ट्रेस ऑपरेटर: Difference between revisions
No edit summary |
No edit summary |
||
Line 48: | Line 48: | ||
== ट्रेस शून्य के साथ | == ट्रेस शून्य के साथ फलन == | ||
<math display="inline">1 \leq p < \infty</math> के लिये सोबोलेव स्पेस <math display="inline">W^{1,p}_0(\Omega)</math> कॉम्पैक्ट रूप से समर्थित सेट के बंद होने के रूप में परिभाषित किया गया है फलन <math display="inline">C^\infty_c(\Omega)</math> <math display="inline">W^{1, p}(\Omega)</math>-आदर्श के संबंध में। निम्नलिखित वैकल्पिक लक्षण वर्णन धारण करता है: | |||
: <math>W^{1, p}_0(\Omega) = \{ u \in W^{1, p}(\Omega) \mid T u = 0 \} = \ker(T\colon W^{1, p}(\Omega) \to L^p(\partial \Omega)),</math> | : <math>W^{1, p}_0(\Omega) = \{ u \in W^{1, p}(\Omega) \mid T u = 0 \} = \ker(T\colon W^{1, p}(\Omega) \to L^p(\partial \Omega)),</math> | ||
जहाँ <math display="inline">\ker(T)</math> का <math display="inline">T</math> [[कर्नेल (रैखिक बीजगणित)]] है, अर्थात <math display="inline">W^{1, p}_0(\Omega)</math> में फलनों का उप-स्थान है <math display="inline">W^{1, p}(\Omega)</math> ट्रेस जीरो के साथ है। | |||
== ट्रेस ऑपरेटर की छवि == | == ट्रेस ऑपरेटर की छवि == | ||
Line 59: | Line 59: | ||
=== पी> 1 === के लिए | === पी> 1 === के लिए | ||
ट्रेस ऑपरेटर पर विशेषण नहीं है <math display="inline">L^p(\partial \Omega)</math> यदि <math display="inline">p > 1</math>, अर्थात् हर फलन में नहीं <math display="inline">L^p(\partial \Omega)</math> में एक फलन का ट्रेस है <math display="inline">W^{1, p}(\Omega)</math>. जैसा कि नीचे दी गई छवि में ऐसे | ट्रेस ऑपरेटर पर विशेषण नहीं है <math display="inline">L^p(\partial \Omega)</math> यदि <math display="inline">p > 1</math>, अर्थात् हर फलन में नहीं <math display="inline">L^p(\partial \Omega)</math> में एक फलन का ट्रेस है <math display="inline">W^{1, p}(\Omega)</math>. जैसा कि नीचे दी गई छवि में ऐसे फलन सम्मालित हैं जो एक को संतुष्ट करते हैं <math display="inline">L^p</math>-होल्डर स्थिति का संस्करण|होल्डर निरंतरता। | ||
==== सार लक्षण वर्णन ==== | ==== सार लक्षण वर्णन ==== | ||
Line 72: | Line 72: | ||
: <math>T\colon W^{1, p}(\Omega) \to W^{1, p}(\Omega) / W^{1, p}_0(\Omega) </math>. | : <math>T\colon W^{1, p}(\Omega) \to W^{1, p}(\Omega) / W^{1, p}_0(\Omega) </math>. | ||
==== सोबोलेव-स्लोबोडेकिज | ==== सोबोलेव-स्लोबोडेकिज स्पेस का प्रयोग करते हुए अभिलक्षणन ==== | ||
की छवि का अधिक ठोस प्रतिनिधित्व <math display="inline">T</math> सोबोलेव स्पेस#सोबोलेव-स्लोबोडेकिज स्पेस का प्रयोग करके दिया जा सकता है|सोबोलेव-स्लोबोडेकिज स्पेस जो धारक के निरंतर फलनों की अवधारणा को सामान्यीकृत करता है <math display="inline">L^p</math>-स्थापना। तब से <math display="inline">\partial \Omega</math> एक (n-1)-आयामी लिप्सचिट्ज़ [[टोपोलॉजिकल मैनिफोल्ड]] में एम्बेडेड है <math display="inline">\mathbb R^n</math> इन स्थानों का एक स्पष्ट लक्षण वर्णन तकनीकी रूप से सम्मालित है। सरलता के लिए पहले एक समतलीय डोमेन पर विचार करें <math