समाकल रूपांतर: Difference between revisions

From Vigyanwiki
Line 2: Line 2:
{{other uses|Transformation (mathematics)}}
{{other uses|Transformation (mathematics)}}
{{calculus|expanded=integral}}
{{calculus|expanded=integral}}
गणित में, एक [[ अभिन्न ]] ट्रांसफ़ॉर्म एक फ़ंक्शन (गणित) को उसके मूल [[ समारोह स्थान ]] से इंटीग्रल के माध्यम से दूसरे फ़ंक्शन स्पेस में मैप करता है, जहाँ मूल फ़ंक्शन के कुछ गुणों को मूल फ़ंक्शन स्पेस की तुलना में अधिक आसानी से विशेषता और हेरफेर किया जा सकता है। रूपांतरित फ़ंक्शन को आम तौर पर 'इनवर्स ट्रांसफ़ॉर्म' का उपयोग करके मूल फ़ंक्शन स्थान पर वापस मैप किया जा सकता है।
गणित में, एक [[ अभिन्न |अभिन्न]] परिवर्तन एक फ़ंक्शन (गणित) को उसके मूल [[ समारोह स्थान |फ़ंक्शन स्थान]] से समाकलन के माध्यम से दूसरे फ़ंक्शन स्पेस में मैप करता है, जहाँ मूल फ़ंक्शन के कुछ गुणों को मूल फ़ंक्शन स्पेस की तुलना में अधिक आसानी से वर्णन और हेरफेर किया जा सकता है। रूपांतरित फ़ंक्शन को आम तौर पर 'इनवर्स परिवर्तन' का उपयोग करके मूल फ़ंक्शन स्थान पर वापस मैप किया जा सकता है।


== सामान्य रूप ==
== सामान्य रूप ==
एक अभिन्न परिवर्तन कोई भी [[ परिवर्तन (फ़ंक्शन) ]] है<math>T</math>निम्नलिखित रूप में:
एक समाकल परिवर्तन निम्नलिखित रूप का कोई भी [[ परिवर्तन (फ़ंक्शन) |परिवर्तन(फ़ंक्शन)]]T है:


:<math>(Tf)(u) = \int_{t_1}^{t_2} f(t)\, K(t, u)\, dt</math>
:<math>(Tf)(u) = \int_{t_1}^{t_2} f(t)\, K(t, u)\, dt</math>
इस परिवर्तन का इनपुट एक फ़ंक्शन (गणित) है<math>f</math>, और आउटपुट एक अन्य फ़ंक्शन है<math>Tf</math>. एक अभिन्न परिवर्तन एक विशेष प्रकार का गणितीय संचालिका (गणित) है।
इस रूपांतरण का इनपुट एक फंक्शन f है, और आउटपुट एक अन्य फंक्शन <math>Tf</math> है। समाकलित रूपान्तरण एक विशेष प्रकार का गणितीय संकारक है।


कई उपयोगी अभिन्न परिवर्तन हैं। प्रत्येक फ़ंक्शन की पसंद द्वारा निर्दिष्ट किया गया है <math>K</math> दो [[ चर (गणित) ]], कर्नेल फ़ंक्शन, अभिन्न कर्नेल या परिवर्तन के नाभिक।
कई उपयोगी अभिन्न परिवर्तन हैं। प्रत्येक को फ़ंक्शन K के दो वेरिएबल्स, कर्नेल फ़ंक्शन, इंटीग्रल कर्नेल या ट्रांसफ़ॉर्म के न्यूक्लियस के विकल्प द्वारा निर्दिष्ट किया गया है


कुछ गुठली एक संबद्ध ''उलटा गिरी'' है <math>K^{-1}( u,t )</math> जो (मोटे तौर पर बोलना) एक व्युत्क्रम परिवर्तन उत्पन्न करता है:
कुछ कर्नेल में एक उलटा कर्नेल <math>K^{-1}( u,t )</math> होता है जो (मोटे तौर पर बोलना) एक व्युत्क्रम रूपांतरण देता है:


:<math>f(t) = \int_{u_1}^{u_2} (Tf)(u)\, K^{-1}( u,t )\, du</math>
:<math>f(t) = \int_{u_1}^{u_2} (Tf)(u)\, K^{-1}( u,t )\, du</math>
एक सममित कर्नेल वह है जो दो चरों के अनुमत होने पर अपरिवर्तित रहता है; यह एक कर्नेल कार्य है<math>K</math>ऐसा है कि <math>K(t, u) = K(u, t)</math>. अभिन्न समीकरणों के सिद्धांत में, सममित गुठली स्व-संलग्न ऑपरेटरों के अनुरूप होती है।<ref> Chapter 8.2, Methods of Theoretical Physics Vol. I (Morse & Feshbach)</ref>
एक सममित कर्नेल वह है जो दो चरों के अनुमत होने पर अपरिवर्तित रहता है; यह एक कर्नेल फ़ंक्शन <math>K</math> है ऐसा है कि <math>K(t, u) = K(u, t)</math>. अभिन्न समीकरणों के सिद्धांत में, सममित गुठली स्व-संलग्न ऑपरेटरों के अनुरूप होती है।<ref> Chapter 8.2, Methods of Theoretical Physics Vol. I (Morse & Feshbach)</ref>   एक सममित कर्नेल वह है जो दो चरों के अनुमत होने पर अपरिवर्तित रहता है; यह एक कर्नेल फ़ंक्शन है {\displaystyle K}K ऐसा है कि {\displaystyle K(t,u)=K(u,t)}{\displaystyle K(t,u)=K(u,t)}। अभिन्न समीकरणों के सिद्धांत में, सममित गुठली स्व-संलग्न ऑपरेटरों के अनुरूप होती है। [1]




== प्रेरणा ==
== प्रेरणा ==


समस्याओं के कई वर्ग हैं जिन्हें हल करना मुश्किल है - या कम से कम काफी बोझिल बीजगणितीय रूप से - उनके मूल प्रतिनिधित्व में। एक इंटीग्रल ट्रांसफ़ॉर्म एक समीकरण को उसके मूल डोमेन से दूसरे डोमेन में मैप करता है, जिसमें मूल डोमेन की तुलना में समीकरण में हेरफेर करना और उसे हल करना बहुत आसान हो सकता है। इसके बाद समाधान को अभिन्न परिवर्तन के व्युत्क्रम के साथ मूल डोमेन पर वापस मैप किया जा सकता है।
समस्याओं के कई वर्ग हैं जिन्हें हल करना मुश्किल है - या कम से कम काफी बोझिल बीजगणितीय रूप से - उनके मूल प्रतिनिधित्व में। एक इंटीग्रल परिवर्तन एक समीकरण को उसके मूल डोमेन से दूसरे डोमेन में मैप करता है, जिसमें मूल डोमेन की तुलना में समीकरण में हेरफेर करना और उसे हल करना बहुत आसान हो सकता है। इसके बाद समाधान को अभिन्न परिवर्तन के व्युत्क्रम के साथ मूल डोमेन पर वापस मैप किया जा सकता है।


संभाव्यता के कई अनुप्रयोग हैं जो अभिन्न परिवर्तनों पर निर्भर करते हैं, जैसे मूल्य निर्धारण कर्नेल या [[ स्टोकेस्टिक छूट कारक ]], या मजबूत आँकड़ों से पुनर्प्राप्त डेटा का चौरसाई; कर्नेल (सांख्यिकी) देखें।
संभाव्यता के कई अनुप्रयोग हैं जो अभिन्न परिवर्तनों पर निर्भर करते हैं, जैसे मूल्य निर्धारण कर्नेल या [[ स्टोकेस्टिक छूट कारक ]], या मजबूत आँकड़ों से पुनर्प्राप्त डेटा का चौरसाई; कर्नेल (सांख्यिकी) देखें।
Line 255: Line 255:


== सामान्य सिद्धांत ==
== सामान्य सिद्धांत ==
हालांकि इंटीग्रल ट्रांसफॉर्म के गुण व्यापक रूप से भिन्न होते हैं, लेकिन उनमें कुछ गुण समान होते हैं। उदाहरण के लिए, प्रत्येक इंटीग्रल ट्रांसफ़ॉर्म एक [[ रैखिक ऑपरेटर ]] है, क्योंकि इंटीग्रल एक लीनियर ऑपरेटर है, और वास्तव में यदि कर्नेल को एक सामान्यीकृत फ़ंक्शन होने की अनुमति है, तो सभी लीनियर ऑपरेटर इंटीग्रल ट्रांसफ़ॉर्म होते हैं (इस कथन का एक उचित रूप से तैयार किया गया संस्करण [[ श्वार्ट्ज कर्नेल प्रमेय ]] प्रमेय)।
हालांकि इंटीग्रल ट्रांसफॉर्म के गुण व्यापक रूप से भिन्न होते हैं, लेकिन उनमें कुछ गुण समान होते हैं। उदाहरण के लिए, प्रत्येक इंटीग्रल परिवर्तन एक [[ रैखिक ऑपरेटर ]] है, क्योंकि इंटीग्रल एक लीनियर ऑपरेटर है, और वास्तव में यदि कर्नेल को एक सामान्यीकृत फ़ंक्शन होने की अनुमति है, तो सभी लीनियर ऑपरेटर इंटीग्रल परिवर्तन होते हैं (इस कथन का एक उचित रूप से तैयार किया गया संस्करण [[ श्वार्ट्ज कर्नेल प्रमेय ]] प्रमेय)।


ऐसे [[ अभिन्न समीकरण ]]ों के सामान्य सिद्धांत को [[ फ्रेडहोम सिद्धांत ]] के रूप में जाना जाता है। इस सिद्धांत में, कर्नेल को एक [[ कॉम्पैक्ट ऑपरेटर ]] के रूप में समझा जाता है जो कार्यों के बैनच स्थान पर कार्य करता है। स्थिति के आधार पर, कर्नेल को विभिन्न प्रकार से [[ फ्रेडहोम ऑपरेटर ]], [[ परमाणु ऑपरेटर ]] या [[ फ्रेडहोम कर्नेल ]] के रूप में संदर्भित किया जाता है।
ऐसे [[ अभिन्न समीकरण ]]ों के सामान्य सिद्धांत को [[ फ्रेडहोम सिद्धांत ]] के रूप में जाना जाता है। इस सिद्धांत में, कर्नेल को एक [[ कॉम्पैक्ट ऑपरेटर ]] के रूप में समझा जाता है जो कार्यों के बैनच स्थान पर कार्य करता है। स्थिति के आधार पर, कर्नेल को विभिन्न प्रकार से [[ फ्रेडहोम ऑपरेटर ]], [[ परमाणु ऑपरेटर ]] या [[ फ्रेडहोम कर्नेल ]] के रूप में संदर्भित किया जाता है।

Revision as of 07:47, 7 January 2023

गणित में, एक अभिन्न परिवर्तन एक फ़ंक्शन (गणित) को उसके मूल फ़ंक्शन स्थान से समाकलन के माध्यम से दूसरे फ़ंक्शन स्पेस में मैप करता है, जहाँ मूल फ़ंक्शन के कुछ गुणों को मूल फ़ंक्शन स्पेस की तुलना में अधिक आसानी से वर्णन और हेरफेर किया जा सकता है। रूपांतरित फ़ंक्शन को आम तौर पर 'इनवर्स परिवर्तन' का उपयोग करके मूल फ़ंक्शन स्थान पर वापस मैप किया जा सकता है।

