संयुग्मन वर्ग: Difference between revisions
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
== परिभाषा<!--'Class number (group theory)' redirects here-->== | == परिभाषा<!--'Class number (group theory)' redirects here-->== | ||
मान लीजिए कि <math>G</math> एक समूह है। दो तत्व <math>a, b \in G</math> संयुग्मित हैं यदि कोई तत्व सम्मलित <math>g \in G</math> ऐसा है कि <math>gag^{-1} = b,</math> जिस स्थिति में <math>b</math> को <math>a</math> संयुग्म कहा जाता है और <math>a</math> को {{em|एक संयुग्मी | |||
[[सामान्य रैखिक समूह]] | }} कहा जाता है I उल्टा मेट्रिसेस के [[सामान्य रैखिक समूह]] <math>\operatorname{GL}(n)</math> की स्थिति में संयुग्मन संबंध को मैट्रिक्स समानता कहा जाता है <math>b.</math> | ||
यह आसानी से दिखाया जा सकता है कि संयुग्मन एक तुल्यता संबंध है और इसलिए | यह आसानी से दिखाया जा सकता है कि संयुग्मन एक तुल्यता संबंध है और इसलिए <math>G</math> विभाजन करता है तुल्यता वर्गों में। (इसका मतलब है कि समूह का प्रत्येक तत्व ठीक एक संयुग्मन वर्ग से संबंधित है, और वर्ग <math>\operatorname{Cl}(a)</math> तथा <math>\operatorname{Cl}(b)</math> बराबर हैं [[अगर और केवल अगर|और केवल]] <math>a</math> तथा <math>b</math> संयुग्मी हैं, अन्यथा भिन्न हो जाते है I तुल्यता वर्ग जिसमें <math>a \in G</math> तत्व सम्मलित है, | ||
<math display="block">\operatorname{Cl}(a) = \left\{ gag^{-1} : g \in G \right\}</math> | <math display="block">\operatorname{Cl}(a) = \left\{ gag^{-1} : g \in G \right\}</math> | ||
का संयुग्मी वर्ग कहलाता है <math>a.</math> {{visible anchor|class number|Class number (group theory)}}<!--boldface per WP:R#PLA--> का <math>G</math> विशिष्ट (गैर-समतुल्य) संयुग्मी वर्गों की संख्या है। एक ही संयुग्मन वर्ग से संबंधित सभी तत्वों का एक ही क्रम (समूह सिद्धांत) है। | का संयुग्मी वर्ग कहलाता है <math>a.</math> {{visible anchor|class number|Class number (group theory)}}<!--boldface per WP:R#PLA--> का <math>G</math> विशिष्ट (गैर-समतुल्य) संयुग्मी वर्गों की संख्या है। एक ही संयुग्मन वर्ग से संबंधित सभी तत्वों का एक ही क्रम (समूह सिद्धांत) है। |
Revision as of 22:35, 23 December 2022
गणित में, विशेष रूप से समूह सिद्धांत में, समूह के दो तत्व तथा संयुग्मित होते हैं यदि समूह में कोई तत्व ऐसा है कि यह एक तुल्यता संबंध है जिसके तुल्यता वर्ग संयुग्मी वर्ग कहलाते हैं। दूसरे शब्दों में, समूह में सभी तत्वों के लिए के अंतर्गत प्रत्येक संयुग्मन वर्ग बंद है।।
एक ही संयुग्मन वर्ग के सदस्यों को केवल समूह संरचना का उपयोग करके भिन्न नहीं किया जा सकता है, और इसलिए कई गुण बाँट लेते हैं। गैर-आबेली समूहों के संयुग्मन वर्गों का अध्ययन उनकी संरचना के अध्ययन के लिए मौलिक है।[1][2] एबेलियन समूह के लिए, प्रत्येक संयुग्मन वर्ग एक तत्व एकाकी वस्तु वाला एक समुच्चय है।
एक ही संयुग्मन वर्ग के सदस्यों के लिए स्थिर होने वाले कार्यों को वर्ग कार्य कहा जाता है।
परिभाषा
मान लीजिए कि एक समूह है। दो तत्व संयुग्मित हैं यदि कोई तत्व सम्मलित ऐसा है कि जिस स्थिति में को संयुग्म कहा जाता है और को एक संयुग्मी कहा जाता है I उल्टा मेट्रिसेस के सामान्य रैखिक समूह की स्थिति में संयुग्मन संबंध को मैट्रिक्स समानता कहा जाता है
