथ आंशिक अंतर समीकरणों के अध्ययन के लिए महत्वपूर्ण है, जहां कमजोर समाधान नियमित रूप से कार्यों के शास्त्रीय अर्थों में सीमा शर्तों को पूरा करने के लिए पर्याप्त नहीं हो सकते हैं।

प्रेरणा

एक सीमित, चिकने डोमेन पर (गणितीय विश्लेषण) , विषम डिरिचलेट सीमा शर्तों के साथ पोइसन के समीकरण को हल करने की समस्या पर विचार करें:

दिए गए कार्यों के साथ तथा ट्रेस ऑपरेटर नीचे दिए गए आवेदन में चर्चा की गई नियमितता के साथ। कमजोर उपाय इस समीकरण को संतुष्ट करना चाहिए

सभी के लिए . वें>- की नियमितता इस अभिन्न समीकरण की अच्छी तरह से परिभाषित करने के लिए पर्याप्त है। हालाँकि, यह स्पष्ट नहीं है कि किस अर्थ में सीमा शर्त को पूरा कर सकते हैं पर : परिभाषा से, फलनों का एक तुल्यता वर्ग है जिस पर मनमाना मान हो सकता है चूंकि यह एन-आयामी लेबेस्गु माप के संबंध में एक शून्य सेट है।

यदि वहाँ रखती है सोबोलेव असमानता द्वारा, सोबोलेव का एम्बेडिंग प्रमेय, जैसे कि शास्त्रीय अर्थों में सीमा की स्थिति को संतुष्ट कर सकता है, अर्थात प्रति फलन से सहमत हैं (अधिक सटीक रूप से : का एक प्रतिनिधि उपस्थित है में इस संपत्ति के साथ)। साथ के लिये ऐसा एम्बेडिंग उपस्थित नहीं है और ट्रेस ऑपरेटर का प्रयोग का अर्थ देने के लिए किया जाना चाहिए | फिर के साथ को सीमा मान समस्या का एक कमजोर समाधान कहा जाता है यदि ऊपर दिए गए अभिन्न समीकरण को संतुष्ट किया जाता है। ट्रेस ऑपरेटर की परिभाषा उचित होने के लिए, पर्याप्त रूप से नियमित के लिए होना चाहिए |

ट्रेस प्रमेय

ट्रेस ऑपरेटर को सोबोलेव स्पेस में कार्यों के लिए परिभाषित किया जा सकता है साथ , अन्य स्थानों पर ट्रेस के संभावित विस्तार के लिए नीचे दिया गया अनुभाग देखें। होने देना के लिये Lipschitz सीमा के साथ एक परिबद्ध डोमेन हो। फिर[1]वहाँ एक परिबद्ध रेखीय ट्रेस ऑपरेटर उपस्थित है

ऐसा है कि शास्त्रीय ट्रेस का विस्तार करता है, अर्थात

सभी के लिए .

की निरंतरता इसका आशय है

सभी के लिए निरंतर के साथ ही निर्भर करता है तथा . कार्यक्रम का निशान कहा जाता है और अक्सर इसे केवल द्वारा निरूपित किया जाता है . के लिए अन्य सामान्य प्रतीक सम्मालित तथा .

निर्माण

यह पैराग्राफ इवांस का अनुसरण करता है,[2]जहां अधिक विवरण मिल सकता है, और यह मान लेता है एक -सीमा। लिप्सचिट्ज़ डोमेन के लिए ट्रेस प्रमेय का एक प्रमाण (एक मजबूत संस्करण का) गगलियार्डो में पाया जा सकता है।[1]एक पर -डोमेन, ट्रेस ऑपरेटर को ऑपरेटर के निरंतर रैखिक विस्तार के रूप में परिभाषित किया जा सकता है

अंतरिक्ष के लिए . के घने सेट द्वारा में ऐसा विस्तार संभव है यदि के संबंध में निरंतर है -आदर्श। इसका प्रमाण, अर्थात् कि उपस्थित है (इस पर निर्भर करते हुए तथा ) ऐसा है कि

सभी के लिए

ट्रेस ऑपरेटर के निर्माण में केंद्रीय घटक है। के लिए इस अनुमान का एक स्थानीय संस्करण विचलन प्रमेय का प्रयोग करते हुए स्थानीय रूप से सपाट सीमा के लिए -फंक्शन पहले सिद्ध होते हैं। परिवर्तन द्वारा, एक सामान्य -इस मामले को कम करने के लिए सीमा को स्थानीय रूप से सीधा किया जा सकता है, जहां -रूपांतरण की नियमितता के लिए आवश्यक है कि स्थानीय अनुमान धारण करे -कार्य।

ट्रेस ऑपरेटर की इस निरंतरता के साथ के लिए एक विस्तार सार तर्कों से उपस्थित है और के लिये निम्नानुसार चित्रित किया जा सकता है। होने देना अनुमानित अनुक्रम हो घनत्व से। की सिद्ध निरंतरता से में क्रम में एक कॉची क्रम है तथा सीमा में लिया गया .

