पुनरावृत्ति संबंध: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 216: Line 216:


=== [[कंप्यूटर विज्ञान]] ===
=== [[कंप्यूटर विज्ञान]] ===
एल्गोरिदम के विश्लेषण में पुनरावृत्ति संबंध भी मूलभूत महत्व के हैं।<ref>Cormen, T. et al, ''Introduction to Algorithms'', MIT Press, 2009</ref><ref>R. Sedgewick, F. Flajolet, ''An Introduction to the Analysis of Algorithms'', Addison-Wesley, 2013</ref> यदि एक एल्गोरिथ्म को इस तरह से डिज़ाइन किया गया है कि यह एक समस्या को छोटे उप-समस्याओं (विभाजित और जीत [[कलन विधि]]) में तोड़ देगा, तो इसके चलने का समय पुनरावृत्ति संबंध द्वारा वर्णित किया गया है।
एल्गोरिदम के विश्लेषण में पुनरावृत्ति संबंध भी मूलभूत महत्व के हैं।<ref>Cormen, T. et al, ''Introduction to Algorithms'', MIT Press, 2009</ref><ref>R. Sedgewick, F. Flajolet, ''An Introduction to the Analysis of Algorithms'', Addison-Wesley, 2013</ref> यदि एक कलन विधि को इस प्रकार से डिज़ाइन किया गया है कि यह एक समस्या को छोटे उप-समस्याओं (विभाजित और जीत [[कलन विधि]]) में तोड़ देगा, तो इसके चलने का समय पुनरावृत्ति संबंध द्वारा वर्णित किया गया है।


सबसे खराब स्थिति में <math>n</math> तत्वों वाले ऑर्डर किए गए सदिश में किसी तत्व को खोजने में लगने वाला समय एक सरल उदाहरण है।  
सबसे खराब स्थिति में <math>n</math> तत्वों वाले गण किए गए सदिश में किसी तत्व को खोजने में लगने वाला समय एक सरल उदाहरण है।  


एक भोली एल्गोरिथ्म एक समय में एक तत्व को बाएं से दाएं खोजेगा। सबसे खराब संभावित परिदृश्य तब होता है जब आवश्यक तत्व अंतिम होता है, इसलिए तुलना की संख्या <math>n</math> होती है .
एक भोली कलन विधि एक समय में एक तत्व को बाएं से दाएं खोजेगा। सबसे खराब संभावित परिदृश्य तब होता है जब आवश्यक तत्व अंतिम होता है, इसलिए तुलना की संख्या <math>n</math> होती है I


एक बेहतर एल्गोरिदम को [[बाइनरी सर्च एल्गोरिथम]] कहा जाता है। चूँकि, इसके लिए एक क्रमबद्ध वेक्टर की आवश्यकता होती है। यह पहले जांच करेगा कि तत्व वेक्टर के बीच में है या नहीं। यदि नहीं, तो यह जाँच करेगा कि मध्य तत्व वांछित तत्व से अधिक या कम है या नहीं। इस बिंदु पर, आधे वेक्टर को छोड़ दिया जा सकता है, और एल्गोरिथ्म को दूसरे आधे हिस्से पर फिर से चलाया जा सकता है। तुलना की संख्या द्वारा दिया जाएगा
एक अच्छा कलन विधि को [[बाइनरी सर्च एल्गोरिथम|बाइनरी खोज कलन विधि]] कहा जाता है। चूँकि, इसके लिए एक क्रमबद्ध वेक्टर की आवश्यकता होती है। यह पहले जांच करेगा कि तत्व वेक्टर के बीच में है या नहीं। यदि नहीं, तो यह जाँच करेगा कि मध्य तत्व वांछित तत्व से अधिक या कम है या नहीं। इस बिंदु पर, आधे वेक्टर को छोड़ दिया जा सकता है, और कलन विधि को दूसरे आधे हिस्से पर फिर से चलाया जा सकता है। तुलना की संख्या द्वारा दिया जाएगा


:<math>c_1=1</math>
:<math>c_1=1</math>
Line 229: Line 229:


=== [[अंकीय संकेत प्रक्रिया]] ===
=== [[अंकीय संकेत प्रक्रिया]] ===
डिजिटल सिग्नल प्रोसेसिंग में, पुनरावृत्ति संबंध एक प्रणाली में फीडबैक को मॉडल कर सकते हैं, जहां एक समय में आउटपुट भविष्य के समय के लिए इनपुट बन जाते हैं। वे इस प्रकार [[अनंत आवेग प्रतिक्रिया]] (आईआईआर) [[डिजिटल फिल्टर]] में उत्पन्न होते हैं।
डिजिटल संकेत प्रसंस्करण में, पुनरावृत्ति संबंध एक प्रणाली में प्रतिक्रिया को मॉडल कर सकते हैं, जहां एक समय में आउटपुट भविष्य के समय के लिए इनपुट बन जाते हैं। वे इस प्रकार [[अनंत आवेग प्रतिक्रिया]] (आईआईआर) [[डिजिटल फिल्टर]] में उत्पन्न होते हैं।


उदाहरण के लिए, विलंब  <math>T</math> के फीडफॉरवर्ड आईआईआर [[कंघी फिल्टर]] के लिए समीकरण  है:
उदाहरण के लिए, विलंब  <math>T</math> के आगे आईआईआर [[कंघी फिल्टर]] के लिए समीकरण  है:


:<math>y_t = (1 - \alpha) x_t + \alpha y_{t - T},</math>
:<math>y_t = (1 - \alpha) x_t + \alpha y_{t - T},</math>
जहां <math>x_t</math> समय पर इनपुट है <math>t</math>, <math>y_t</math> समय पर आउटपुट है <math>t</math>, तथा <math>\alpha</math> यह नियंत्रित करता है कि कितने विलंबित सिग्नल को आउटपुट में वापस फीड किया जाता है। इससे हम यह देख सकते हैं
जहां <math>x_t</math> समय पर इनपुट है <math>t</math>, <math>y_t</math> समय पर आउटपुट है <math>t</math>, तथा <math>\alpha</math> यह नियंत्रित करता है कि कितने विलंबित संकेत को आउटपुट में वापस फीड किया जाता है। इससे हम यह देख सकते हैं


:<math>y_t = (1 - \alpha) x_t + \alpha ((1-\alpha) x_{t-T} + \alpha y_{t - 2T})</math>
:<math>y_t = (1 - \alpha) x_t + \alpha ((1-\alpha) x_{t-T} + \alpha y_{t - 2T})</math>
Line 242: Line 242:
=== [[अर्थशास्त्र]] ===
=== [[अर्थशास्त्र]] ===
{{see also|समय श्रृंखला विश्लेषण|एक साथ समीकरण मॉडल}}
{{see also|समय श्रृंखला विश्लेषण|एक साथ समीकरण मॉडल}}
पुनरावृत्ति संबंध, विशेष रूप से रैखिक पुनरावृत्ति संबंध, सैद्धांतिक और अनुभवजन्य अर्थशास्त्र दोनों में बड़े पैमाने पर उपयोग किए जाते हैं।<ref>{{cite book |first1=Nancy L. |last1=Stokey |author-link=Nancy Stokey | first2=Robert E. Jr. |last2=Lucas |author-link2=Robert Lucas, Jr. |first3=Edward C. |last3=Prescott |author-link3=Edward C. Prescott |title=आर्थिक गतिशीलता में पुनरावर्ती तरीके|location=Cambridge |publisher=Harvard University Press |year=1989 |isbn=0-674-75096-9 |url=https://books.google.com/books?id=BgQ3AwAAQBAJ }}</ref><ref>{{cite book |last2=Sargent |first2=Thomas J. |author-link2=Thomas J. Sargent |first1=Lars |last1=Ljungqvist |author-link=Lars Ljungqvist |title=पुनरावर्ती मैक्रोइकॉनॉमिक थ्योरी|location=Cambridge |publisher=MIT Press |edition=Second |year=2004 |isbn=0-262-12274-X |url=https://archive.org/details/recursivemacroec02edljun |url-access=registration }}</ref> विशेष रूप से, मैक्रोइकॉनॉमिक्स में अर्थव्यवस्था के विभिन्न व्यापक क्षेत्रों (वित्तीय क्षेत्र, माल क्षेत्र, श्रम बाजार, आदि) का एक मॉडल विकसित किया जा सकता है जिसमें कुछ एजेंटों के कार्य पिछड़े चर पर निर्भर करते हैं। मॉडल को तब अन्य चरों के पिछले और वर्तमान मूल्यों के संदर्भ में प्रमुख चर ([[ब्याज दर]], वास्तविक [[सकल घरेलू उत्पाद]], आदि) के वर्तमान मूल्यों के लिए हल किया जाएगा।
पुनरावृत्ति संबंध, विशेष रूप से रैखिक पुनरावृत्ति संबंध, सैद्धांतिक और अनुभवजन्य अर्थशास्त्र दोनों में बड़े पैमाने पर उपयोग किए जाते हैं।<ref>{{cite book |first1=Nancy L. |last1=Stokey |author-link=Nancy Stokey | first2=Robert E. Jr. |last2=Lucas |author-link2=Robert Lucas, Jr. |first3=Edward C. |last3=Prescott |author-link3=Edward C. Prescott |title=आर्थिक गतिशीलता में पुनरावर्ती तरीके|location=Cambridge |publisher=Harvard University Press |year=1989 |isbn=0-674-75096-9 |url=https://books.google.com/books?id=BgQ3AwAAQBAJ }}</ref><ref>{{cite book |last2=Sargent |first2=Thomas J. |author-link2=Thomas J. Sargent |first1=Lars |last1=Ljungqvist |author-link=Lars Ljungqvist |title=पुनरावर्ती मैक्रोइकॉनॉमिक थ्योरी|location=Cambridge |publisher=MIT Press |edition=Second |year=2004 |isbn=0-262-12274-X |url=https://archive.org/details/recursivemacroec02edljun |url-access=registration }}</ref> विशेष रूप से, मैक्रो अर्थशास्त्र में अर्थव्यवस्था के विभिन्न व्यापक क्षेत्रों (वित्तीय क्षेत्र, माल क्षेत्र, श्रम बाजार, आदि) का एक मॉडल विकसित किया जा सकता है जिसमें कुछ एजेंटों के कार्य पिछड़े चर पर निर्भर करते हैं। मॉडल को तब अन्य चरों के पिछले और वर्तमान मूल्यों के संदर्भ में प्रमुख चर ([[ब्याज दर]], वास्तविक [[सकल घरेलू उत्पाद]], आदि) के वर्तमान मूल्यों के लिए समाधान किया जाएगा।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 21:59, 18 December 2022