display="inline">\Omega' \subset \mathbb R^{n-1}</math>. के लिये <math display="inline">v \in L^p(\Omega')</math> (संभवतः अनंत) मानक को परिभाषित करें | की छवि का अधिक ठोस प्रतिनिधित्व <math display="inline">T</math> सोबोलेव स्पेस#सोबोलेव-स्लोबोडेकिज स्पेस का प्रयोग करके दिया जा सकता है|सोबोलेव-स्लोबोडेकिज स्पेस जो धारक के निरंतर फलनों की अवधारणा को सामान्यीकृत करता है <math display="inline">L^p</math>-स्थापना। तब से <math display="inline">\partial \Omega</math> एक (n-1)-आयामी लिप्सचिट्ज़ [[टोपोलॉजिकल मैनिफोल्ड]] में एम्बेडेड है <math display="inline">\mathbb R^n</math> इन स्थानों का एक स्पष्ट लक्षण वर्णन तकनीकी रूप से सम्मालित है। सरलता के लिए पहले एक समतलीय डोमेन पर विचार करें <math display="inline">\Omega' \subset \mathbb R^{n-1}</math>. के लिये <math display="inline">v \in L^p(\Omega')</math> (संभवतः अनंत) मानक को परिभाषित करें | ||
Line 108: | Line 108: | ||
: <math>\| E v \|_{W^{1, p}(\Omega)} \leq C \| v \|_{W^{1-1/p, p}(\partial \Omega)}</math>. | : <math>\| E v \|_{W^{1, p}(\Omega)} \leq C \| v \|_{W^{1-1/p, p}(\partial \Omega)}</math>. | ||
उल्लेखनीय मात्र अस्तित्व नहीं है बल्कि सही व्युत्क्रम की रैखिकता और निरंतरता है। इस ट्रेस एक्सटेंशन ऑपरेटर को सोबोलेव स्पेस # एक्सटेंशन ऑपरेटर | होल-स्पेस एक्सटेंशन ऑपरेटर के साथ भ्रमित नहीं होना चाहिए <math display="inline">W^{1, p}(\Omega) \to W^{1, p}(\mathbb R^n)</math> जो सोबोलेव | उल्लेखनीय मात्र अस्तित्व नहीं है बल्कि सही व्युत्क्रम की रैखिकता और निरंतरता है। इस ट्रेस एक्सटेंशन ऑपरेटर को सोबोलेव स्पेस # एक्सटेंशन ऑपरेटर | होल-स्पेस एक्सटेंशन ऑपरेटर के साथ भ्रमित नहीं होना चाहिए <math display="inline">W^{1, p}(\Omega) \to W^{1, p}(\mathbb R^n)</math> जो सोबोलेव स्पेस के सिद्धांत में मौलिक भूमिका निभाते हैं। | ||
== अन्य | == अन्य स्पेस का विस्तार == | ||
=== उच्च डेरिवेटिव === | === उच्च डेरिवेटिव === | ||
Line 121: | Line 121: | ||
: <math>T_m\colon W^{m, p}(\Omega) \to \prod_{l = 0}^{m-1} W^{m-l-1/p,p}(\partial \Omega)</math> | : <math>T_m\colon W^{m, p}(\Omega) \to \prod_{l = 0}^{m-1} W^{m-l-1/p,p}(\partial \Omega)</math> | ||
: | : | ||
सोबोलेव-स्लोबोडेकिज | सोबोलेव-स्लोबोडेकिज स्पेस के साथ <math display="inline">W^{s, p}(\partial \Omega)</math> गैर-पूर्णांक के लिए <math display="inline">s > 0</math> पर परिभाषित <math display="inline">\partial \Omega</math> प्लानर मामले में परिवर्तन के माध्यम से <math display="inline">W^{s, p}(\Omega')</math> के लिये <math display="inline">\Omega' \subset \mathbb R^{n-1}</math>, जिसकी परिभाषा सोबोलेव स्पेस#सोबोलेव-स्लोबोडेकिज स्पेसेस|सोबोलेव-स्लोबोडेकिज स्पेसेस पर लेख में विस्तार से दी गई है। परिचालक <math display="inline">T_m</math> इस अर्थ में पारम्परिक सामान्य ट्रेस का विस्तार करता है | ||
