मेटाडाइन: Difference between revisions

From Vigyanwiki
Line 22: Line 22:
=== मैग्नीकॉन ===
=== मैग्नीकॉन ===
स्कॉटलैंड में मैकफर्लेन द्वारा विकसित मैग्निकॉन, मेटाडाइन के समान है, लेकिन बाद में दो-पोल आर्मेचर वाइंडिंग है, मैग्निकॉन में चार-पोल लैप वाइंडिंग है और इसे कभी-कभी शॉर्ट-पिच आर्मेचर के साथ मेटाडाइन कहा जाता है। उन्हें जहाजों पर होइस्ट और विंच चलाने के लिए आपूर्ति की गई है।{{sfn |Tustin |1952 |p=187}} एक मैग्निकॉन के स्टेटर में चार ध्रुवीय प्रक्षेप होते हैं, जो 90 डिग्री पर स्थित होते हैं, और उनमें से एक जोड़ी उत्तेजित होती है। उत्तेजित ध्रुवों के समान अक्ष पर स्थित दो ब्रुशों के जोड़े शॉर्ट-सर्किट होते हैं, जिसके परिणामस्वरूप एक बड़ी धारा उत्पन्न होती है। इस धारा का [[ मैग्नेटोमोटिव बल |मैग्नेटोमोटिव बल]] (एमएमएफ) गैर-उत्तेजित ध्रुवों पर कार्य करता है, एक कार्यशील प्रवाह (Φ) और आउटपुट वोल्टेज बनाता है। पूर्ण-पिच मेटाडाइन की तरह, आउटपुट धारा की आर्मेचर प्रतिक्रिया 90 डिग्री चरण से बाहर है और इसलिए मूल उत्तेजना का विरोध करती है।{{sfn |Tustin |1952 |pp=189–190}} सामान्य मेटाडाइन की तुलना में लाभ यह है कि रोमांचक और क्षतिपूर्ति करने वाले कॉइल की संख्या प्रति चक्र दो से आधी हो जाती है, और कॉइल की छोटी पिच के परिणामस्वरूप वाइंडिंग के सिरों पर कम ओवरहैंग होता है। हालाँकि, डिज़ाइन आर्मेचर में निष्क्रिय धाराएँ बनाता है, जिसके परिणामस्वरूप नुकसान होता है, और बड़ी मशीनों पर, जहाँ इंटरपोल की आवश्यकता होती है, प्रत्येक इंटरपोल को दो कॉइल के साथ लगाया जाना चाहिए, प्रत्येक ब्रश सर्किट के लिए एक। टस्टिन ने तर्क दिया कि छोटी मशीनों के लिए मेटाडाइन की तुलना में मैग्नीकॉन का बहुत कम लाभ है, और बड़ी मशीनों के लिए, जिन्हें फिट करने के लिए इंटरपोल की आवश्यकता होती है, एक निर्णय लेने के लिए अपर्याप्त विश्लेषण किया गया है।{{sfn |Tustin |1952 |pp=190–191}}
स्कॉटलैंड में मैकफर्लेन द्वारा विकसित मैग्निकॉन, मेटाडाइन के समान है, लेकिन बाद में दो-पोल आर्मेचर वाइंडिंग है, मैग्निकॉन में चार-पोल लैप वाइंडिंग है और इसे कभी-कभी शॉर्ट-पिच आर्मेचर के साथ मेटाडाइन कहा जाता है। उन्हें जहाजों पर होइस्ट और विंच चलाने के लिए आपूर्ति की गई है।{{sfn |Tustin |1952 |p=187}} एक मैग्निकॉन के स्टेटर में चार ध्रुवीय प्रक्षेप होते हैं, जो 90 डिग्री पर स्थित होते हैं, और उनमें से एक जोड़ी उत्तेजित होती है। उत्तेजित ध्रुवों के समान अक्ष पर स्थित दो ब्रुशों के जोड़े शॉर्ट-सर्किट होते हैं, जिसके परिणामस्वरूप एक बड़ी धारा उत्पन्न होती है। इस धारा का [[ मैग्नेटोमोटिव बल |मैग्नेटोमोटिव बल]] (एमएमएफ) गैर-उत्तेजित ध्रुवों पर कार्य करता है, एक कार्यशील प्रवाह (Φ) और आउटपुट वोल्टेज बनाता है। पूर्ण-पिच मेटाडाइन की तरह, आउटपुट धारा की आर्मेचर प्रतिक्रिया 90 डिग्री चरण से बाहर है और इसलिए मूल उत्तेजना का विरोध करती है।{{sfn |Tustin |1952 |pp=189–190}} सामान्य मेटाडाइन की तुलना में लाभ यह है कि रोमांचक और क्षतिपूर्ति करने वाले कॉइल की संख्या प्रति चक्र दो से आधी हो जाती है, और कॉइल की छोटी पिच के परिणामस्वरूप वाइंडिंग के सिरों पर कम ओवरहैंग होता है। हालाँकि, डिज़ाइन आर्मेचर में निष्क्रिय धाराएँ बनाता है, जिसके परिणामस्वरूप नुकसान होता है, और बड़ी मशीनों पर, जहाँ इंटरपोल की आवश्यकता होती है, प्रत्येक इंटरपोल को दो कॉइल के साथ लगाया जाना चाहिए, प्रत्येक ब्रश सर्किट के लिए एक। टस्टिन ने तर्क दिया कि छोटी मशीनों के लिए मेटाडाइन की तुलना में मैग्नीकॉन का बहुत कम लाभ है, और बड़ी मशीनों के लिए, जिन्हें फिट करने के लिए इंटरपोल की आवश्यकता होती है, एक निर्णय लेने के लिए अपर्याप्त विश्लेषण किया गया है।{{sfn |Tustin |1952 |pp=190–191}}
== उपयोग करता है ==
== उपयोग ==
मेटाडाइन्स का उपयोग [[ तोपें ]] के लक्ष्य को नियंत्रित करने और [[ इलेक्ट्रिक मल्टीपल यूनिट ]] में गति नियंत्रण के लिए किया गया है, विशेष रूप से [[ लंदन भूमिगत ओ और पी स्टॉक ]] में। सॉलिड स्टेट (इलेक्ट्रॉनिक्स) उपकरणों द्वारा उनका स्थान ले लिया गया है।
मेटाडाइन्स का उपयोग बड़ी बंदूकों के लक्ष्य को नियंत्रित करने और [[ इलेक्ट्रिक मल्टीपल यूनिट |इलेक्ट्रिक]] ट्रेनों में गति नियंत्रण के लिए किया गया है, विशेष रूप से लंदन अंडरग्राउंड ओ और [[ लंदन भूमिगत ओ और पी स्टॉक |पी स्टॉक]]। उन्हें सॉलिड-स्टेट डिवाइसेस से हटा दिया गया है।