गणित में, पुनरावृत्ति संबंध एक समीकरण है जिसके अनुसार संख्याओं के अनुक्रम का वां पद पिछले पदों के कुछ संयोजन के बराबर है। सामान्यतः केवल अनुक्रम के पिछले पद समीकरण में दिखाई देते हैं, एक पैरामीटर के लिए जो कि से स्वतंत्र है ; इस संख्या को संबंध का क्रम कहा जाता है। यदि अनुक्रम में पहली संख्याओं का मान दिया गया है, तो शेष अनुक्रम की गणना बार-बार समीकरण को लागू करके की जा सकती है।

रैखिक पुनरावृत्तियों में, nवें पद पिछले पदों के एक रैखिक फलन के बराबर होता है। फिबोनैकी संख्याओं की पुनरावृत्ति एक प्रसिद्ध उदाहरण है,

जहां क्रम दो है और रैखिक फलन केवल पिछले दो पदों को जोड़ता है। यह उदाहरण स्थिर गुणांकों के साथ एक रैखिक पुनरावृत्ति है, क्योंकि रैखिक फलन (1 और 1) के गुणांक स्थिरांक हैं जो पर निर्भर नहीं करते हैं . इन पुनरावृत्तियों के लिए, अनुक्रम के सामान्य शब्द को एक बंद-रूप अभिव्यक्ति के रूप में व्यक्त किया जा सकता है I साथ ही, पी-पुनरावर्ती समीकरण पर निर्भर करते हुए बहुपद गुणांकों के साथ रेखीय पुनरावर्तन भी महत्वपूर्ण हैं, क्योंकि कई सामान्य प्राथमिक और विशेष कार्यों में एक टेलर श्रृंखला होती है जिसके गुणांक ऐसे पुनरावृत्ति संबंध को संतुष्ट करते हैं (होलोनोमिक फ़ंक्शन देखें)।

पुनरावृत्ति संबंध को समाधान करने का अर्थ है एक बंद-रूप समाधान प्राप्त करना: का एक गैर-पुनरावर्ती कार्य .

