त्रि-गुणन नियम: Difference between revisions
No edit summary |
m (Sugatha moved page ट्रिपल उत्पाद नियम to त्रि-गुणन नियम) |
(No difference)
|
Latest revision as of 17:21, 12 September 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
त्रि-गुणन नियम एक ऐसा सूत्र है जो तीन परस्पर आश्रित चरों के आंशिक अवकलजों के मध्य सम्बन्ध स्थापित करता है; इसे चक्रीय श्रृंखला नियम, चक्रीय संबंध, चक्रीय नियम या यूलर की श्रृंखला के नियम के रूप में जाना जाता है। इस नियम का अनुप्रयोग ऊष्मागतिकी में पाया जाता है, जहाँ प्रायः तीन चरों को f(x, y, z) = 0 के एक फलन द्वारा संबंधित किया जा सकता है, इसलिए प्रत्येक चर को अन्य दो चरों के निहित फलन के रूप में दिया जाता है। उदाहरण के लिए, एक तरल की अवस्था समीकरण ताप, दाब और आयतन को इसी प्रकार संबंधित करती है। इस प्रकार के परस्पर संबंधित चरों x, y, और z के लिए त्रिगुण उत्पाद नियम निहित फलन प्रमेय के परिणाम पर एक पारस्परिक संबंध का उपयोग करने से प्राप्त होता है, जो कि इस प्रकार है
जहाँ प्रत्येक गुणनखंड अंश में चर का आंशिक अवकलज है, जिसे अन्य दो चरों का फलन माना जाता है।
त्रि-गुणन नियम का लाभ यह है कि इसमें पदों को पुनर्व्यवस्थित करके कई प्रतिस्थापन सर्वसमिकाएँ प्राप्त की जा सकती हैं जो ऐसे आंशिक अवकलजों को प्रतिस्थापित करने की अनुमति प्रदान करती हैं जो विश्लेषणात्मक रूप से मूल्यांकित करने, प्रयोगात्मक रूप से मापने या आंशिक अवकलजों के ऐसे भागफलों के साथ समाकलित करने के लिए कठिन हैं जिनके साथ कार्य करना आसान है। उदाहरण के लिए,
शास्त्र में इस नियम के अन्य विभिन्न रूप उपस्थित हैं; इन्हें चरों {x, y, z} के क्रम-परिवर्तन द्वारा प्राप्त किया जा सकता है।
व्युत्पत्ति
एक अनौपचारिक व्युत्पत्ति इस प्रकार है। माना f(x, y, z) = 0। z को x और y के फलन के रूप में लिखिए। अतः संपूर्ण अवकल dz इस प्रकार है
माना, हम dz = 0 के साथ एक वक्र के अनुदिश आगे बढ़ते हैं, जहाँ यह वक्र x द्वारा प्राचलित है। इस प्रकार y को x के पदों में लिखा जा सकता है, इसलिए इस वक्र पर
इसलिए, dz = 0 के लिए समीकरण इस प्रकार है
चूँकि यह सभी dx के लिए सत्य होना चाहिए, अतः पदों को पुनर्व्यवस्थित करने पर निम्न समीकरण प्राप्त है ,
दक्षिण पक्ष पर अवकलजों द्वारा विभाजित करने पर त्रि-गुणन नियम प्राप्त होता है
ध्यान दें कि यह प्रमाण आंशिक अवकलजों के अस्तित्व, यथार्थ अवकल dz के अस्तित्व, dz = 0 के साथ समीप के किसी क्षेत्र में एक वक्र बनाने की क्षमता, और आंशिक अवकलजों और उनके व्युत्क्रमों के अशून्य मान के सम्बन्ध में कई निहित धारणाएँ बनाता है। गणितीय विश्लेषण पर आधारित एक औपचारिक प्रमाण इन संभावित अस्पष्टताओं को समाप्त कर देता है।
वैकल्पिक व्युत्पत्ति
माना एक फलन f(x, y, z) = 0, जहाँ x, y, और z एक दूसरे के फलन हैं। चरों के संपूर्ण अवकलों को लिखिए।
अनुप्रयोग
उदाहरण: आदर्श गैस नियम
आदर्श गैस नियम दाब (P), आयतन (V), और ताप (T) के अवस्था चरों को निम्न के माध्यम से संबंधित करता है
जिसे इस रूप में लिखा जा सकता है
इसलिए प्रत्येक अवस्था चर को अन्य अवस्था चरों के निहित फलन के रूप में लिखा जा सकता है:
उपरोक्त व्यंजकों से, निम्न समीकरण प्राप्त होती है
ज्यामितीय बोध
त्रि-गुणन नियम का एक ज्यामितीय बोध गतिमान तरंग के वेग के साथ घनिष्ठ संबंधों में देखा जा सकता है
इसे समय t (सतत नीली रेखा) पर और अल्प समय बाद t+Δt (असतत) पर दाईं ओर दिखाया गया है। तरंग अपने आकार को व्यवस्थित रखती है क्योंकि यह प्रसारित है, जिससे समय t पर स्थिति x पर एक बिंदु, समय t + Δt पर स्थिति x + Δx पर एक बिंदु के अनुरूप होगा,
यह समीकरण केवल सभी x और t के लिए संतुष्ट हो सकती है यदि k Δx − ω Δt = 0, जिसके परिणामस्वरूप कला वेग के लिए सूत्र प्राप्त होता है,
त्रि-गुणन नियम के साथ संबंध को स्पष्ट करने के लिए, समय t पर बिंदु p1 और समय t+Δt पर इसके संगत बिंदु (समान ऊँचाई वाले) p̄1 पर विचार करें। समय t पर बिंदु p2 को उस बिंदु के रूप में परिभाषित करें जिसका x-निर्देशांक p̄1 के x-निर्देशांक के समान है, और p̄2 को p2 के संगत बिंदु के रूप में परिभाषित करें जैसा कि दाईं ओर की आकृति में दर्शाया गया है। बिन्दुओं p1 और p̄1 के बीच की दूरी Δx, p2 और p̄2 (हरी रेखाएँ) के बीच की दूरी के समान है, और इस दूरी को Δt से विभाजित करने पर तरंग की गति प्राप्त होती है।
Δx की गणना करने के लिए, p2 पर गणना किए गए दो आंशिक अवकलजों पर विचार करें,
इन दो आंशिक अवकलजों को विभाजित करने और प्रवणता की परिभाषा का उपयोग करने पर (रन से विभाजित वृद्धि) हमें वांछित सूत्र प्राप्त होता हैː
जहाँ ऋणात्मक चिह्न इस तथ्य को दर्शाता है कि p1 तरंग की गति के सापेक्ष, p2 के पीछे स्थित है। इस प्रकार, तरंग का वेग निम्न है
अत्यंत सूक्ष्म Δt के लिए, और हम त्रि-गुणन नियम को पुनर्प्राप्त करते हैं
यह भी देखें
- अवकलन नियम
- यथार्थ अवकल (त्रि-गुणन नियम की एक और व्युत्पत्ति है)
- गुणन नियम
- संपूर्ण अवकलज
- त्रिगुणन और अदिश।
संदर्भ
- Elliott, J. R.; Lira, C. T. (1999). Introductory Chemical Engineering Thermodynamics (1st ed.). Prentice Hall. p. 184. ISBN 0-13-011386-7.
- Carter, Ashley H. (2001). Classical and Statistical Thermodynamics. Prentice Hall. p. 392. ISBN 0-13-779208-5.