=== कर्षण नियंत्रण ===
=== कर्षण नियंत्रण ===
[[File:CP & R at Upminster.jpg|thumb|right| उपमिंस्टर में एक लंदन अंडरग्राउंड सीपी ट्रेन (लाल रंग में)। वे मूल रूप से मेटाडाइन नियंत्रणों से सुसज्जित थे और पुनर्योजी ब्रेकिंग का उपयोग करने वाली पहली विद्युत एकाधिक इकाइयाँ थीं।]]1930 के दशक की शुरुआत में, लंदन अंडरग्राउंड को मेट्रोपॉलिटन-विकर्स में होने वाले मेटाडाइन उपकरण के विकास और इसके द्वारा प्रदान किए जाने वाले [[ पुनर्योजी ब्रेक ]] की क्षमता के बारे में पता था। एक अप्रयुक्त प्रणाली के लिए प्रतिबद्ध होने से पहले, उन्होंने महानगर रेलवे के लिए मूल रूप से 1904 और 1907 के बीच निर्मित छह कारों को परिवर्तित करके एक परीक्षण ट्रेन का निर्माण किया। यह काम 1934 में [[ एक्टन वर्क्स ]] में किया गया था। चूंकि चार मोटरों को नियंत्रित करने के लिए एक एकल मेटाडाइन इकाई का उपयोग किया जा सकता था, और प्रत्येक मोटर कार में दो मोटरें थीं, वे बाहरी सिरों पर एक ड्राइविंग कैब के साथ दो-कार इकाइयों में बनाई गई थीं। इकाइयों को एक साथ जोड़कर, दो-कार, चार-कार और छह-कार ट्रेन का परीक्षण किया जा सकता है। मेटाडाइन इकाई का वजन लगभग 3 टन था, और इसमें तीन घूमने वाली मशीनें, एक एक्साइटर, एक रेगुलेटर और वास्तविक मेटाडाइन मशीन शामिल थीं, जो यांत्रिक रूप से एक साथ जुड़ी हुई थीं। विद्युत रूप से, कर्षण आपूर्ति को मशीन में डाला गया था, और प्रतिरोधों को शुरू करने की आवश्यकता के बिना आउटपुट ने मोटर्स को खिलाया।<ref name=bruce134>{{harvnb |Bruce |1970 |pp=134–135}}</ref>
[[File:CP & R at Upminster.jpg|thumb|right| उपमिंस्टर में एक लंदन अंडरग्राउंड सीपी ट्रेन (लाल रंग में)। वे मूल रूप से मेटाडाइन नियंत्रणों से सुसज्जित थे और पुनर्योजी ब्रेकिंग का उपयोग करने वाली पहली विद्युत एकाधिक इकाइयाँ थीं।]]1930 के दशक की शुरुआत में, लंदन अंडरग्राउंड मेट्रोपॉलिटन-विकर्स में होने वाले मेटाडाइन उपकरण के विकास और [[ पुनर्योजी ब्रेक |पुनर्योजी ब्रेकिंग]] की क्षमता के बारे में जानते थे, जो इसे प्रदान करता था। इसलिए, एक अप्रयुक्त प्रणाली के लिए प्रतिबद्ध होने से पहले, उन्होंने मेट्रोपॉलिटन रेलवे के लिए मूल रूप से 1904 और 1907 के बीच निर्मित छह कारों को परिवर्तित करके एक परीक्षण ट्रेन का निर्माण किया। यह काम 1934 में [[ एक्टन वर्क्स |एक्टन वर्क्स]] में किया गया था। चूंकि चार मोटरों को नियंत्रित करने के लिए एक एकल मेटाडाइन इकाई का उपयोग किया जा सकता था, और प्रत्येक मोटर कार में दो मोटरें थीं, वे बाहरी सिरों पर ड्राइविंग कैब के साथ दो-कार इकाइयों में बनाई गईं। इकाइयों को एक साथ युग्मित करके, दो-कार, चार-कार और छह-कार ट्रेन का परीक्षण किया जा सकता है। मेटाडाइन इकाई का वजन लगभग 3 टन था और इसमें तीन घूमने वाली मशीनें, एक एक्साइटर, एक रेगुलेटर और वास्तविक मेटाडाइन मशीन शामिल थीं, जो यंत्रवत् एक साथ जुड़ी हुई थीं। विद्युत रूप से, कर्षण आपूर्ति को मशीन में फीड किया गया था, और आउटपुट ने प्रतिरोध शुरू करने की आवश्यकता के बिना, मोटरों को फीड किया था।<ref name=bruce134>{{harvnb |Bruce |1970 |pp=134–135}}</ref>
टेस्ट ट्रेन 1935 और 1936 के बीच चली, और मेट्रोपॉलिटन लाइन और [[ जिला रेखा ]] पर लगभग सभी विद्युतीकृत पटरियों पर कोशिश की गई। एक बार अवधारणा विश्वसनीय साबित हो जाने के बाद, ट्रेन को यात्री सेवा में भी इस्तेमाल किया गया था। पुनर्योजी ब्रेकिंग के अलावा, त्वरण विशेष रूप से सुचारू पाया गया। जब ओ और पी स्टॉक पर नई प्रणाली के साथ आगे बढ़ने का निर्णय लिया गया, तो परीक्षण ट्रेन को नष्ट कर दिया गया और उपकरण को तीन [[ लंदन भूमिगत बैटरी-इलेक्ट्रिक लोकोमोटिव ]] में फिट किया गया।<ref name=bruce134/>[[ ग्लूसेस्टर रेलवे कैरिज और वैगन कंपनी ]] द्वारा निर्मित, जो 1936 और 1938 के बीच आपूर्ति किए गए नौ वाहनों के एक बैच का हिस्सा थे। उपकरण विशेष रूप से बैटरी लोकोमोटिव के लिए उपयुक्त थे, क्योंकि शुरुआती प्रतिरोधों की कमी ने शुरू करने और रोकने के दौरान बर्बाद होने वाली बिजली की मात्रा को कम कर दिया था। बार बार। धीमी गति पर, पारंपरिक नियंत्रण प्रणालियां अक्सर ज़्यादा गरम हो जाती हैं, लेकिन मेटाडाइन से लैस लोकोमोटिव 100 टन वजन वाली ट्रेनों को लंबी दूरी तक कम गति से खींच सकते हैं {{convert|3|mph|kph|abbr=on}} बिना किसी समस्या के। हालांकि, उपकरण की जटिलता, और मेटाडाइन मशीन को बनाए रखने में कठिनाई के परिणामस्वरूप लोकोमोटिव का पर्याप्त उपयोग नहीं किया जा रहा था, और उन्हें 1977 में स्क्रैपिंग के लिए वापस ले लिया गया था।<ref name=bruce30>{{harvnb |Bruce |1987 |p=30}}</ref>
ओ स्टॉक के मुख्य उत्पादन में 116 मोटर कारें शामिल थीं, जिन्हें 58 दो-कार इकाइयों में बनाया गया था। सितंबर 1937 में [[ हाई स्ट्रीट केंसिंग्टन ट्यूब स्टेशन ]] और [[ पुटनी ब्रिज ट्यूब स्टेशन ]] के बीच डिस्ट्रिक्ट लाइन पर चार-कार फॉर्मेशन के साथ परीक्षण शुरू हुआ, और जनवरी 1938 में हैमरस्मिथ एंड सिटी लाइन पर छह-कार फॉर्मेशन ने काम करना शुरू किया। कुछ तकनीकी समस्याएं थीं। , छह मोटर कारों की एक ट्रेन शुरू होने पर बिजली आपूर्ति प्रणाली पर लगाई गई माँगों के कारण, और पुनर्योजी ब्रेक का उपयोग किए जाने पर इस तरह की ट्रेन ने सिस्टम में लौटने का प्रयास किया। यह आंशिक रूप से 58 ट्रेलर कारों को ऑर्डर करके और प्रत्येक दो-कार इकाई को तीन-कार इकाई में परिवर्तित करके, एक ट्रेलर कार को गठन में डालकर आंशिक रूप से कम किया गया था। मेट्रोपॉलिटन लाइन पर ट्रेनों को बदलने के लिए पी स्टॉक का एक बैच तब आदेश दिया गया था। यद्यपि O और P स्टॉक इकाइयों को एक साथ जोड़ा जा सकता है, विशेष रूप से मेटाडाइन इकाइयाँ समान नहीं थीं, और बिल्ड के बीच परस्पर विनिमय नहीं किया जा सकता था। 1950 के दशक के प्रारंभ तक, यह एक गंभीर नुकसान था, जब विफलताओं की एक श्रृंखला हुई, जिसके लिए व्यापक मरम्मत की आवश्यकता थी। 1938 ट्यूब स्टॉक से अतिरिक्त नियंत्रकों का उपयोग करते हुए उपकरण को हटाने और इसे न्यूमेटिक कैम मोटर (पीसीएम) प्रणाली से बदलने का निर्णय लिया गया। पहली परिवर्तित ट्रेन ने 31 मार्च 1955 को सेवा में प्रवेश किया, और स्टॉक को CO/CP स्टॉक में फिर से डिज़ाइन किया गया, क्योंकि इसमें दोनों बैचों की कारें शामिल थीं। बाद में मेटाडाइन के सभी उपकरण बदल दिए गए।{{sfn |Bruce |1970 |pp=135-136}}
कमियों के बावजूद, जिसके कारण इसका अंत हो गया, ओ स्टॉक ट्रेनों पर 1936 में शुरू की गई मेटाडाइन प्रणाली दुनिया में पहली थी जिसने एक इलेक्ट्रिक मल्टीपल यूनिट पर पुनर्योजी ब्रेकिंग प्रदान की। त्वरण एक ऐसी ट्रेन की तुलना में आसान था, जिसने प्रतिरोध शुरू करना शुरू कर दिया था, और ब्रेक लगाने पर मेटाडाइन यूनिट ने पटरियों पर बिजली वापस कर दी, जिसे जरूरत पड़ने पर अन्य ट्रेनों द्वारा इस्तेमाल किया जा सकता था। हालाँकि, परिस्थितियाँ हमेशा आदर्श नहीं थीं, और सबस्टेशनों को वास्तव में पुनर्जनन से निपटने के लिए डिज़ाइन नहीं किया गया था, जिसका अर्थ था कि अक्सर ट्रेन डायनेमिक ब्रेकिंग # रिओस्टैटिक ब्रेकिंग में बदल जाती थी, जहाँ एक प्रतिरोध बैंक में बिजली का प्रसार होता था। उपकरण का वजन भी एक गंभीर खामी थी।<ref name=bruce165>{{harvnb |Bruce |1970 |p=165}}</ref>