सामान्य रूप

एक समाकल परिवर्तन निम्नलिखित रूप का कोई भी परिवर्तन(फ़ंक्शन)T है:

इस रूपांतरण का इनपुट एक फंक्शन f है, और आउटपुट एक अन्य फंक्शन है। समाकलित रूपान्तरण एक विशेष प्रकार का गणितीय संकारक है।

कई उपयोगी अभिन्न परिवर्तन हैं। प्रत्येक को फ़ंक्शन K के दो वेरिएबल्स, कर्नेल फ़ंक्शन, इंटीग्रल कर्नेल या ट्रांसफ़ॉर्म के न्यूक्लियस के विकल्प द्वारा निर्दिष्ट किया गया है

कुछ कर्नेल में एक उलटा कर्नेल होता है जो (मोटे तौर पर बोलना) एक व्युत्क्रम रूपांतरण देता है:

एक सममित कर्नेल वह है जो दो चरों के अनुमत होने पर अपरिवर्तित रहता है; यह एक कर्नेल फ़ंक्शन है ऐसा है कि . अभिन्न समीकरणों के सिद्धांत में, सममित गुठली स्व-संलग्न ऑपरेटरों के अनुरूप होती है।[1] एक सममित कर्नेल वह है जो दो चरों के अनुमत होने पर अपरिवर्तित रहता है; यह एक कर्नेल फ़ंक्शन है {\displaystyle K}K ऐसा है कि {\displaystyle K(t,u)=K(u,t)}{\displaystyle K(t,u)=K(u,t)}। अभिन्न समीकरणों के सिद्धांत में, सममित गुठली स्व-संलग्न ऑपरेटरों के अनुरूप होती है। [1]


प्रेरणा

समस्याओं के कई वर्ग हैं जिन्हें हल करना मुश्किल है - या कम से कम काफी बोझिल बीजगणितीय रूप से - उनके मूल प्रतिनिधित्व में। एक इंटीग्रल परिवर्तन एक समीकरण को उसके मूल डोमेन से दूसरे डोमेन में मैप करता है, जिसमें मूल डोमेन की तुलना में समीकरण में हेरफेर करना और उसे हल करना बहुत आसान हो सकता है। इसके बाद समाधान को अभिन्न परिवर्तन के व्युत्क्रम के साथ मूल डोमेन पर वापस मैप किया जा सकता है।

संभाव्यता के कई अनुप्रयोग हैं जो अभिन्न परिवर्तनों पर निर्भर करते हैं, जैसे मूल्य निर्धारण कर्नेल या स्टोकेस्टिक छूट कारक , या मजबूत आँकड़ों से पुनर्प्राप्त डेटा का चौरसाई; कर्नेल (सांख्यिकी) देखें।

इतिहास

परिमित अंतराल में कार्यों को व्यक्त करने के लिए परिवर्तन के अग्रदूत फूरियर श्रृंखला थे। बाद में परिमित अंतराल की आवश्यकता को दूर करने के लिए फूरियर रूपांतरण विकसित किया गया था।

फूरियर श्रृंखला का उपयोग करते हुए, समय के किसी भी व्यावहारिक कार्य (उदाहरण के लिए एक इलेक्ट्रॉनिक उपकरण के टर्मिनलों पर वोल्टेज ) को ज्या और कोज्या के योग के रूप में दर्शाया जा सकता है, प्रत्येक को उपयुक्त रूप से बढ़ाया जाता है (एक स्थिर कारक से गुणा किया जाता है), स्थानांतरित (उन्नत) या समय में मंद) और निचोड़ा हुआ या फैला हुआ (आवृत्ति में वृद्धि या कमी)। फूरियर श्रृंखला में ज्या और कोज्या ऑर्थोनॉर्मल आधार का एक उदाहरण हैं।