: <math>T_m u = \left(u |_{\partial \Omega}, \partial_N u |_{\partial \Omega}, \ldots, \partial_N^{m-1} u |_{\partial \Omega}\right)</math> सभी के लिए <math display="inline">u \in W^{m, p}(\Omega) \cap C^{m-1}(\bar \Omega).</math> | : <math>T_m u = \left(u |_{\partial \Omega}, \partial_N u |_{\partial \Omega}, \ldots, \partial_N^{m-1} u |_{\partial \Omega}\right)</math> सभी के लिए <math display="inline">u \in W^{m, p}(\Omega) \cap C^{m-1}(\bar \Omega).</math> | ||
Line 128: | Line 128: | ||
: <math>E_m\colon \prod_{l = 0}^{m-1} W^{m-l-1/p,p}(\partial \Omega) \to W^{m, p}(\Omega)</math>. | : <math>E_m\colon \prod_{l = 0}^{m-1} W^{m-l-1/p,p}(\partial \Omega) \to W^{m, p}(\Omega)</math>. | ||
अंत में, | अंत में, स्पेस <math display="inline">W^{m, p}_0(\Omega)</math>, का पूरा होना <math display="inline">C^\infty_c(\Omega)</math> में <math display="inline">W^{m, p}(\Omega)</math>-नॉर्म, के कर्नेल के रूप में वर्णित किया जा सकता है <math display="inline">T_m</math>,<ref name="Necas1967" />अर्थात। | ||
: <math>W^{m, p}_0(\Omega) = \{ u \in W^{m, p}(\Omega) \mid T_m u = 0 \}</math>. | : <math>W^{m, p}_0(\Omega) = \{ u \in W^{m, p}(\Omega) \mid T_m u = 0 \}</math>. |
Revision as of 13:17, 5 December 2022
गणित में, ट्रेस ऑपरेटर सोबोलेव स्पेस में सामान्यीकृत फलनों के लिए अपने डोमेन की सीमा तक फलन के प्रतिबंध की धारणा को बढ़ाता है। यह निर्धारित सीमा स्थितियों (सीमा मान समस्याओं) के साथ आंशिक अंतर समीकरणों के अध्ययन के लिए विशेष रूप से महत्वपूर्ण है, जहां कमजोर समाधान फलनों के पारम्परिक अर्थों में सीमा शर्तों को पूरा करने के लिए नियमित रूप से पर्याप्त नहीं हो सकते हैं।
प्रेरणा
एक परिबद्ध, चिकने डोमेन (गणितीय विश्लेषण) पर, विषम के साथ पॉइसन के समीकरण को हल करने की समस्या पर विचार करें डिरिचलेट सीमा शर्तें:
दिए गए फलन तथा के साथ नियमितता के साथ नीचे दिए गए एप्लिकेशन सेक्शन में चर्चा की गई है। इस समीकरण के कमजोर समाधान को संतुष्ट करना चाहिए
- सभी के लिए .
- की नियमितता इस अभिन्न समीकरण की अच्छी तरह से परिभाषित करने के लिए पर्याप्त है। चूँकि, यह स्पष्ट नहीं है कि किस अर्थ में सीमा शर्त पर : को संतुष्ट कर सकते हैं परिभाषा के अनुसार, फलनों का एक तुल्यता वर्ग है जिसका पर मनमाना मान हो सकता है चूंकि यह n-आयामी लेबेस्गु माप के संबंध में एक शून्य सेट है।
यदि में रखने पर, सोबोलेव का एम्बेडिंग प्रमेय, जैसे कि पारम्परिक अर्थों में सीमा की स्थिति को संतुष्ट कर सकता है, अर्थात से आंशिक का प्रतिबंध फलन से सहमत हैं (अधिक उपयुक्त रूप से: में का एक प्रतिनिधि मौजूद है इस गुण के साथ)। के लिये के साथ ऐसा एम्बेडिंग उपस्थित नहीं है और यहां प्रस्तुत ट्रेस ऑपरेटर का प्रयोग का अर्थ देने के लिए किया जाना चाहिए | फिर के साथ को सीमा मान समस्या का एक कमजोर समाधान कहा जाता है यदि ऊपर दिए गए अभिन्न समीकरण को संतुष्ट किया जाता है। ट्रेस ऑपरेटर की परिभाषा उचित होने के लिए, पर्याप्त रूप से नियमित के लिए करना आवश्यक है। |
ट्रेस प्रमेय
ट्रेस ऑपरेटर को सोबोलेव स्पेस में के साथ फलनों के लिए परिभाषित किया जा सकता है, अन्य स्थानों पर ट्रेस के संभावित विस्तार के लिए नीचे दिया गया अनुभाग देखें। माना के लिये लिप्सचिट्ज़ सीमा के साथ एक परिबद्ध डोमेन हो। तब[1]वहाँ एक परिबद्ध रेखीय ट्रेस ऑपरेटर उपस्थित है
जैसे कि पारम्परिक ट्रेस का विस्तार करता है, अर्थात
- सभी के लिए .