परीक्षण ट्रेन 1935 और 1936 के अधिकांश समय तक चली और मेट्रोपॉलिटन लाइन और डिस्ट्रिक्ट लाइन पर लगभग सभी विद्युतीकृत पटरियों पर इसका परीक्षण किया गया। एक बार अवधारणा विश्वसनीय साबित हो जाने के बाद, ट्रेन का उपयोग यात्री सेवा में भी किया गया था। पुनर्योजी ब्रेकिंग के अलावा, त्वरण विशेष रूप से सुचारू पाया गया। जब ओ और पी स्टॉक पर नई प्रणाली के साथ आगे बढ़ने का निर्णय लिया गया, तो परीक्षण ट्रेन को नष्ट कर दिया गया था, और उपकरण को [[ ग्लूसेस्टर रेलवे कैरिज और वैगन कंपनी |ग्लूसेस्टर रेलवे कैरिज और वैगन कंपनी]] द्वारा निर्मित तीन बैटरी लोकोमोटिव <ref name=bruce134/> में फिट किया गया था, जो इसका हिस्सा थे 1936 और 1938 के बीच आपूर्ति किए गए नौ वाहनों का एक बैच। उपकरण विशेष रूप से बैटरी लोकोमोटिव के लिए उपयुक्त था, क्योंकि शुरुआती प्रतिरोधों की कमी ने शुरू करने और बार-बार रुकने पर बर्बाद होने वाली बिजली की मात्रा को कम कर दिया। धीमी गति पर, पारंपरिक नियंत्रण प्रणालियां अक्सर ज़्यादा गरम हो जाती हैं, लेकिन मेटाडाइन से लैस लोकोमोटिव बिना किसी समस्या के 100 टन वजन वाली ट्रेनों को 3 मील प्रति घंटे (4.8 किमी/घंटा) की गति से लंबी दूरी तक खींच सकते हैं। हालांकि, उपकरण की जटिलता, और मेटाडाइन मशीन को बनाए रखने में कठिनाई के परिणामस्वरूप लोकोमोटिव का पर्याप्त उपयोग नहीं किया जा सका, और उन्हें 1977 में स्क्रैपिंग के लिए वापस ले लिया गया था।<ref name="bruce30">{{harvnb |Bruce |1987 |p=30}}</ref>