यह आसानी से दिखाया जा सकता है कि संयुग्मन एक तुल्यता संबंध है और इसलिए विभाजन करता है तुल्यता वर्गों में। (इसका मतलब है कि समूह का प्रत्येक तत्व ठीक एक संयुग्मन वर्ग से संबंधित है, और वर्ग तथा बराबर हैं और केवल तथा संयुग्मी हैं, अन्यथा भिन्न हो जाते है I तुल्यता वर्ग जिसमें तत्व सम्मलित है,
संयुग्मी वर्गों को उनका वर्णन करके, या अधिक संक्षेप में 6A जैसे संक्षिप्त रूप से संदर्भित किया जा सकता है, जिसका अर्थ है क्रम 6 के तत्वों के साथ एक निश्चित संयुग्मन वर्ग, और 6B क्रम 6 के तत्वों के साथ एक अलग संयुग्मन वर्ग होगा; संयुग्मी वर्ग 1A पहचान का संयुग्मी वर्ग है जिसका क्रम 1 है। कुछ मामलों में, संयुग्मन वर्गों को एक समान तरीके से वर्णित किया जा सकता है; उदाहरण के लिए, सममित समूह में उन्हें Permutation#Cycle_type द्वारा वर्णित किया जा सकता है।
उदाहरण
ऑर्डर 6 का सममित समूह डायहेड्रल समूह |तीन तत्वों के 6 क्रमपरिवर्तन से मिलकर, तीन संयुग्मन वर्ग हैं:
- कोई परिवर्तन नहीं होता है . एकल सदस्य का आदेश 1 है।
- चक्रीय क्रमचय # स्थानान्तरण दो . 3 सदस्यों के पास आदेश 2 है।
- तीनों का एक चक्रीय क्रमपरिवर्तन . 2 सदस्यों दोनों के पास आदेश 3 है।
ये तीन वर्ग एक समबाहु त्रिभुज के आइसोमेट्री समूह के वर्गीकरण के अनुरूप हैं।
[[File:Symmetric group S4; conjugacy table.svg|thumb|300px|टेबल दिखा रहा है सभी जोड़ियों के लिए साथ <छोटा>(compare [[:File:Symmetric group 4; permutation list.svg|क्रमांकित सूची)</छोटा>। प्रत्येक पंक्ति में संयुग्मन वर्ग के सभी तत्व होते हैं of और प्रत्येक कॉलम में सभी तत्व शामिल हैं ]]सममित समूह v:सममित समूह S4|चार तत्वों के 24 क्रमपरिवर्तनों से मिलकर, उनके विवरण, क्रमचय#Cycle_type, सदस्य क्रम और सदस्यों के साथ सूचीबद्ध पांच संयुग्मन वर्ग हैं:
- कोई परिवर्तन नहीं होता है। चक्र प्रकार = [14]। आदेश = 1. सदस्य = {(1, 2, 3, 4)}। इस संयुग्मन वर्ग वाली एकल पंक्ति को आसन्न तालिका में काले घेरे की एक पंक्ति के रूप में दिखाया गया है।
- इंटरचेंजिंग दो (अन्य दो अपरिवर्तित रहते हैं)। चक्र प्रकार = [1221</उप>]। क्रम = 2. सदस्य = { (1, 2, 4, 3), (1, 4, 3, 2), (1, 3, 2, 4), (4, 2, 3, 1), (3, 2, 1, 4), (2, 1, 3, 4)})। इस संयुग्मन वर्ग वाली 6 पंक्तियों को आसन्न तालिका में हरे रंग में हाइलाइट किया गया है।
- तीन का एक चक्रीय क्रमचय (अन्य एक अपरिवर्तित रहता है)। चक्र प्रकार = [1131</उप>]। क्रम = 3. सदस्य = { (1, 3, 4, 2), (1, 4, 2, 3), (3, 2, 4, 1), (4, 2, 1, 3), (4, 1, 3, 2), (2, 4, 3, 1), (3, 1, 2, 4), (2, 3, 1, 4)})। इस संयुग्मन वर्ग वाली 8 पंक्तियों को आसन्न तालिका में सामान्य प्रिंट (कोई बोल्डफेस या रंग हाइलाइटिंग) के साथ दिखाया गया है।
- चारों का एक चक्रीय क्रमपरिवर्तन। चक्र प्रकार = [41</उप>]। क्रम = 4. सदस्य = { (2, 3, 4, 1), (2, 4, 1, 3), (3, 1, 4, 2), (3, 4, 2, 1), (4, 1, 2, 3), (4, 3, 1, 2)})। इस संयुग्मन वर्ग वाली 6 पंक्तियों को आसन्न तालिका में नारंगी रंग में हाइलाइट किया गया है।
- दो की अदला-बदली, और अन्य दो की भी। चक्र प्रकार = [22</उप>]। आदेश = 2. सदस्य = {(2, 1, 4, 3), (4, 3, 2, 1), (3, 4, 1, 2)})। इस संयुग्मन वर्ग वाली 3 पंक्तियों को आसन्न तालिका में बोल्डफेस प्रविष्टियों के साथ दिखाया गया है।