एक्सटेंशन संपत्ति के लिए रखता है निर्माण द्वारा, लेकिन किसी के लिए एक क्रम होता है जो समान रूप से अभिसरण करता है प्रति , बड़े सेट पर एक्सटेंशन प्रॉपर्टी की पुष्टि करना .

मामला पी = ∞

यदि घिरा हुआ है और एक है -सीमा तब मोरे की असमानता से एक सतत एम्बेडिंग उपस्थित है , कहाँ पे Lipschitz निरंतरता कार्यों के स्थान को दर्शाता है। विशेष रूप से, कोई फलन एक शास्त्रीय निशान है और वहाँ रखती है


ट्रेस शून्य के साथ कार्य

सोबोलेव रिक्त स्थान के लिये क्लोजर (टोपोलॉजी) के रूप में परिभाषित किया गया है # कॉम्पैक्ट रूप से समर्थित परीक्षण कार्यों के सेट के सेट का क्लोजर के प्रति सम्मान के साथ -आदर्श। निम्नलिखित वैकल्पिक लक्षण वर्णन धारण करता है:

कहाँ पे का कर्नेल (रैखिक बीजगणित) है , अर्थात। में कार्यों का उप-स्थान है ट्रेस जीरो के साथ।

ट्रेस ऑपरेटर की छवि

=== पी> 1 === के लिए

ट्रेस ऑपरेटर पर विशेषण नहीं है यदि , अर्थात् हर फलन में नहीं में एक फलन का निशान है . जैसा कि नीचे दी गई छवि में ऐसे कार्य सम्मालित हैं जो एक को संतुष्ट करते हैं -होल्डर स्थिति का संस्करण|होल्डर निरंतरता।

सार लक्षण वर्णन

की छवि (गणित) का एक सार लक्षण वर्णन निम्नानुसार व्युत्पन्न किया जा सकता है। समरूपता प्रमेयों द्वारा वहाँ धारण किया जाता है

कहाँ पे बानाच स्थान के भागफल स्थान (रैखिक बीजगणित) को दर्शाता है उपक्षेत्र द्वारा और अंतिम पहचान के लक्षण वर्णन से होती है ऊपर से। द्वारा परिभाषित भागफल स्थान को भागफल मानदंड से लैस करना

ट्रेस ऑपरेटर तब एक विशेषण, परिबद्ध रैखिक संकारक है

.

सोबोलेव-स्लोबोडेकिज रिक्त स्थान का प्रयोग करते हुए अभिलक्षणन

की छवि का अधिक ठोस प्रतिनिधित्व सोबोलेव स्पेस#सोबोलेव-स्लोबोडेकिज स्पेस का प्रयोग करके दिया जा सकता है|सोबोलेव-स्लोबोडेकिज स्पेस जो धारक के निरंतर कार्यों की अवधारणा को सामान्यीकृत करता है -स्थापना। तब से एक (n-1)-आयामी लिप्सचिट्ज़ टोपोलॉजिकल मैनिफोल्ड में एम्बेडेड है इन स्थानों का एक स्पष्ट लक्षण वर्णन तकनीकी रूप से सम्मालित है। सरलता के लिए पहले एक समतलीय डोमेन पर विचार करें . के लिये (संभवतः अनंत) मानक को परिभाषित करें

जो होल्डर की स्थिति को सामान्य करता है . फिर

पिछले मानदंड से लैस एक बनच स्पेस है (एक सामान्य परिभाषा गैर-पूर्णांक के लिए सोबोलेव स्पेस#सोबोलेव-स्लोबोडेकिज स्पेसेस|सोबोलेव-स्लोबोडेकिज स्पेसेस के लिए आलेख में पाया जा सकता है। (N-1)-आयामी लिप्सचिट्ज़ मैनिफोल्ड के लिए परिभाषित करना स्थानीय रूप से सीधा करके और की परिभाषा के अनुसार आगे बढ़ना .