=== बंदूक नियंत्रण ===
ओ स्टॉक के मुख्य उत्पादन में 116 मोटर कारें शामिल थीं, जिन्हें 58 दो-कार इकाइयों में बनाया गया था। सितंबर 1937 में [[ हाई स्ट्रीट केंसिंग्टन ट्यूब स्टेशन |हाई स्ट्रीट केंसिंग्टन]] और [[ पुटनी ब्रिज ट्यूब स्टेशन |पुटनी ब्रिज]] के बीच डिस्ट्रिक्ट लाइन पर चार-कार फॉर्मेशन के साथ परीक्षण शुरू हुआ और जनवरी 1938 में हैमरस्मिथ लाइन पर छह-कार फॉर्मेशन का काम शुरू हुआ। बिजली आपूर्ति प्रणाली पर जब छह मोटर कारों की एक ट्रेन शुरू हुई, और पुनर्योजी ब्रेक का उपयोग किए जाने पर इस तरह की ट्रेन ने सिस्टम में लौटने का प्रयास किया। एक और 58 ट्रेलर कारों को ऑर्डर करके और प्रत्येक दो-कार इकाई को तीन-कार इकाई में परिवर्तित करके, एक ट्रेलर कार को गठन में सम्मिलित करके इसे आंशिक रूप से कम किया गया था। मेट्रोपॉलिटन लाइन पर ट्रेनों को बदलने के लिए पी स्टॉक का एक बैच तब आदेश दिया गया था। यद्यपि O और P स्टॉक इकाइयों को एक साथ जोड़ा जा सकता है, विशेष रूप से मेटाडाइन इकाइयाँ समान नहीं थीं, और बिल्ड के बीच परस्पर विनिमय नहीं किया जा सकता था। 1950 के दशक के प्रारंभ तक, यह एक गंभीर नुकसान था, जब विफलताओं की एक श्रृंखला हुई, जिसके लिए व्यापक मरम्मत की आवश्यकता थी। 1938 ट्यूब स्टॉक से अतिरिक्त नियंत्रकों का उपयोग करते हुए उपकरण को हटाने और इसे न्यूमेटिक कैम मोटर (पीसीएम) प्रणाली से बदलने का निर्णय लिया गया। पहली परिवर्तित ट्रेन ने 31 मार्च 1955 को सेवा में प्रवेश किया, और स्टॉक को सीओ/सीपी स्टॉक में फिर से डिज़ाइन किया गया क्योंकि इसमें दोनों बैचों की कारें थीं। मेटाडाइन के सभी उपकरणों को बाद में बदल दिया गया था।{{sfn |Bruce |1970 |pp=135-136}}
[[ द्वितीय विश्व युद्ध ]] से ठीक पहले की अवधि में, शक्ति-संचालित बंदूक नियंत्रण में रुचि बढ़ रही थी, हालांकि सैन्य अधिकारी एक जटिल प्रणाली शुरू करने से घबरा रहे थे जिसे क्षेत्र में बनाए रखना होगा। हालांकि, विमान की बढ़ती गति के साथ, अपने आंदोलन को ट्रैक करने के लिए सर्चलाइट्स, एंटी-एयरक्राफ्ट गन और दोहरे उद्देश्य वाली गन नेवल गन को सक्षम करने की आवश्यकता का मतलब था कि किसी प्रकार का संचालित नियंत्रण आवश्यक था। इंजीनियरों को उपकरण का एक भारी टुकड़ा बनाने की समस्या का सामना करना पड़ा, जैसे कि इसकी बढ़ती गाड़ी पर एक बंदूक, इनपुट में परिवर्तन और बंदूक की वास्तविक स्थिति के बीच बहुत कम अंतराल के साथ एक सहज और सटीक फैशन में एक इनपुट सिग्नल को ट्रैक करें। माउंट। बंदूक को हर समय लक्ष्य पर निशाना लगाने की जरूरत होती है, और ऐसा बने रहने के लिए सही वेग से चलती है।{{sfn |Bennett |1993 |pp=130–131}}
 
एक मानव ऑपरेटर त्रुटियों की आशंका करता है, और सिस्टम के संचालन में ज्ञात अंतरालों की भरपाई भी कर सकता है। इस व्यवहार की नकल इलेक्ट्रॉनिक संकेतों और कम-शक्ति वाले इलेक्ट्रोमेकैनिकल सिस्टम के लिए हासिल की गई थी, लेकिन बंदूक नियंत्रण पूरी तरह से अलग पैमाने पर था, टन वजन वाली मशीनरी के साथ और महत्वपूर्ण जड़ता को प्रति सेकंड 30 डिग्री तक की गति से स्थानांतरित करने की आवश्यकता होती है, और त्वरण 10 डिग्री प्रति सेकंड<sup>2</उप>। 1937 में, [[ ब्रिटिश एडमिरल्टी ]] ने आठ-बैरल [[ पोम-पोम बंदूक ]] के लिए नियंत्रण प्रणाली के लिए [[ महानगर विकर्स ]] के साथ एक आदेश दिया था। पेस्टारिनी ने इतालवी नौसेना के लिए एक समान प्रणाली विकसित की थी। मूल डिजाइन में कई बंदूकों पर लगे मोटरों के आर्मेचर को निरंतर चालू आपूर्ति करने के लिए एक मेटाडाइन का उपयोग किया गया था। प्रत्येक को फ़ील्ड करंट को मैन्युअल रूप से समायोजित करके नियंत्रित किया गया था। अधिकांश डिजाइन कार्य करने वाले टस्टिन ने पाया कि फील्ड वाइंडिंग्स के अधिष्ठापन के कारण सिस्टम में एक बड़ा समय स्थिर था। इसकी प्रतिक्रिया में सुधार करने के लिए, उन्होंने एक स्थिर धारा के साथ फील्ड वाइंडिंग की आपूर्ति की, और प्रत्येक मोटर के आर्मेचर करंट को नियंत्रित करने के लिए आंशिक रूप से क्षतिपूर्ति मेटाडाइन का उपयोग किया। टस्टिन ने [[ वार्ड लियोनार्ड नियंत्रण ]] प्रणालियों, मेटाडाइन्स और एम्प्लिडाइन्स की तुलना की, और स्वीकार किया कि प्रत्येक की अपनी खूबियां थीं, लेकिन मेटाडाइन का पक्ष लिया, जिनमें से उन्हें कर्षण नियंत्रण में उनके उपयोग से कई वर्षों का अनुभव था।<ref name=bennett131/>
कमियों के बावजूद, जिसके कारण इसका अंत हो गया, ओ स्टॉक ट्रेनों पर 1936 में शुरू की गई मेटाडाइन प्रणाली दुनिया में पहली थी जिसने इलेक्ट्रिक मल्टीपल यूनिट्स पर पुनर्योजी ब्रेकिंग प्रदान की। त्वरण एक ऐसी ट्रेन की तुलना में आसान था, जिसने प्रतिरोध शुरू करना शुरू कर दिया था, और ब्रेक लगाने पर मेटाडाइन यूनिट ने पटरियों पर बिजली वापस कर दी, जिसका इस्तेमाल जरूरत पड़ने पर अन्य ट्रेनों द्वारा किया जा सकता था। हालाँकि, स्थितियाँ हमेशा आदर्श नहीं थीं, और सबस्टेशनों को वास्तव में पुनर्जनन से निपटने के लिए डिज़ाइन नहीं किया गया था, जिसका अर्थ था कि अक्सर ट्रेन रिओस्टैटिक ब्रेकिंग में बदल जाती थी, जहाँ एक प्रतिरोध बैंक में शक्ति का प्रसार होता था। उपकरण का वजन भी एक गंभीर खामी थी।<ref name="bruce165">{{harvnb |Bruce |1970 |p=165}}</ref>
 