की निरंतरता का तात्पर्य है कि
सभी के लिए
निरंतर के साथ केवल तथा पर निर्भर करता है। फलन को का ट्रेस कहा जाता है और अधिकांश इसे केवल द्वारा निरूपित किया जाता है। और के लिए अन्य सामान्य प्रतीकों में तथा सम्मालित हैं।
निर्माण
यह पैराग्राफ इवांस का अनुसरण करता है,[2] और जहां से अधिक विवरण प्राप्त किया जा सकता है, और यह मान ले कि की एक -सीमा है। लिप्सचिट्ज़ डोमेन के लिए ट्रेस प्रमेय का एक प्रमाण (एक मजबूत संस्करण का) गगलियार्डो में प्राप्त किया जा सकता है।[1] -डोमेन पर, ट्रेस ऑपरेटर को ऑपरेटर के निरंतर रैखिक विस्तार के रूप में परिभाषित किया जा सकता है
स्पेस के लिए . के घने सेट द्वारा में ऐसा विस्तार संभव है यदि -आदर्श के संबंध में निरंतर है। इसका प्रमाण, अर्थात् कि उपस्थित है (इस पर निर्भर करते हुए तथा ) जैसे कि
- सभी के लिए
ट्रेस ऑपरेटर के निर्माण में केंद्रीय घटक है। के लिए इस अनुमान का एक स्थानीय संस्करण पहले सिद्ध किया गया है विचलन प्रमेय का प्रयोग करते हुए स्थानीय रूप से सपाट सीमा के लिए -फलन पहले सिद्ध होते हैं। परिवर्तन द्वारा, एक सामान्य -इस मामले को कम करने के लिए सीमा को स्थानीय रूप से सीधा किया जा सकता है, जहां -रूपांतरण की नियमितता के लिए आवश्यक है कि स्थानीय अनुमान -फलन को धारण करे।
ट्रेस ऑपरेटर की इस निरंतरता के साथ के लिए एक विस्तार सार तर्कों से उपस्थित है और के लिये निम्नानुसार चित्रित किया जा सकता है। मान ले घनत्व द्वारा का अनुमान लगाने वाला अनुक्रम हो। की अनुक्रम में एक कॉशी अनुक्रम है तथा सीमा में लिया गया .