पुनरावृत्ति संबंध की अवधारणा को बहुआयामी सरणियों तक विस्तारित किया जा सकता है, अर्थात अनुक्रमित परिवार जो प्राकृतिक संख्याओं के टुपल्स द्वारा अनुक्रमित होते हैं।

परिभाषा

पुनरावृत्ति संबंध एक समीकरण है जो अनुक्रम के प्रत्येक तत्व को पिछले वाले के कार्य के रूप में व्यक्त करता है। अधिक सटीक रूप से, उस सम्बन्ध में जहां केवल पूर्ववर्ती तत्व सम्मिलित होता है, पुनरावृत्ति संबंध का रूप होता है

जहाँ

एक फलहाँ X एक समुच्च,के लिए यह इसके पहले तत्व के रूप में

एक फलन है, जहाँ X एक समुच्चय है जिससे अनुक्रम के अवयव संबंधित होने चाहिए।[1] किसी भी के लिए यह इसके पहले तत्व के रूप में के साथ एक अद्वितीय अनुक्रम को परिभाषित करता है, जिसे प्रारंभिक मूल्य।

अनुक्रमणिका 1 या उच्चतर की अवधि से अनुक्रम प्राप्त करने के लिए परिभाषा को संशोधित करना आसान है।

यह प्रथम कोटि के पुनरावर्तन संबंध को परिभाषित करता है। क्रम k के पुनरावृत्ति संबंध का रूप है

जहाँ एक ऐसा फंक्शन है जिसमें k अनुक्रम के लगातार तत्व सम्मिलित है । इस स्थिति में, किसी क्रम को परिभाषित करने के लिए k प्रारंभिक मानों की आवश्यकता होती है।

उदाहरण

फैक्टोरियल

फैक्टोरियल को पुनरावृत्ति संबंध द्वारा परिभाषित किया गया है

और प्रारंभिक स्थिति

यह सरल बहुपद के साथ क्रम 1 के बहुपद गुणांकों के साथ रैखिक पुनरावृत्ति का एक उदाहरण है

इसके एकमात्र गुणांक के रूप में।

लॉजिस्टिक मानचित्र

पुनरावृत्ति संबंध का एक उदाहरण तार्किक मानचित्र है:

दिए गए स्थिरांक के साथ ; दिया गया आरंभिक पद प्रत्येक अनुवर्ती पद इस संबंध द्वारा निर्धारित होता है।

फाइबोनैचि संख्या

फाइबोनैचि संख्याओं द्वारा संतुष्ट क्रम दो की पुनरावृत्ति निरंतर गुणांक के साथ एक सजातीय रैखिक पुनरावृत्ति संबंध का विहित उदाहरण है (नीचे देखें)। फाइबोनैचि अनुक्रम को पुनरावृत्ति का उपयोग करके परिभाषित किया गया है

प्रारंभिक शर्तों के साथ

स्पष्ट रूप से, पुनरावृत्ति से समीकरण प्राप्त होते हैं

आदि।

हम फाइबोनैचि संख्याओं का क्रम प्राप्त करते हैं, जो शुरू होता है

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

पुनरावर्तन को नीचे वर्णित उपायों से समाधान किया जा सकता है, जो बिनेट के सूत्र को दर्शाता है, जिसमें विशेषता बहुपद की दो जड़ों की शक्तियां सम्मलित होती हैं। ; अनुक्रम का उत्पादक फ़ंक्शन तर्कसंगत फ़ंक्शन है


द्विपद गुणांक

बहुआयामी पुनरावृत्ति संबंध का एक सरल उदाहरण द्विपद गुणांक , द्वारा दिया गया है, जो को चुनने के उपायों की गणना करते हैं। k तत्व तत्वों के एक समुच्च से बाहर है। इनकी गणना पुनरावृत्ति संबंध द्वारा की जा सकती है

आधार स्थिति के साथ . सभी द्विपद गुणांकों के मूल्यों की गणना करने के लिए इस सूत्र का उपयोग करने से पास्कल का त्रिकोण नामक एक अनंत सरणी उत्पन्न होती है। समान मूल्यों की सीधे एक भिन्न सूत्र द्वारा गणना की जा सकती है जो पुनरावृत्ति नहीं है, लेकिन तथ्यात्मक, गुणन और विभाजन का उपयोग करता है, न कि केवल जोड़:

द्विपद गुणांकों की गणना एक आयामी पुनरावृत्ति के साथ भी की जा सकती है:

प्रारंभिक मूल्य के साथ (विभाजन को एक अंश के रूप में प्रदर्शित नहीं किया जाता है, यह बल देने के लिए कि इसे गुणा के बाद गणना की जानी चाहिए, भिन्नात्मक संख्याओं को दर्शाने के लिए नहीं)।यह पुनरावृत्ति कंप्यूटर में व्यापक रूप से उपयोग की जाती है क्योंकि इसमें तालिका बनाने की आवश्यकता नहीं होती है जैसा कि द्वि-आयामी पुनरावृत्ति करता है, और इसमें बहुत बड़े पूर्णांक सम्मिलित होते हैं जैसा कि फैक्टोरियल के साथ सूत्र (यदि कोई उपयोग करता है) सभी सम्मिलित पूर्णांक अंतिम परिणाम से छोटे हैं)।

अंतर ऑपरेटर और अंतर समीकरण

अंतर ऑपरेटर एक ऑपरेटर (गणित) है जो अनुक्रमों को मैप करता है, और, अधिक सामान्यतः, फ़ंक्शन (गणित) को कार्यों के लिए। यह सामान्यतः डेल्टा से निरूपित किया जाता है और कार्यात्मक संकेतन में परिभाषित किया जाता है, जैसा कि

इस प्रकार यह परिमित अंतर का एक विशेष विषय है।

अनुक्रमों के लिए सूचकांक संकेतन का उपयोग करते समय, परिभाषा बन जाती है

तथा के आसपास कोष्ठक सामान्यतः छोड़े जाते हैं, और अनुक्रम में अनुक्रमणिका n के शब्द के रूप में समझा जाना चाहिए न कि तत्व पर लागू दिया गया क्रम a का पहला अंतर है

दूसरा अंतर है  एक साधारण गणना यह दर्शाती है

अधिक सामान्यतः k अंतर को पुनरावर्ती रूप से परिभाषित किया जाता है और एक के पास है

यह रिश्ता उलटा हो सकता है, दे रहा है

कोटि k का अंतर एक ऐसा समीकरण है जिसमें किसी अनुक्रम या फलन k के पहले अंतर सम्मलित होते हैं, ठीक उसी तरह जैसे k क्रम का अवकल समीकरण किसी फलन के k पहले अवकलजों को संबंधित करता है।

उपरोक्त दो संबंध क्रम k के पुनरावृत्ति संबंध को बदलने की अनुमति देते हैं और इसके विपरीत, क्रम k के अंतर समीकरण को क्रम के अंतर समीकरण में ,k के पुनरावृत्ति संबंध में बदलने की अनुमति देते हैं। प्रत्येक परिवर्तन दूसरे का व्युत्क्रम है, और अनुक्रम जो अंतर समीकरण के समाधान हैं, ठीक वही हैं जो पुनरावृत्ति संबंध को संतुष्ट करते हैं।

उदाहरण के लिए, अंतर समीकरण

पुनरावृत्ति संबंध के बराबर है

इस अर्थ में कि दो समीकरण एक ही क्रम से संतुष्ट होते हैं।

जैसा कि एक पुनरावृत्ति संबंध को संतुष्ट करने के लिए या एक अंतर समीकरण का समाधान होने के लिए अनुक्रम के बराबर है, पुनरावृत्ति संबंध और अंतर समीकरण के दो पद कभी-कभी एक दूसरे के लिए उपयोग किए जाते हैं। पुनरावृत्ति संबंध के अतिरिक्त अंतर समीकरण के उपयोग के उदाहरण के लिए परिमेय अंतर समीकरण और मैट्रिक्स अंतर समीकरण देखें I

अंतर समीकरण समान होते हैं, और इस समानता का उपयोग अधिकांशतः अंतर समीकरणों को समाधान करने के लिए भिन्न -भिन्न समीकरणों को समाधान करने के उपायों की नकल करने के लिए किया जाता है,और इसलिए पुनरावृत्ति संबंध।

योग समीकरण अंतर समीकरणों से संबंधित होते हैं क्योंकि अभिन्न समीकरण अंतर समीकरणों से संबंधित होते हैं। अंतर समीकरणों के सिद्धांत के साथ अंतर समीकरणों के एकीकरण के लिए समय पैमाने की गणना देखें।

अनुक्रम से ग्रिड तक

एकल-चर या एक-आयामी पुनरावृत्ति संबंध अनुक्रमों के बारे में हैं (अर्थात एक-आयामी ग्रिड पर परिभाषित कार्य)। बहु-चर या -आयामी पुनरावृत्ति संबंध -आयामी ग्रिड के बारे में हैं। आंशिक अंतर समीकरणों के साथ -ग्रिड्स पर परिभाषित कार्यों का भी अध्ययन किया जा सकता है।[2]