ऑक्टाहेड्रल समरूपता # क्यूब की आइसोमेट्रीज़, जिसे शरीर के विकर्णों के क्रमपरिवर्तन द्वारा चित्रित किया जा सकता है, को संयुग्मन द्वारा भी वर्णित किया गया है सामान्य तौर पर, सममित समूह में संयुग्मन वर्गों की संख्या के पूर्णांक विभाजनों की संख्या के बराबर है ऐसा इसलिए है क्योंकि प्रत्येक संयुग्मन वर्ग ठीक एक विभाजन से मेल खाता है साइकिल अंकन में, के तत्वों के क्रमचय तक सामान्य तौर पर, यूक्लिडियन अंतरिक्ष में आइसोमेट्री के संयुग्मन द्वारा यूक्लिडियन समूह का अध्ययन किया जा सकता है।
गुण
- पहचान तत्व हमेशा अपनी कक्षा में एकमात्र तत्व होता है, अर्थात
- यदि तब एबेलियन समूह है सभी के लिए , अर्थात। सभी के लिए (और इसका विलोम भी सत्य है: यदि सभी संयुग्मन वर्ग एकल हैं तो एबेलियन है)।
- यदि दो तत्व एक ही संयुग्मी वर्ग से संबंधित हैं (अर्थात, यदि वे संयुग्मी हैं), तो उनके पास एक ही आदेश (समूह सिद्धांत) है। अधिक सामान्यतः, प्रत्येक कथन के बारे में के बारे में एक बयान में अनुवाद किया जा सकता है क्योंकि नक्शा एक समूह समाकृतिकता है#Automorphisms of एक आंतरिक automorphism कहा जाता है। उदाहरण के लिए अगली संपत्ति देखें।
- यदि तथा संयुग्मी हैं, तो उनकी शक्तियां भी हैं तथा (सबूत: अगर फिर ) इस प्रकार ले रहा है th शक्तियाँ संयुग्मन वर्गों पर एक नक्शा देती हैं, और कोई इस पर विचार कर सकता है कि कौन से संयुग्मन वर्ग इसकी प्राथमिकता में हैं। उदाहरण के लिए, सममित समूह में, प्रकार (3)(2) (एक 3-चक्र और 2-चक्र) के तत्व का वर्ग प्रकार (3) का एक तत्व है, इसलिए पावर-अप वर्गों में से एक (3) वर्ग है (3) (2) (जहाँ का एक शक्ति-अप वर्ग है ).
- एक तत्व एक समूह के केंद्र में स्थित है का अगर और केवल अगर इसके संयुग्मी वर्ग में केवल एक तत्व है, अपने आप। अधिक सामान्यतः, यदि दर्शाता है centralizer का यानी, उपसमूह जिसमें सभी तत्व शामिल हैं ऐसा है कि फिर एक उपसमूह का सूचकांक के संयुग्मी वर्ग में तत्वों की संख्या के बराबर है (कक्षा स्थिरीकरण प्रमेय द्वारा)।
- लेना और जाने के चक्र प्रकार में चक्रों की लंबाई के रूप में दिखाई देने वाले भिन्न पूर्णांक हों (1-चक्र सहित)। होने देना लंबाई के चक्रों की संख्या हो में प्रत्येक के लिए (ताकि ). फिर के संयुग्मों की संख्या है:[1]
समूह क्रिया के रूप में संयुग्मन
किन्हीं दो तत्वों के लिए होने देना
संयुग्मता वर्ग समीकरण
यदि एक परिमित समूह है, तो किसी भी समूह तत्व के लिए के संयुग्मी वर्ग में तत्व केंद्रक के सह-समुच्चय के साथ एक-से-एक पत्राचार में हैं इसे किन्हीं दो तत्वों को देखकर देखा जा सकता है तथा एक ही सह-समुच्चय से संबंधित (और इसलिए, कुछ के लिए केंद्रक में ) संयुग्मन करते समय एक ही तत्व को जन्म देते हैं :
इस प्रकार संयुग्मी वर्ग में तत्वों की संख्या एक उपसमूह का सूचकांक है केंद्रक का में ; इसलिए प्रत्येक संयुग्मन वर्ग का आकार समूह के क्रम को विभाजित करता है।
इसके अलावा, यदि हम एक एकल प्रतिनिधि तत्व चुनते हैं प्रत्येक संयुग्मी वर्ग से, हम संयुग्मी वर्गों की असंगति से अनुमान लगाते हैं कि
कहाँ पे तत्व का केंद्रक है यह देखते हुए कि केंद्र का प्रत्येक तत्व एक संयुग्मी वर्ग बनाता है जिसमें केवल स्वयं ही वर्ग समीकरण को जन्म देता है:[4]
समूह क्रम के विभाजकों का ज्ञान केंद्र या संयुग्मी वर्गों के आदेश के बारे में जानकारी प्राप्त करने के लिए अक्सर इस्तेमाल किया जा सकता है।
उदाहरण
परिमित पी-समूह पर विचार करें-समूह (अर्थात् आदेश वाला समूह कहाँ पे एक अभाज्य संख्या है और ). हम यह साबित करने जा रहे हैं every finite -group has a non-trivial center.