अंतरिक्ष तब ट्रेस ऑपरेटर की छवि के रूप में पहचाना जा सकता है और वहां होल्ड करता है[1]वह

एक विशेषण, परिबद्ध रैखिक संकारक है।

=== पी = 1 === के लिए

के लिये ट्रेस ऑपरेटर की छवि है और वहाँ रखती है[1]वह

एक विशेषण, परिबद्ध रैखिक संकारक है।

राइट-इनवर्स: ट्रेस एक्सटेंशन ऑपरेटर

ट्रेस ऑपरेटर कई कार्यों के बाद से इंजेक्शन नहीं है एक ही निशान हो सकता है (या समकक्ष, ). हालांकि ट्रेस ऑपरेटर के पास एक अच्छी तरह से व्यवहार करने वाला राइट-इनवर्स है, जो सीमा पर परिभाषित फ़ंक्शन को पूरे डोमेन तक बढ़ाता है। विशेष तौर पर एक परिबद्ध, रैखिक ट्रेस एक्सटेंशन ऑपरेटर उपस्थित है[3]

,

पिछले अनुभाग से ट्रेस ऑपरेटर की छवि के सोबोलेव-स्लोबोडेकिज लक्षण वर्णन का प्रयोग करते हुए, जैसे कि

सभी के लिए

और, निरंतरता से, उपस्थित है साथ

.

उल्लेखनीय मात्र अस्तित्व नहीं है बल्कि सही व्युत्क्रम की रैखिकता और निरंतरता है। इस ट्रेस एक्सटेंशन ऑपरेटर को सोबोलेव स्पेस # एक्सटेंशन ऑपरेटर | होल-स्पेस एक्सटेंशन ऑपरेटर के साथ भ्रमित नहीं होना चाहिए जो सोबोलेव रिक्त स्थान के सिद्धांत में मौलिक भूमिका निभाते हैं।

अन्य रिक्त स्थान का विस्तार

उच्च डेरिवेटिव

पिछले कई परिणामों को बढ़ाया जा सकता है उच्च भिन्नता के साथ यदि डोमेन पर्याप्त रूप से नियमित है। होने देना बाहरी इकाई सामान्य क्षेत्र को निरूपित करें . तब से केवल सामान्य व्युत्पन्न स्पर्शरेखा दिशा में विभेदीकरण गुणों को सांकेतिक शब्दों में बदल सकते हैं ट्रेस थ्योरी के लिए अतिरिक्त रुचि है . इसी तरह के तर्क उच्च-क्रम के डेरिवेटिव के लिए लागू होते हैं .

होने देना तथा के साथ एक परिबद्ध डोमेन हो -सीमा। फिर[3]वहाँ एक विशेषण, परिबद्ध रैखिक उच्च-क्रम ट्रेस ऑपरेटर उपस्थित है

सोबोलेव-स्लोबोडेकिज रिक्त स्थान के साथ गैर-पूर्णांक के लिए पर परिभाषित प्लानर मामले में परिवर्तन के माध्यम से के लिये , जिसकी परिभाषा सोबोलेव स्पेस#सोबोलेव-स्लोबोडेकिज स्पेसेस|सोबोलेव-स्लोबोडेकिज स्पेसेस पर लेख में विस्तार से दी गई है। परिचालक इस अर्थ में शास्त्रीय सामान्य निशान का विस्तार करता है

सभी के लिए

इसके अलावा, का एक परिबद्ध, रैखिक दाएँ-प्रतिलोम उपस्थित है , एक उच्च-क्रम ट्रेस एक्सटेंशन ऑपरेटर[3]

.

अंत में, रिक्त स्थान , का पूरा होना में -नॉर्म, के कर्नेल के रूप में वर्णित किया जा सकता है ,[3]अर्थात।

.

कम नियमित स्थान

एल में कोई निशान नहींपी </सुप>

निशान की अवधारणा का कोई समझदार विस्तार नहीं है के लिये चूँकि क्लासिकल ट्रेस का विस्तार करने वाला कोई भी परिबद्ध रेखीय संचालिका परीक्षण कार्यों के स्थान पर शून्य होना चाहिए , जो का सघन उपसमुच्चय है , जिसका अर्थ है कि ऐसा ऑपरेटर हर जगह शून्य होगा।

सामान्यीकृत सामान्य ट्रेस

होने देना एक वेक्टर क्षेत्र के वितरण विचलन को निरूपित करें . के लिये और बाउंडेड लिपशिट्ज डोमेन परिभाषित करना

जो आदर्श के साथ एक बनच स्थान है

.

होने देना बाहरी इकाई सामान्य क्षेत्र को निरूपित करें . फिर[4]वहाँ एक परिबद्ध रैखिक संचालिका उपस्थित है

,

कहाँ पे का संयुग्मी घातांक है तथा बनच स्थान के लिए निरंतर दोहरे स्थान को दर्शाता है , ऐसा है कि सामान्य निशान बढ़ाता है के लिये इस अर्थ में कि

.