सुलझाना

निरंतर गुणांकों के साथ रैखिक पुनरावृत्ति संबंधों को समाधान करना


चर गुणांकों के साथ प्रथम-क्रम गैर-सजातीय पुनरावृत्ति संबंधों को समाधान करना

इसके अतिरिक्त, चर गुणांक के साथ सामान्य प्रथम-क्रम गैर-सजातीय रैखिक पुनरावृत्ति संबंध के लिए:

इसे समाधान करने का एक अच्छा उपाय भी है:[3]

होने देना

फिर

यदि हम सूत्र को पर लागू करते हैं और की सीमा लें, हमें चर गुणांक वाले रैखिक अवकल समीकरणों के पहले क्रम का सूत्र मिलता है; योग एक अभिन्न बन जाता है, और उत्पाद एक अभिन्न अंग का घातीय कार्य बन जाता है।

सामान्य सजातीय रैखिक पुनरावृत्ति संबंधों को समाधान करना

सामान्यीकृत अतिज्यामितीय श्रृंखला के माध्यम से कई सजातीय रैखिक पुनरावृत्ति संबंधों को समाधान किया जा सकता है। इनके विशेष स्थिति ऑर्थोगोनल बहुपदो और कई विशेष कार्यों के लिए पुनरावृत्ति संबंधों की ओर ले जाते हैं। उदाहरण के लिए, का समाधान

द्वारा दिया गया है

बेसेल फंक्शन, जबकि

द्वारा समाधान किया जाता है

संगम अतिज्यामितीय श्रृंखला। अनुक्रम जो बहुपद गुणांक वाले रैखिक अंतर समीकरणों के समाधान हैं, P-पुनरावर्ती कहलाते हैं।समीकरण के समाधान हैं इन विशिष्ट पुनरावृत्ति समीकरणों के लिए कलन विधि

ज्ञात हैं जो बहुपद, परिमेय या अतिज्यामितीय समाधान खोजते हैं।

प्रथम-क्रम तर्कसंगत अंतर समीकरणों को समाधान करना

पहले क्रम के तर्कसंगत अंतर समीकरण का रूप होता है . इस प्रकार के एक समीकरण को को एक अन्य चर के गैर-रैखिक परिवर्तन के रूप में लिखकर समाधान किया जा सकता है जो स्वयं रैखिक रूप से विकसित होता है। फिर में रैखिक अंतर समीकरण को समाधान करने के लिए मानक विधियों का उपयोग किया जा सकता है।

स्थिरता

रैखिक उच्च-क्रम पुनरावृत्तियों की स्थिरता

आदेश की रैखिक पुनरावृत्ति ,

विशेषता बहुपद है

पुनरावृत्ति स्थिरता सिद्धांत है, जिसका अर्थ है कि पुनरावृत्त एक निश्चित मूल्य के लिए असम्बद्ध रूप से अभिसरण करते हैं,और केवल आइगेनवैल्यूज़ ​​​​( विशेषता समीकरण की जड़ें), चाहे वास्तविक या जटिल, पूर्ण मूल्य में एकता (गणित) से कम हैं I

रैखिक प्रथम-क्रम मैट्रिक्स पुनरावृत्तियों की स्थिरता

पहले क्रम के मैट्रिक्स अंतर समीकरण में

स्टेट वेक्टर के साथ और संक्रमण मैट्रिक्स , असम्बद्ध रूप से स्थिर अवस्था वेक्टर में परिवर्तित हो जाता है यदि केवल यदि संक्रमण मैट्रिक्स के सभी आइजन मूल्य(चाहे वास्तविक हो या जटिल) का एक निरपेक्ष मान होता है जो 1 से कम होता है।

अरेखीय प्रथम-क्रम पुनरावृत्तियों की स्थिरता

अरेखीय प्रथम-क्रम पुनरावृत्ति पर विचार करें

यह पुनरावृत्ति स्थिरता सिद्धांत है, जिसका अर्थ है कि यह अनुक्रम को एक निश्चित बिंदु से पर्याप्त रूप से के निकट बिंदुओं से अभिसरण करता है, यदि के पड़ोस में का स्लोप निरपेक्ष मान में एकता से छोटा है: अर्थात

एक अरेखीय पुनरावृत्ति में कई निश्चित बिंदु हो सकते हैं, इस स्थिति में कुछ निश्चित बिंदु स्थानीय रूप से स्थिर हो सकते हैं और अन्य स्थानीय रूप से अस्थिर हो सकते हैं; निरंतर च के लिए दो आसन्न निश्चित बिंदु दोनों स्थानीय रूप से स्थिर नहीं हो सकते।