किसी भी संयुग्मी वर्ग के आदेश के बाद से के क्रम को विभाजित करना चाहिए यह इस प्रकार है कि प्रत्येक संयुग्मी वर्ग जो केंद्र में नहीं है उसकी भी कुछ शक्ति है कहाँ पे लेकिन तब वर्ग समीकरण की आवश्यकता होती है इससे हम देखते हैं विभाजित करना चाहिए इसलिए विशेष रूप से, कब फिर एक एबेलियन समूह है क्योंकि कोई भी गैर-तुच्छ समूह तत्व क्रम का है या अगर कुछ तत्व का आदेश का है फिर आदेश के चक्रीय समूह के लिए आइसोमोर्फिक है इसलिए एबेलियन। दूसरी ओर, यदि प्रत्येक गैर-तुच्छ तत्व में आदेश का है इसलिए उपरोक्त निष्कर्ष से फिर या हमें केवल मामले पर विचार करने की आवश्यकता है तब एक तत्व होता है का जो केंद्र में नहीं है ध्यान दें कि शामिल और केंद्र जिसमें शामिल नहीं है लेकिन कम से कम तत्व। इसलिए का आदेश से सख्ती से बड़ा है इसलिए इसलिए के केंद्र का अंग है एक विरोधाभास। अत एबेलियन है और वास्तव में प्रत्येक क्रम के दो चक्रीय समूहों के प्रत्यक्ष उत्पाद के लिए आइसोमोर्फिक है
उपसमूहों और सामान्य उपसमूहों की संयुग्मन
अधिक सामान्यतः, कोई उपसमुच्चय दिया गया है ( जरूरी नहीं कि एक उपसमूह), एक सबसेट परिभाषित करें से संयुग्मित होना अगर कुछ मौजूद है ऐसा है कि होने देना सभी उपसमुच्चयों का समुच्चय हो ऐसा है कि से संयुग्मित है एक बार-बार उपयोग किया जाने वाला प्रमेय वह है, जिसे कोई उपसमुच्चय दिया गया हो का कोसेट (सामान्यकारक ) में के क्रम के बराबर है :
उपसमूहों के बारे में बात करते समय उपर्युक्त विशेष रूप से उपयोगी होता है इस प्रकार उपसमूहों को संयुग्मी वर्गों में विभाजित किया जा सकता है, एक ही वर्ग से संबंधित दो उपसमूहों के साथ यदि और केवल यदि वे संयुग्मित हैं। संयुग्म उपसमूह समूह समरूपता हैं, लेकिन समरूप उपसमूहों को संयुग्मित होने की आवश्यकता नहीं है। उदाहरण के लिए, एक एबेलियन समूह के दो अलग-अलग उपसमूह हो सकते हैं जो आइसोमोर्फिक हैं, लेकिन वे कभी संयुग्मित नहीं होते हैं।
ज्यामितीय व्याख्या
पथ से जुड़े टोपोलॉजिकल स्पेस के मौलिक समूह में संयुग्मन वर्गों को मुक्त होमोटोपी के तहत मुक्त लूप के समतुल्य वर्ग के रूप में माना जा सकता है।
== परिमित समूह == में संयुग्मन वर्ग और अलघुकरणीय निरूपण
किसी भी परिमित समूह में, जटिल संख्याओं पर अलग-अलग (गैर-आइसोमॉर्फिक) अलघुकरणीय अभ्यावेदन की संख्या वास्तव में संयुग्मन वर्गों की संख्या है।
यह भी देखें
- [[सामयिक संयुग्मन
|सामयिक संयुग्मन ]]
- [[एफसी-समूह
|एफसी-समूह ]]
- [[संयुग्मन-बंद उपसमूह
|संयुग्मन-बंद उपसमूह ]]
टिप्पणियाँ
- ↑ 1.0 1.1 Dummit, David S.; Foote, Richard M. (2004). सार बीजगणित (3rd ed.). John Wiley & Sons. ISBN 0-471-43334-9.
- ↑ Lang, Serge (2002). बीजगणित. Graduate Texts in Mathematics. Springer. ISBN 0-387-95385-X.
- ↑ Grillet (2007), p. 56
- ↑ Grillet (2007), p. 57
संदर्भ
- Grillet, Pierre Antoine (2007). Abstract algebra. Graduate texts in mathematics. Vol. 242 (2 ed.). Springer. ISBN 978-0-387-71567-4.
बाहरी संबंध
- "Conjugate elements", Encyclopedia of Mathematics, EMS Press, 2001 [1994]