=== गन कंट्रोल ===
[[ द्वितीय विश्व युद्ध |द्वितीय विश्व युद्ध]] से ठीक पहले की अवधि में, शक्ति-संचालित बंदूक नियंत्रणों में रुचि बढ़ रही थी, हालांकि सैन्य अधिकारी एक जटिल प्रणाली शुरू करने से घबराए हुए थे, जिसे क्षेत्र में बनाए रखना होगा। हालांकि, विमान की बढ़ती गति के साथ, सर्चलाइट्स, एंटी-एयरक्राफ्ट बंदूकें और दोहरे उद्देश्य वाली नौसेना बंदूकों को अपने आंदोलन को ट्रैक करने के लिए तेजी से आगे बढ़ने की आवश्यकता का मतलब था कि संचालित नियंत्रण का कुछ रूप आवश्यक था। इंजीनियरों को उपकरण का एक भारी टुकड़ा बनाने की समस्या का सामना करना पड़ा, जैसे कि इसकी बढ़ती गाड़ी पर एक बंदूक, इनपुट में परिवर्तन और बंदूक की वास्तविक स्थिति के बीच बहुत कम अंतराल के साथ एक सहज और सटीक तरीके से एक इनपुट सिग्नल को ट्रैक करना। माउंट। बंदूक को हर समय लक्ष्य पर निशाना साधने की जरूरत होती है, और ऐसा बने रहने के लिए सही वेग से चलती है।{{sfn |Bennett |1993 |pp=130–131}}
 
एक मानव ऑपरेटर त्रुटियों की आशंका करता है, और सिस्टम के संचालन में ज्ञात अंतराल के लिए क्षतिपूर्ति भी कर सकता है। इस व्यवहार की नकल इलेक्ट्रॉनिक संकेतों और कम-शक्ति वाले इलेक्ट्रोमेकैनिकल सिस्टम के लिए हासिल की गई थी, लेकिन बंदूक नियंत्रण पूरी तरह से अलग पैमाने पर था, टन वजन वाली मशीनरी के साथ और महत्वपूर्ण जड़ता को प्रति सेकंड 30 डिग्री तक की गति से स्थानांतरित करने की आवश्यकता होती है, और त्वरण 10 डिग्री प्रति सेकंड2. 1937 में, नौवाहनविभाग ने मेट्रोपोलिटन विकर्स को आठ-बैरल पोम-पोम गन के लिए एक नियंत्रण प्रणाली के लिए एक आदेश दिया था। पेस्टारिनी ने इतालवी नौसेना के लिए एक समान प्रणाली विकसित की थी। मूल डिजाइन ने कई बंदूकों पर घुड़सवार मोटरों के कवच के लिए निरंतर चालू आपूर्ति के लिए एक मेटाडाइन का इस्तेमाल किया। प्रत्येक को तब मैन्युअल रूप से फ़ील्ड करंट को समायोजित करके नियंत्रित किया गया था। अधिकांश डिजाइन कार्य करने वाले टस्टिन ने पाया कि फील्ड वाइंडिंग के शामिल होने के कारण सिस्टम में एक बड़ा समय स्थिर था। इसकी प्रतिक्रिया में सुधार करने के लिए, उन्होंने एक स्थिर धारा के साथ फील्ड वाइंडिंग की आपूर्ति की और प्रत्येक मोटर के आर्मेचर करंट को नियंत्रित करने के लिए आंशिक रूप से क्षतिपूर्ति मेटाडाइन का उपयोग किया। टस्टिन ने वार्ड लियोनार्ड नियंत्रण प्रणालियों, मेटाडाइन्स और एम्प्लिडाइन्स की तुलना की, और स्वीकार किया कि प्रत्येक की अपनी खूबियां थीं, लेकिन मेटाडाइन का पक्ष लिया, जिसके कर्षण नियंत्रण में उनके उपयोग से उन्हें कई वर्षों का अनुभव था।<sup><ref name="bennett131" />




Line 41: Line 44:
* एम्पलीडाइन
* एम्पलीडाइन
* [[ ब्रश डीसी इलेक्ट्रिक मोटर ]]
* [[ ब्रश डीसी इलेक्ट्रिक मोटर ]]
* [[ बिजली की मोटर ]]
* [[ विद्युत मोटर ]]
* [[ इलेक्ट्रॉनिक गति नियंत्रण ]]
* [[ इलेक्ट्रॉनिक गति नियंत्रण ]]
* [[ मोटर नियंत्रक ]]
* [[ मोटर नियंत्रक ]]
* [[ मोटर जनरेटर ]]
* [[ मोटर जनरेटर ]]
{{div col end}}
{{div col end}}
==संदर्भ==
==संदर्भ==
===टिप्पणियाँ===
===टिप्पणियाँ===
{{Reflist}}
{{Reflist}}
===ग्रन्थसूची===
===ग्रन्थसूची===
{{Refbegin}}
{{Refbegin}}