एक अरैखिक पुनरावृत्ति संबंध में के लिए अवधि का एक चक्र भी हो सकता है। ऐसा चक्र स्थिर होता है, जिसका अर्थ है कि यह सकारात्मक माप की प्रारंभिक स्थितियों के एक समुच्चय को आकर्षित करता है, यदि समग्र कार्य

बार प्रदर्शित होने के साथ समान मानदंड के अनुसार स्थानीय रूप से स्थिर है:

जहां चक्र पर कोई बिंदु है।

अराजकता सिद्धांत में पुनरावृत्ति संबंध, चर एक बंधे हुए क्षेत्र में रहता है लेकिन कभी भी एक निश्चित बिंदु या एक आकर्षक चक्र में परिवर्तित नहीं होता है; समीकरण के कोई निश्चित बिंदु या चक्र अस्थिर हैं। लॉजिस्टिक मैप, युग्मक परिवर्तन और तम्बू का चित्र भी देखें।

अंतर समीकरणों से संबंध

एक साधारण अवकल समीकरण संख्यात्मक साधारण अवकल समीकरण को समाधान करते समय, एक विशिष्ट रूप से एक पुनरावृत्ति संबंध का सामना करना पड़ता है। उदाहरण के लिए, प्रारंभिक मूल्य समस्या को समाधान करते समय

यूलर की विधि और एक कदम आकार के साथ , मूल्यों की गणना करता है

पुनरावृत्ति द्वारा

रेखीय प्रथम क्रम के अंतर समीकरणों के प्रणाली को विवेचनात्मक लेख में दिखाए गए उपायों का उपयोग करके स्पष्ट रूप से विश्लेषणात्मक रूप से विखंडित किया जा सकता है।

अनुप्रयोग

गणितीय जीव विज्ञान

जनसंख्या की गतिशीलता को मॉडल करने के प्रयास में कुछ सबसे प्रसिद्ध अंतर समीकरणों की उत्पत्ति हुई है। उदाहरण के लिए, फाइबोनैचि संख्याओं को एक बार खरगोशों की आबादी के विकास के लिए एक मॉडल के रूप में प्रयोग किया गया था।

रसद मानचित्र का उपयोग या तो सीधे जनसंख्या वृद्धि के मॉडल के लिए किया जाता है, या जनसंख्या गतिशीलता के अधिक विस्तृत मॉडल के लिए प्रारंभिक बिंदु के रूप में किया जाता है। इस संदर्भ में, युग्मित अंतर समीकरणों का उपयोग अधिकांशतः दो या दो से अधिक आबादी की बातचीत के मॉडल के लिए किया जाता है। उदाहरण के लिए, मेजबान-परजीवी बातचीत के लिए निकोलसन-बेली मॉडल द्वारा दिया गया है-

मेजबान का प्रतिनिधित्व करते हुए, और समय पर

एकीकरण समीकरण पुनरावृत्ति संबंध का एक रूप है जो स्थानिक पारिस्थितिकी के लिए महत्वपूर्ण है। ये और अन्य अंतर समीकरण विशेष रूप से वोल्टेनिसम आबादी के मॉडलिंग के लिए अनुकूल हैं।

कंप्यूटर विज्ञान

एल्गोरिदम के विश्लेषण में पुनरावृत्ति संबंध भी मूलभूत महत्व के हैं।[4][5] यदि एक कलन विधि को इस प्रकार से डिज़ाइन किया गया है कि यह एक समस्या को छोटे उप-समस्याओं (विभाजित और जीत कलन विधि) में तोड़ देगा, तो इसके चलने का समय पुनरावृत्ति संबंध द्वारा वर्णित किया गया है।

सबसे खराब स्थिति में तत्वों वाले गण किए गए सदिश में किसी तत्व को खोजने में लगने वाला समय एक सरल उदाहरण है।

एक भोली कलन विधि एक समय में एक तत्व को बाएं से दाएं खोजेगा। सबसे खराब संभावित परिदृश्य तब होता है जब आवश्यक तत्व अंतिम होता है, इसलिए तुलना की संख्या होती है I

एक अच्छा कलन विधि को बाइनरी खोज कलन विधि कहा जाता है। चूँकि, इसके लिए एक क्रमबद्ध वेक्टर की आवश्यकता होती है। यह पहले जांच करेगा कि तत्व वेक्टर के बीच में है या नहीं। यदि नहीं, तो यह जाँच करेगा कि मध्य तत्व वांछित तत्व से अधिक या कम है या नहीं। इस बिंदु पर, आधे वेक्टर को छोड़ दिया जा सकता है, और कलन विधि को दूसरे आधे हिस्से पर फिर से चलाया जा सकता है। तुलना की संख्या द्वारा दिया जाएगा

जिसकी समय जटिलता होगी .