इसके अतिरिक्त गुण के लिए रखता है निर्माण द्वारा, लेकिन किसी के लिए एक क्रम होता है जो से समान रूप से अभिसरण करता है, बड़े सेट पर अतिरिक्त गुण की पुष्टि करता है।
स्थिति पी = ∞
यदि परिबद्ध है और उसकी एक -सीमा है तब मोरे की असमानता से एक सतत एम्बेडिंग उपस्थित है , जहाँ लिप्सचिट्ज़ निरंतरता फलनों के स्थान को दर्शाता है। विशेष रूप से, किसी भी फलन में एक पारम्परिक ट्रेस है और वहाँ रखती है
ट्रेस शून्य के साथ फलन
के लिये सोबोलेव स्पेस कॉम्पैक्ट रूप से समर्थित सेट के बंद होने के रूप में परिभाषित किया गया है फलन -आदर्श के संबंध में। निम्नलिखित वैकल्पिक लक्षण वर्णन धारण करता है:
जहाँ का कर्नेल (रैखिक बीजगणित) है, अर्थात में फलनों का उप-स्थान है ट्रेस जीरो के साथ है।
ट्रेस ऑपरेटर की छवि
=== पी> 1 === के लिए
ट्रेस ऑपरेटर पर विशेषण नहीं है यदि , अर्थात् हर फलन में नहीं में एक फलन का ट्रेस है . जैसा कि नीचे दी गई छवि में ऐसे फलन सम्मालित हैं जो एक को संतुष्ट करते हैं -होल्डर स्थिति का संस्करण|होल्डर निरंतरता।
सार लक्षण वर्णन
की छवि (गणित) का एक सार लक्षण वर्णन निम्नानुसार व्युत्पन्न किया जा सकता है। समरूपता प्रमेयों द्वारा वहाँ धारण किया जाता है
कहाँ पे बानाच स्थान के भागफल स्थान (रैखिक बीजगणित) को दर्शाता है उपक्षेत्र द्वारा और अंतिम पहचान के लक्षण वर्णन से होती है ऊपर से। द्वारा परिभाषित भागफल स्थान को भागफल मानदंड से लैस करना
ट्रेस ऑपरेटर तब एक विशेषण, परिबद्ध रैखिक संकारक है
- .
सोबोलेव-स्लोबोडेकिज स्पेस का प्रयोग करते हुए अभिलक्षणन
की छवि का अधिक ठोस प्रतिनिधित्व सोबोलेव स्पेस#सोबोलेव-स्लोबोडेकिज स्पेस का प्रयोग करके दिया जा सकता है|सोबोलेव-स्लोबोडेकिज स्पेस जो धारक के निरंतर फलनों की अवधारणा को सामान्यीकृत करता है -स्थापना। तब से एक (n-1)-आयामी लिप्सचिट्ज़ टोपोलॉजिकल मैनिफोल्ड में एम्बेडेड है इन स्थानों का एक स्पष्ट लक्षण वर्णन तकनीकी रूप से सम्मालित है। सरलता के लिए पहले एक समतलीय डोमेन पर विचार करें . के लिये (संभवतः अनंत) मानक को परिभाषित करें
जो होल्डर की स्थिति को सामान्य करता है . फिर
पिछले मानदंड से लैस एक बनच स्पेस है (एक सामान्य परिभाषा गैर-पूर्णांक के लिए सोबोलेव स्पेस#सोबोलेव-स्लोबोडेकिज स्पेसेस|सोबोलेव-स्लोबोडेकिज स्पेसेस के लिए आलेख में पाया जा सकता है। (N-1)-आयामी लिप्सचिट्ज़ मैनिफोल्ड के लिए परिभाषित करना स्थानीय रूप से सीधा करके और की परिभाषा के अनुसार आगे बढ़ना .
स्पेस तब ट्रेस ऑपरेटर की छवि के रूप में पहचाना जा सकता है और वहां होल्ड करता है[1]वह
एक विशेषण, परिबद्ध रैखिक संकारक है।
=== पी = 1 === के लिए
के लिये ट्रेस ऑपरेटर की छवि है और वहाँ रखती है[1]वह
एक विशेषण, परिबद्ध रैखिक संकारक है।
राइट-इनवर्स: ट्रेस एक्सटेंशन ऑपरेटर
ट्रेस ऑपरेटर कई फलनों के बाद से इंजेक्शन नहीं है एक ही ट्रेस हो सकता है (या समकक्ष, ). हालांकि ट्रेस ऑपरेटर के पास एक अच्छी तरह से व्यवहार करने वाला राइट-इनवर्स है, जो सीमा पर परिभाषित फ़ंक्शन को पूरे डोमेन तक बढ़ाता है। विशेष तौर पर एक परिबद्ध, रैखिक ट्रेस एक्सटेंशन ऑपरेटर उपस्थित है[3]
- ,
पिछले अनुभाग से ट्रेस ऑपरेटर की छवि के सोबोलेव-स्लोबोडेकिज लक्षण वर्णन का प्रयोग करते हुए, जैसे कि
- सभी के लिए
और, निरंतरता से, उपस्थित है साथ
- .