Revision as of 15:58, 19 January 2023

मेटाडाइन एक प्रत्यक्ष विद्युत मशीन है जिसमें दो जोड़ी ब्रश होते हैं। इसका उपयोग एम्पलीफायर या रोटरी ट्रांसफार्मर के रूप में किया जा सकता है। यह तीसरे ब्रश डायनेमो के समान है लेकिन इसमें अतिरिक्त रेगुलेटर या "वेरिएटर" वाइंडिंग्स हैं। यह भी एक एम्पलीडाइन के समान है सिवाय इसके कि उत्तरार्द्ध में एक क्षतिपूर्ति वाइंडिंग है जो लोड धारा द्वारा उत्पादित प्रवाह के प्रभाव का पूरी तरह से प्रतिकार करता है। तकनीकी विवरण "आर्मेचर रिएक्शन का उपयोग करने के लिए डिज़ाइन किया गया एक क्रॉस-फील्ड एकदिश धारा (डायरेक्ट करंट) मशीन" है। एक मेटाडाइन एक स्थिर-वोल्टेज इनपुट को एक स्थिर-धारा, चर-वोल्टेज आउटपुट में परिवर्तित कर सकता है।

इतिहास

मेटाडाइन शब्द शक्ति के रूपांतरण के लिए ग्रीक शब्द से लिया गया है।[1] जबकि माना जाता है कि यह नाम जोसेफ मैक्सिमस पेस्टरिनी (इतालवी भाषा ग्यूसेप मास्सिमो पेस्टरिनी) द्वारा 1928 में लीज, बेल्जियम में मोंटेफियोर इंटरनेशनल कॉन्टेस्ट में प्रस्तुत किए गए एक पेपर में दिया गया था, जिस प्रकार की मशीन का वर्णन किया गया था, वह तब से ज्ञात थी। 1880 के दशक। प्रत्यक्ष-धारा, क्रॉस-फील्ड जनरेटर के लिए पहला ज्ञात ब्रिटिश पेटेंट 1882 में पेरिस के ए.आई. ग्रेवियर द्वारा प्राप्त किया गया था, और दो और पेटेंट 1904 और 1907 में ई. रोसेनबर्ग द्वारा प्राप्त किए गए थे।[2] रोसेनबर्ग बाद में मेट्रोपोलिटन-विकर्स के लिए मुख्य इलेक्ट्रिकल इंजीनियर बन गए, और उनकी मशीन ने ब्रश के एक अतिरिक्त सेट पर शॉर्ट-सर्किट लगाकर एक क्रॉस-फ़ील्ड का उत्पादन किया।[3] एम. ओस्नोस ने 1907 में ऐसी कई मशीनों के लिए व्यावहारिक व्यवस्थाओं को देखा,[4] और उसी वर्ष, फेल्टन और गुइलियूम ने एक ब्रिटिश पेटेंट प्राप्त किया, संख्या 26,607, जिसमें सहायक वाइंडिंग्स, आर्मेचर वाइंडिंग्स और मल्टीपल कम्यूटेटर्स का वर्णन किया गया था, हालांकि सभी निष्पक्ष रूप से सामान्य नियम। उन्होंने यह भी संकेत दिया कि उनका उपयोग स्थिर वोल्टेज को निरंतर धारा में बदलने के लिए किया जा सकता है।[2] अन्य पेटेंट 1910 से पहले माथेर एंड प्लैट, ब्राउन बोवेरी और ब्रूस पीबल्स द्वारा प्राप्त किए गए थे।[5]

स्पेयर मेटाडाइन कार्बन ब्रश। वे व्यक्तिगत रूप से लिपटे हुए हैं और साथ में लेबल के साथ, प्लास्टिक में सील किए गए हैं। कनेक्टिंग वायर और रिंग सहित कुल लंबाई 115 मिमी है। कार्बन स्लैब की मोटाई 8 मिमी है।

पेस्टरिनी ने 1922 और 1930 के बीच ऐसी मशीनों के सिद्धांत को विकसित करने पर काम किया, हालांकि उन्होंने उनकी गतिशील विशेषताओं के बजाय उनकी स्थिर विशेषताओं पर ध्यान केंद्रित किया।[4] उन्होंने 1930 में Revue Générale de l'Electricité में इस विषय पर तीन पत्रों का योगदान दिया,[5] जिसमें कुछ व्यावहारिक अनुप्रयोग शामिल थे। इनमें से मुख्य था इलेक्ट्रिक वाहनों पर ट्रैक्शन मोटर्स के नियंत्रण और क्रेन के संचालन के लिए निरंतर-वर्तमान आउटपुट का उपयोग, जिन क्षेत्रों में उन्हें कुछ व्यावहारिक अनुभव था, फ्रांस में एल्स्टॉम कंपनी के साथ परीक्षण के बाद। [6] 1930 में, उन्होंने ब्रिटेन की यात्रा की, और मेट्रोपोलिटन-विकर्स कंपनी ने उनके विचारों को लिया और एक कार्य प्रणाली विकसित की।[4] रोसेनबर्ग के समाधान के विपरीत, पेस्टरिनी, जो बाद में ट्यूरिन में इंस्टीट्यूट इलेक्ट्रोटेक्निको नाजियोनेल गैलीलियो फेरारीस में प्रोफेसर बनीं, ने ट्रांसफॉर्मर मेटाडाइन का उत्पादन करने के लिए अतिरिक्त ब्रश को बाहरी आपूर्ति से जोड़ा।[3] मशीन ने वोल्टेज-टू-करंट एम्पलीफायर के रूप में काम किया क्योंकि करंट द्वारा लोड को उत्पन्न फ्लक्स ने कंट्रोल सर्किट में फ्लक्स का विरोध किया।[4] 1930 के दशक में मेट्रोपॉलिटन-विकर्स में विकास कार्य का नेतृत्व अर्नोल्ड टस्टिन ने किया था, और कंपनी के पास मेटाडाइन के लिए ब्रिटिश पेटेंट था।[6]