उपयोग उदाहरण

समाकल रूपांतरणों के अनुप्रयोग के एक उदाहरण के रूप में, लाप्लास रूपांतरण पर विचार करें। यह एक ऐसी तकनीक है जो टाइम डोमेन में अंतर समीकरण या अभिन्न-विभेदक समीकरण को मैप करती है टाइम डोमेन को बहुपद समीकरणों में जिसे फ़्रीक्वेंसी डोमेन कहा जाता है जटिल आवृत्ति डोमेन। (जटिल आवृत्ति वास्तविक, भौतिक आवृत्ति के समान है, बल्कि अधिक सामान्य है। विशेष रूप से, जटिल आवृत्ति s = −σ + iω का काल्पनिक घटक आवृत्ति की सामान्य अवधारणा से मेल खाता है, अर्थात, वह दर जिस पर एक साइनसॉइड चक्र, जबकि जटिल आवृत्ति का वास्तविक घटक σ नमी की डिग्री से मेल खाता है, यानी आयाम की एक घातीय कमी।) जटिल आवृत्ति के संदर्भ में समीकरण को जटिल आवृत्ति डोमेन (जटिल में बहुपद समीकरणों की जड़ें) में आसानी से हल किया जाता है। फ़्रीक्वेंसी डोमेन, टाइम डोमेन में eigenvalues ​​​​के अनुरूप है), फ़्रीक्वेंसी डोमेन में तैयार किए गए समाधान के लिए अग्रणी है। व्युत्क्रम लाप्लास परिवर्तन को नियोजित करना, अर्थात, मूल लाप्लास परिवर्तन की व्युत्क्रम प्रक्रिया, एक समय-क्षेत्र समाधान प्राप्त करता है। इस उदाहरण में, जटिल आवृत्ति डोमेन (आमतौर पर भाजक में होने वाली) में बहुपद समय डोमेन में शक्ति श्रृंखला के अनुरूप होते हैं, जबकि जटिल आवृत्ति डोमेन में अक्षीय बदलाव समय डोमेन में क्षयकारी घातांक द्वारा अवमंदन के अनुरूप होते हैं।

लाप्लास परिवर्तन भौतिकी में और विशेष रूप से इलेक्ट्रिकल इंजीनियरिंग में व्यापक अनुप्रयोग पाता है, जहां विशेषता समीकरण (कैलकुलस) जो जटिल आवृत्ति डोमेन में एक विद्युत परिपथ के व्यवहार का वर्णन करता है, उस समय में घातीय रूप से स्केल किए गए और समय-स्थानांतरित अवमंदित साइनसॉइड के रैखिक संयोजनों के अनुरूप होता है। कार्यक्षेत्र। अन्य अभिन्न परिवर्तन अन्य वैज्ञानिक और गणितीय विषयों के भीतर विशेष प्रयोज्यता पाते हैं।

एक अन्य उपयोग उदाहरण पथ अभिन्न सूत्रीकरण में कर्नेल है # क्वांटम यांत्रिकी में पथ अभिन्न:

यह बताता है कि कुल आयाम पर पहुँचने के लिए सभी संभावित मानों का योग (अभिन्न) है कुल आयाम का बिंदु पर पहुंचने के लिए से जाने के लिए आयाम से गुणा को [अर्थात। ].[2] इसे अक्सर किसी दिए गए सिस्टम के प्रचारक के रूप में जाना जाता है। यह (भौतिकी) कर्नेल अभिन्न परिवर्तन का कर्नेल है। हालाँकि, प्रत्येक क्वांटम सिस्टम के लिए, एक अलग कर्नेल होता है।[3]


रूपांतरों की तालिका

Table of integral transforms
Transform Symbol K f(t) t1 t2 K−1 u1 u2
Abel transform F, f [4] t
Associated Legendre transform
Fourier transform
Fourier sine transform on , real-valued
Fourier cosine transform on , real-valued
Hankel transform
Hartley transform
Hermite transform
Hilbert transform
Jacobi transform
Laguerre transform
Laplace transform
Legendre transform
Mellin transform [5]
Two-sided Laplace
transform
Poisson kernel
Radon Transform
Weierstrass transform
X-ray transform