सामान्य ट्रेस ऑपरेटर का मान के लिये सदिश क्षेत्र में विचलन प्रमेय के अनुप्रयोग द्वारा परिभाषित किया गया है कहाँ पे ऊपर से ट्रेस एक्सटेंशन ऑपरेटर है।

आवेदन पत्र। कोई कमजोर उपाय प्रति एक सीमित लिप्सचिट्ज़ डोमेन में के अर्थ में एक सामान्य व्युत्पन्न है . यह इस प्रकार है जबसे तथा . यह परिणाम सामान्य रूप से लिप्सचिट्ज़ डोमेन के बाद से उल्लेखनीय है , ऐसा है कि ट्रेस ऑपरेटर के डोमेन में नहीं हो सकता है .

आवेदन

ऊपर प्रस्तुत प्रमेय सीमा मान समस्या की बारीकी से जांच की अनुमति देते हैं

लिप्सचिट्ज़ डोमेन पर प्रेरणा से। केवल हिल्बर्ट स्पेस केस के बाद से यहां जांच की जाती है, नोटेशन निरूपित करने के लिए प्रयोग किया जाता है आदि। जैसा कि प्रेरणा में कहा गया है, एक कमजोर समाधान इस समीकरण को संतुष्ट होना चाहिए तथा

सभी के लिए ,

जहां दाहिने हाथ की ओर व्याख्या की जानी चाहिए मूल्य के साथ एक द्वैत उत्पाद के रूप में .

कमजोर समाधानों का अस्तित्व और विशिष्टता

की सीमा का लक्षण वर्णन तात्पर्य है कि के लिए नियमितता धारण करना आवश्यक है। यह नियमितता एक दुर्बल विलयन के अस्तित्व के लिए भी पर्याप्त है, जिसे निम्न प्रकार से देखा जा सकता है। ट्रेस एक्सटेंशन प्रमेय द्वारा उपस्थित है ऐसा है कि . परिभाषित द्वारा हमारे पास वह है और इस तरह के लक्षण वर्णन से ट्रेस शून्य के स्थान के रूप में। कार्यक्रम फिर अभिन्न समीकरण को संतुष्ट करता है

सभी के लिए .

इस प्रकार विषम सीमा मूल्यों के साथ समस्या सजातीय सीमा मूल्यों के साथ एक समस्या के लिए कम किया जा सकता है , एक तकनीक जिसे किसी रैखिक अंतर समीकरण पर लागू किया जा सकता है। रिज प्रतिनिधित्व प्रमेय के अनुसार एक अनूठा समाधान उपस्थित है इस समस्या के लिए। अपघटन की विशिष्टता से , यह एक अद्वितीय कमजोर समाधान के अस्तित्व के बराबर है विषम सीमा मान समस्या के लिए।

डेटा पर निरंतर निर्भरता

की निर्भरता की जांच करना बाकी है पर तथा . होने देना से स्वतंत्र स्थिरांक निरूपित करें तथा . की निरंतर निर्भरता से इसके अभिन्न समीकरण के दाईं ओर, वहाँ है

और इस प्रकार, उसका प्रयोग करना तथा ट्रेस एक्सटेंशन ऑपरेटर की निरंतरता से, यह इस प्रकार है

और समाधान मानचित्र

इसलिए निरंतर है।

यह भी देखें


इस पेज में लापता आंतरिक लिंक की सूची

  • अंक शास्त्र
  • आंशिक विभेदक समीकरण
  • फलन प्रतिबंध
  • डोमेन (गणितीय विश्लेषण)
  • घना सेट
  • लिपशिट्ज निरंतरता
  • परीक्षण फलन
  • संयुग्मी प्रतिपादक
  • निरंतर दोहरी जगह

संदर्भ

  1. 1.0 1.1 1.2 1.3 Gagliardo, Emilio (1957). "Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili". Rendiconti del Seminario Matematico della Università di Padova. 27: 284–305.
  2. Evans, Lawrence (1998). Partial differential equations. Providence, R.I.: American Mathematical Society. pp. 257–261. ISBN 0-8218-0772-2.
  3. 3.0 3.1 3.2 3.3 Nečas, Jindřich (1967). Les méthodes directes en théorie des équations elliptiques. Paris: Masson et Cie, Éditeurs, Prague: Academia, Éditeurs. pp. 90–104.
  4. Sohr, Hermann (2001). The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts Basler Lehrbücher. Basel: Birkhäuser. pp. 50–51. doi:10.1007/978-3-0348-8255-2. ISBN 978-3-0348-9493-7.

डी:सोबोलेव-राउम#स्पुरोपरेटर