1930 में पेस्टारिनी ने भी संयुक्त राज्य अमेरिका का दौरा किया, हालांकि वहां इस्तेमाल होने वाली प्रणाली का कोई रिकॉर्ड नहीं है। अर्नस्ट एलेक्जेंडरसन के नेतृत्व में जनरल इलेक्ट्रिक इंजीनियरों ने रुचि दिखाई लेकिन एक क्षतिपूर्ति वाइंडिंग जोड़कर डिजाइन को संशोधित किया, जिसने लोड करंट द्वारा उत्पादित फ्लक्स के प्रभाव का प्रतिकार किया। इसने मशीन को वोल्टेज-टू-करंट एम्पलीफायर से वोल्टेज-टू-वोल्टेज एम्पलीफायर में बदल दिया, और उन्होंने नए संस्करण को एम्प्लिडाइन कहा। वर्टिकल स्टेबलाइजर्स के विकास के लिए विकास लागत को बड़े पैमाने पर अमेरिकी नौसैनिक अनुबंधों द्वारा वित्त पोषित किया गया था, जिसका उपयोग जहाजों पर तोपों के लक्ष्यीकरण और फायरिंग में सुधार के लिए किया गया था।[4] इसी अवधि के दौरान, मैकफर्लेन इंजीनियरिंग कंपनी, जो ग्लासगो में स्थित थी, ने काफी स्वतंत्र रूप से क्रॉस-फील्ड मशीन का एक संस्करण विकसित किया, जिसे उन्होंने मैग्नीकॉन नाम दिया।[7]

पेस्टारिनी ने 14 जनवरी 1932 को फ्रांस में मेटाडाइन मशीन पर एक पेटेंट दायर किया, और इसे 23 दिसंबर को वर्ष के अंत में संयुक्त राज्य अमेरिका के पेटेंट कार्यालय में जमा किया। यूएस पेटेंट 30 जनवरी 1934 को प्रदान किया गया था।[8] उन्होंने नवंबर 1946 में एक बेहतर मशीन के लिए दूसरा अमेरिकी पेटेंट प्रस्तुत किया, जिसे 10 जून 1952 को प्रदान किया गया।[9]

स्पेयर मेटाडाइन कार्बन ब्रश। वे व्यक्तिगत रूप से लिपटे हुए हैं और साथ में लेबल के साथ, प्लास्टिक में सील किए गए हैं। कनेक्टिंग वायर और रिंग सहित कुल लंबाई 115 मिमी है। कार्बन स्लैब की मोटाई 8 मिमी है।

संचालन

मेटाडाइन क्रॉस-फील्ड डीसी मशीन की तीन व्यवस्थाएं, और मैकफर्लेन के मैग्निकॉन का निर्माण

आरेख मेटाडाइन मशीन की तीन व्यवस्थाएं दिखाता है। सभी मामलों में, स्पष्टता के लिए कंपनसेशन वाइंडिंग को छोड़ दिया गया है। पहली व्यवस्था एक-साइकिल क्रॉस-फील्ड मशीन का प्रतिनिधित्व करती है। एक सामान्य डीसी मशीन में, उत्तेजना प्रवाह का प्रभाव एक प्रवाह (A1) उत्पन्न करता है, जो बदले में एक चतुर्भुज प्रवाह उत्पन्न करता है जो रोमांचक प्रवाह के समकोण पर होता है। क्वाडरेचर ब्रशों को एक साथ वायरिंग करके, आर्मेचर में करंट उत्पन्न किया जाता है, और इससे जो प्रवाह (A2) उत्पन्न होता है, वह फिर से क्वाडरेचर एक्सिस के समकोण पर होता है, जिसके परिणामस्वरूप आर्मेचर रिएक्शन होता है जो मूल उत्तेजना के सीधे विपरीत होता है। यह विशेषता मशीन के लिए मूलभूत है और यह उसके घूमने की दिशा पर निर्भर नहीं करती है। जब आर्मेचर प्रतिक्रिया आंशिक रूप से मुआवजा वाइंडिंग द्वारा मुआवजा दी जाती है, तो आर्मेचर प्रतिक्रिया का गैर-क्षतिपूर्ति भाग इस तरह से कार्य करता है।[10] जैसे ही आउटपुट करंट बढ़ता है, यह उत्तेजना के प्रभाव को दबा देता है, जब तक कि यह उस स्थिति तक नहीं पहुंच जाता है जहां वर्तमान को बनाए रखने के लिए पर्याप्त उत्तेजना होती है। आगे कोई भी वृद्धि प्रवाह को समाप्त कर देगी जो इसके संचालन को बनाए रखता है, और लोड के प्रतिरोध या इसके द्वारा उत्पादित बैक ईएमएफ के बावजूद वर्तमान को बनाए रखा जाता है। मशीन इस प्रकार एक निरंतर-वर्तमान जनरेटर के रूप में कार्य करती है, जहां धारा उत्तेजना के समानुपाती होती है।[11]

दूसरा आरेख एक मशीन दिखाता है जिसमें कोई उद्दीपन वाइंडिंग नहीं है, लेकिन इसके बजाय, एक स्थिर वोल्टेज क्वाडरेचर ब्रश से जुड़ा है। यह पहले उदाहरण में उत्तेजना प्रवाह में आर्मेचर के रोटेशन द्वारा उत्पादित प्रवाह के समान प्रवाह उत्पन्न करता है। मशीन का संचालन इसलिए बहुत समान है, जब तक कि उत्पादन प्रवाह तब तक नहीं बढ़ जाता जब तक कि यह लागू वोल्टेज द्वारा उत्पन्न प्रवाह का लगभग प्रतिकार नहीं करता। टस्टिन ने दिखाया है कि इनपुट और आउटपुट पावर समान है, और इसलिए मशीन निरंतर-वोल्टेज इनपुट को निरंतर-वर्तमान आउटपुट में बदल देती है। मेटाडाइन जनरेटर की तरह, मेटाडाइन ट्रांसफॉर्मर को आंशिक रूप से मुआवजा दिया जा सकता है और जब तक मुआवजा 97 प्रतिशत से अधिक नहीं हो जाता, तब तक यह एक स्थिर-वर्तमान डिवाइस के रूप में काम करता रहेगा।[12]