अंकीय संकेत प्रक्रिया

डिजिटल संकेत प्रसंस्करण में, पुनरावृत्ति संबंध एक प्रणाली में प्रतिक्रिया को मॉडल कर सकते हैं, जहां एक समय में आउटपुट भविष्य के समय के लिए इनपुट बन जाते हैं। वे इस प्रकार अनंत आवेग प्रतिक्रिया (आईआईआर) डिजिटल फिल्टर में उत्पन्न होते हैं।

उदाहरण के लिए, विलंब के आगे आईआईआर कंघी फिल्टर के लिए समीकरण है:

जहां समय पर इनपुट है , समय पर आउटपुट है , तथा यह नियंत्रित करता है कि कितने विलंबित संकेत को आउटपुट में वापस फीड किया जाता है। इससे हम यह देख सकते हैं

आदि।

अर्थशास्त्र

पुनरावृत्ति संबंध, विशेष रूप से रैखिक पुनरावृत्ति संबंध, सैद्धांतिक और अनुभवजन्य अर्थशास्त्र दोनों में बड़े पैमाने पर उपयोग किए जाते हैं।[6][7] विशेष रूप से, मैक्रो अर्थशास्त्र में अर्थव्यवस्था के विभिन्न व्यापक क्षेत्रों (वित्तीय क्षेत्र, माल क्षेत्र, श्रम बाजार, आदि) का एक मॉडल विकसित किया जा सकता है जिसमें कुछ एजेंटों के कार्य पिछड़े चर पर निर्भर करते हैं। मॉडल को तब अन्य चरों के पिछले और वर्तमान मूल्यों के संदर्भ में प्रमुख चर (ब्याज दर, वास्तविक सकल घरेलू उत्पाद, आदि) के वर्तमान मूल्यों के लिए समाधान किया जाएगा।

यह भी देखें


संदर्भ

फ़ुटनोट्स

  1. Jacobson, Nathan , Basic Algebra 2 (2nd ed.), § 0.4. pg 16.
  2. Partial difference equations, Sui Sun Cheng, CRC Press, 2003, ISBN 978-0-415-29884-1
  3. "संग्रहीत प्रति" (PDF). Archived (PDF) from the original on 2010-07-05. Retrieved 2010-10-19.
  4. Cormen, T. et al, Introduction to Algorithms, MIT Press, 2009
  5. R. Sedgewick, F. Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, 2013
  6. Stokey, Nancy L.; Lucas, Robert E. Jr.; Prescott, Edward C. (1989). आर्थिक गतिशीलता में पुनरावर्ती तरीके. Cambridge: Harvard University Press. ISBN 0-674-75096-9.
  7. Ljungqvist, Lars; Sargent, Thomas J. (2004). पुनरावर्ती मैक्रोइकॉनॉमिक थ्योरी (Second ed.). Cambridge: MIT Press. ISBN 0-262-12274-X.


ग्रन्थसूची


इस पेज में लापता आंतरिक लिंक की सूची

  • अंक शास्त्र
  • रैखिक प्रकार्य
  • फाइबोनैचि संख्या
  • निरंतर गुणांक के साथ रैखिक पुनरावृत्ति
  • बंद रूप अभिव्यक्ति
  • बंद रूप समाधान
  • विशेष कार्य
  • टपल
  • बहुआयामी सरणी
  • आरंभिक दशा
  • तर्कसंगत कार्य
  • समारोह (गणित)
  • कार्यात्मक अंकन
  • साधारण अंतर समीकरण
  • उलटा काम करना
  • तर्कसंगत अंतर समीकरण
  • रैखिक अंतर समीकरण
  • विशेष समारोह
  • निरपेक्ष मूल्य
  • अनुक्रम की सीमा
  • संख्यात्मक साधारण अंतर समीकरण
  • विवेक
  • जनसंख्या में गतिशीलता
  • परिस्थितिकी
  • एल्गोरिदम का विश्लेषण
  • फूट डालो और जीतो एल्गोरिथम

बाहरी संबंध