व्युत्क्रम परिवर्तन के लिए एकीकरण की सीमा में, c एक स्थिरांक है जो परिवर्तन फलन की प्रकृति पर निर्भर करता है। उदाहरण के लिए, एक और दो तरफा लाप्लास परिवर्तन के लिए, c रूपांतरण समारोह के शून्य के सबसे बड़े वास्तविक भाग से अधिक होना चाहिए।

ध्यान दें कि फूरियर रूपांतरण के लिए वैकल्पिक नोटेशन और परंपराएं हैं।

विभिन्न डोमेन

यहां वास्तविक संख्याओं पर कार्यों के लिए अभिन्न परिवर्तन परिभाषित किए गए हैं, लेकिन समूह पर कार्यों के लिए उन्हें आम तौर पर परिभाषित किया जा सकता है।

  • यदि इसके बजाय कोई चक्र (आवधिक कार्यों) पर कार्यों का उपयोग करता है, तो एकीकरण गुठली द्विकालिक कार्य हैं; सर्कल पर फ़ंक्शंस द्वारा कनवल्शन से गोलाकार घुमाव मिलता है।
  • यदि कोई क्रम n के चक्रीय समूह पर कार्यों का उपयोग करता है (Cn या Z/nZ), एकीकरण गुठली के रूप में n × n मैट्रिक्स प्राप्त करता है; कनवल्शन परिसंचारी मैट्रिसेस से मेल खाता है।

सामान्य सिद्धांत

हालांकि इंटीग्रल ट्रांसफॉर्म के गुण व्यापक रूप से भिन्न होते हैं, लेकिन उनमें कुछ गुण समान होते हैं। उदाहरण के लिए, प्रत्येक इंटीग्रल परिवर्तन एक रैखिक ऑपरेटर है, क्योंकि इंटीग्रल एक लीनियर ऑपरेटर है, और वास्तव में यदि कर्नेल को एक सामान्यीकृत फ़ंक्शन होने की अनुमति है, तो सभी लीनियर ऑपरेटर इंटीग्रल परिवर्तन होते हैं (इस कथन का एक उचित रूप से तैयार किया गया संस्करण श्वार्ट्ज कर्नेल प्रमेय प्रमेय)।

ऐसे अभिन्न समीकरण ों के सामान्य सिद्धांत को फ्रेडहोम सिद्धांत के रूप में जाना जाता है। इस सिद्धांत में, कर्नेल को एक कॉम्पैक्ट ऑपरेटर के रूप में समझा जाता है जो कार्यों के बैनच स्थान पर कार्य करता है। स्थिति के आधार पर, कर्नेल को विभिन्न प्रकार से फ्रेडहोम ऑपरेटर , परमाणु ऑपरेटर या फ्रेडहोम कर्नेल के रूप में संदर्भित किया जाता है।

यह भी देखें


संदर्भ

  1. Chapter 8.2, Methods of Theoretical Physics Vol. I (Morse & Feshbach)
  2. Eq 3.42 in Feynman and Hibbs, Quantum Mechanics and Path Integrals, emended edition:
  3. Mathematically, what is the kernel in path integral?
  4. Assuming the Abel transform is not discontinuous at .
  5. Some conditions apply, see Mellin inversion theorem for details.


आगे की पढाई

  • A. D. Polyanin and A. V. Manzhirov, Handbook of Integral Equations, CRC Press, Boca Raton, 1998. ISBN 0-8493-2876-4
  • R. K. M. Thambynayagam, The Diffusion Handbook: Applied Solutions for Engineers, McGraw-Hill, New York, 2011. ISBN 978-0-07-175184-1
  • "Integral transform", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Tables of Integral Transforms at EqWorld: The World of Mathematical Equations.