उल्लेखनीय मात्र अस्तित्व नहीं है बल्कि सही व्युत्क्रम की रैखिकता और निरंतरता है। इस ट्रेस एक्सटेंशन ऑपरेटर को सोबोलेव स्पेस # एक्सटेंशन ऑपरेटर | होल-स्पेस एक्सटेंशन ऑपरेटर के साथ भ्रमित नहीं होना चाहिए जो सोबोलेव स्पेस के सिद्धांत में मौलिक भूमिका निभाते हैं।
अन्य स्पेस का विस्तार
उच्च डेरिवेटिव
पिछले कई परिणामों को बढ़ाया जा सकता है उच्च भिन्नता के साथ यदि डोमेन पर्याप्त रूप से नियमित है। होने देना बाहरी इकाई सामान्य क्षेत्र को निरूपित करें . तब से केवल सामान्य व्युत्पन्न स्पर्शरेखा दिशा में विभेदीकरण गुणों को सांकेतिक शब्दों में बदल सकते हैं ट्रेस थ्योरी के लिए अतिरिक्त रुचि है . इसी तरह के तर्क उच्च-क्रम के डेरिवेटिव के लिए लागू होते हैं .
होने देना तथा के साथ एक परिबद्ध डोमेन हो -सीमा। फिर[3]वहाँ एक विशेषण, परिबद्ध रैखिक उच्च-क्रम ट्रेस ऑपरेटर उपस्थित है
सोबोलेव-स्लोबोडेकिज स्पेस के साथ गैर-पूर्णांक के लिए पर परिभाषित प्लानर मामले में परिवर्तन के माध्यम से के लिये , जिसकी परिभाषा सोबोलेव स्पेस#सोबोलेव-स्लोबोडेकिज स्पेसेस|सोबोलेव-स्लोबोडेकिज स्पेसेस पर लेख में विस्तार से दी गई है। परिचालक इस अर्थ में पारम्परिक सामान्य ट्रेस का विस्तार करता है
- सभी के लिए
इसके अलावा, का एक परिबद्ध, रैखिक दाएँ-प्रतिलोम उपस्थित है , एक उच्च-क्रम ट्रेस एक्सटेंशन ऑपरेटर[3]
- .
अंत में, स्पेस , का पूरा होना में -नॉर्म, के कर्नेल के रूप में वर्णित किया जा सकता है ,[3]अर्थात।
- .
कम नियमित स्थान
एल में कोई ट्रेस नहींपी </सुप>
ट्रेस की अवधारणा का कोई समझदार विस्तार नहीं है के लिये चूँकि क्लासिकल ट्रेस का विस्तार करने वाला कोई भी परिबद्ध रेखीय संचालिका परीक्षण फलनों के स्थान पर शून्य होना चाहिए , जो का सघन उपसमुच्चय है , जिसका अर्थ है कि ऐसा ऑपरेटर हर जगह शून्य होगा।
सामान्यीकृत सामान्य ट्रेस
होने देना एक वेक्टर क्षेत्र के वितरण विचलन को निरूपित करें . के लिये और बाउंडेड लिपशिट्ज डोमेन परिभाषित करना
जो आदर्श के साथ एक बनच स्थान है
- .
होने देना बाहरी इकाई सामान्य क्षेत्र को निरूपित करें . फिर[4]वहाँ एक परिबद्ध रैखिक संचालिका उपस्थित है
- ,
कहाँ पे का संयुग्मी घातांक है तथा बनच स्थान के लिए निरंतर दोहरे स्थान को दर्शाता है , ऐसा है कि सामान्य ट्रेस बढ़ाता है के लिये इस अर्थ में कि
- .
सामान्य ट्रेस ऑपरेटर का मान के लिये सदिश क्षेत्र में विचलन प्रमेय के अनुप्रयोग द्वारा परिभाषित किया गया है कहाँ पे ऊपर से ट्रेस एक्सटेंशन ऑपरेटर है।
आवेदन पत्र। कोई कमजोर उपाय प्रति एक सीमित लिप्सचिट्ज़ डोमेन में के अर्थ में एक सामान्य व्युत्पन्न है . यह इस प्रकार है जबसे तथा . यह परिणाम सामान्य रूप से लिप्सचिट्ज़ डोमेन के बाद से उल्लेखनीय है , ऐसा है कि ट्रेस ऑपरेटर के डोमेन में नहीं हो सकता है .
आवेदन
ऊपर प्रस्तुत प्रमेय सीमा मान समस्या की बारीकी से जांच की अनुमति देते हैं
लिप्सचिट्ज़ डोमेन पर प्रेरणा से। केवल हिल्बर्ट स्पेस केस के बाद से यहां जांच की जाती है, नोटेशन निरूपित करने के लिए प्रयोग किया जाता है आदि। जैसा कि प्रेरणा में कहा गया है, एक कमजोर समाधान इस समीकरण को संतुष्ट होना चाहिए तथा
- सभी के लिए ,
जहां दाहिने हाथ की ओर व्याख्या की जानी चाहिए मूल्य के साथ एक द्वैत उत्पाद के रूप में .
कमजोर समाधानों का अस्तित्व और विशिष्टता
की सीमा का लक्षण वर्णन तात्पर्य है कि के लिए नियमितता धारण करना आवश्यक है। यह नियमितता एक दुर्बल विलयन के अस्तित्व के लिए भी पर्याप्त है, जिसे निम्न प्रकार से देखा जा सकता है। ट्रेस एक्सटेंशन प्रमेय द्वारा उपस्थित है ऐसा है कि . परिभाषित द्वारा हमारे पास वह है और इस तरह के लक्षण वर्णन से ट्रेस शून्य के स्थान के रूप में। कार्यक्रम फिर अभिन्न समीकरण को संतुष्ट करता है
- सभी के लिए .
इस प्रकार विषम सीमा मूल्यों के साथ समस्या सजातीय सीमा मूल्यों के साथ एक समस्या के लिए कम किया जा सकता है , एक तकनीक जिसे किसी रैखिक अंतर समीकरण पर लागू किया जा सकता है। रिज प्रतिनिधित्व प्रमेय के अनुसार एक अनूठा समाधान उपस्थित है इस समस्या के लिए। अपघटन की विशिष्टता से , यह एक अद्वितीय कमजोर समाधान के अस्तित्व के बराबर है विषम सीमा मान समस्या के लिए।
डेटा पर निरंतर निर्भरता
की निर्भरता की जांच करना बाकी है पर तथा . होने देना से स्वतंत्र स्थिरांक निरूपित करें तथा . की निरंतर निर्भरता से इसके अभिन्न समीकरण के दाईं ओर, वहाँ है
और इस प्रकार, उसका प्रयोग करना तथा ट्रेस एक्सटेंशन ऑपरेटर की निरंतरता से, यह इस प्रकार है
और समाधान मानचित्र
इसलिए निरंतर है।
यह भी देखें
इस पेज में लापता आंतरिक लिंक की सूची
- अंक शास्त्र
- आंशिक विभेदक समीकरण
- फलन प्रतिबंध
- डोमेन (गणितीय विश्लेषण)
- घना सेट
- लिपशिट्ज निरंतरता
- परीक्षण फलन
- संयुग्मी प्रतिपादक
- निरंतर दोहरी जगह
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 Gagliardo, Emilio (1957). "Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili". Rendiconti del Seminario Matematico della Università di Padova. 27: 284–305.
- ↑ Evans, Lawrence (1998). Partial differential equations. Providence, R.I.: American Mathematical Society. pp. 257–261. ISBN 0-8218-0772-2.
- ↑ 3.0 3.1 3.2 3.3 Nečas, Jindřich (1967). Les méthodes directes en théorie des équations elliptiques. Paris: Masson et Cie, Éditeurs, Prague: Academia, Éditeurs. pp. 90–104.
- ↑ Sohr, Hermann (2001). The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts Basler Lehrbücher. Basel: Birkhäuser. pp. 50–51. doi:10.1007/978-3-0348-8255-2. ISBN 978-3-0348-9493-7.
- Leoni, Giovanni (2017). A First Course in Sobolev Spaces: Second Edition. Graduate Studies in Mathematics. 181. American Mathematical Society. pp. 734. ISBN 978-1-4704-2921-8