तीसरा आरेख दो अलग-अलग मोटरों से जुड़ा एक मेटाडाइन दिखाता है, और यह व्यवस्था अक्सर इलेक्ट्रिक ट्रेनों पर कर्षण मोटर्स के नियंत्रण के लिए उपयोग की जाती थी। उन्हें इस तरह से जोड़ने से मेटाडाइन पर प्रभावी लोडिंग कम हो जाती है, और एक छोटी मशीन स्थापित करने में सक्षम हो जाती है। मेटाडाइन एक “धनात्मक या ऋणात्मक बूस्टर” के रूप में कार्य करता है। यदि Vcc आपूर्ति वोल्टेज है, और V2 मेटाडाइन का आउटपुट वोल्टेज है, तो लोड भर में कुल वोल्टेज 0 से 2·Vcc तक भिन्न हो सकता है, क्योंकि V2 -Vcc और +Vcc के बीच बदलता रहता है। हालांकि सिस्टम भार के दो हिस्सों में धाराओं के असंतुलित होने के लिए प्रवण है, इसे अतिरिक्त श्रृंखला वाइंडिंग के प्रावधान से ठीक किया जा सकता है, जो एक अतिरिक्त सर्किट प्रतिरोध की तरह काम करता है।[13]

रोसेनबर्ग जनरेटर

रोसेनबर्ग जनरेटर, इसके निर्माण और इसके विद्युत कनेक्शन दोनों में, मेटाडाइन जनरेटर के समान है। इसमें आम तौर पर मुआवजा वाइंडिंग नहीं होती है, जिससे कि संपूर्ण आर्मेचर प्रतिक्रिया प्रारंभिक उत्तेजना का विरोध करती है। चुंबकीय सर्किट के हिस्से आमतौर पर टुकड़े टुकड़े नहीं होते हैं, जो उत्तेजना और प्रवाह के बीच देरी पैदा करता है, लेकिन मशीनों का उपयोग उन अनुप्रयोगों में किया जाता है जहां त्वरित प्रतिक्रिया आवश्यक नहीं होती है। उनका प्रमुख उपयोग ट्रेनों में किया गया है, जहां वे धुरा से संचालित होते हैं, और रोशनी प्रदान करने और बैटरी चार्ज करने के लिए उपयोग किए जाते हैं।[14] एक एक्सल-चालित जनरेटर चर गति और रोटेशन की दिशा में परिवर्तन के अधीन है, लेकिन मशीन की विशेषताओं से यह बहुत कम गति तक उपयोगी ऊर्जा का उत्पादन करने की अनुमति देता है। धीमी गति पर, आउटपुट वोल्टेज गति के वर्ग के साथ बढ़ता है, लेकिन चुंबकीय सर्किट जल्द ही संतृप्त हो जाता है, जिसके परिणामस्वरूप गति में वृद्धि के साथ बहुत कम वृद्धि होती है। जब सर्किट में उपयोग किया जाता है जिसमें आउटपुट से चार्ज की जाने वाली बैटरी शामिल होती है, तो बहुत कम गति पर या ट्रेन के रुकने पर जनरेटर के माध्यम से बैटरी के डिस्चार्ज को रोकने के लिए आमतौर पर एक रेक्टिफायर या रिवर्स-करंट कट-आउट की आवश्यकता होती है।[15]

मैग्नीकॉन

स्कॉटलैंड में मैकफर्लेन द्वारा विकसित मैग्निकॉन, मेटाडाइन के समान है, लेकिन बाद में दो-पोल आर्मेचर वाइंडिंग है, मैग्निकॉन में चार-पोल लैप वाइंडिंग है और इसे कभी-कभी शॉर्ट-पिच आर्मेचर के साथ मेटाडाइन कहा जाता है। उन्हें जहाजों पर होइस्ट और विंच चलाने के लिए आपूर्ति की गई है।[16] एक मैग्निकॉन के स्टेटर में चार ध्रुवीय प्रक्षेप होते हैं, जो 90 डिग्री पर स्थित होते हैं, और उनमें से एक जोड़ी उत्तेजित होती है। उत्तेजित ध्रुवों के समान अक्ष पर स्थित दो ब्रुशों के जोड़े शॉर्ट-सर्किट होते हैं, जिसके परिणामस्वरूप एक बड़ी धारा उत्पन्न होती है। इस धारा का मैग्नेटोमोटिव बल (एमएमएफ) गैर-उत्तेजित ध्रुवों पर कार्य करता है, एक कार्यशील प्रवाह (Φ) और आउटपुट वोल्टेज बनाता है। पूर्ण-पिच मेटाडाइन की तरह, आउटपुट धारा की आर्मेचर प्रतिक्रिया 90 डिग्री चरण से बाहर है और इसलिए मूल उत्तेजना का विरोध करती है।[17] सामान्य मेटाडाइन की तुलना में लाभ यह है कि रोमांचक और क्षतिपूर्ति करने वाले कॉइल की संख्या प्रति चक्र दो से आधी हो जाती है, और कॉइल की छोटी पिच के परिणामस्वरूप वाइंडिंग के सिरों पर कम ओवरहैंग होता है। हालाँकि, डिज़ाइन आर्मेचर में निष्क्रिय धाराएँ बनाता है, जिसके परिणामस्वरूप नुकसान होता है, और बड़ी मशीनों पर, जहाँ इंटरपोल की आवश्यकता होती है, प्रत्येक इंटरपोल को दो कॉइल के साथ लगाया जाना चाहिए, प्रत्येक ब्रश सर्किट के लिए एक। टस्टिन ने तर्क दिया कि छोटी मशीनों के लिए मेटाडाइन की तुलना में मैग्नीकॉन का बहुत कम लाभ है, और बड़ी मशीनों के लिए, जिन्हें फिट करने के लिए इंटरपोल की आवश्यकता होती है, एक निर्णय लेने के लिए अपर्याप्त विश्लेषण किया गया है।[18]

उपयोग

मेटाडाइन्स का उपयोग बड़ी बंदूकों के लक्ष्य को नियंत्रित करने और इलेक्ट्रिक ट्रेनों में गति नियंत्रण के लिए किया गया है, विशेष रूप से लंदन अंडरग्राउंड ओ और पी स्टॉक। उन्हें सॉलिड-स्टेट डिवाइसेस से हटा दिया गया है।

कर्षण नियंत्रण

उपमिंस्टर में एक लंदन अंडरग्राउंड सीपी ट्रेन (लाल रंग में)। वे मूल रूप से मेटाडाइन नियंत्रणों से सुसज्जित थे और पुनर्योजी ब्रेकिंग का उपयोग करने वाली पहली विद्युत एकाधिक इकाइयाँ थीं।

1930 के दशक की शुरुआत में, लंदन अंडरग्राउंड मेट्रोपॉलिटन-विकर्स में होने वाले मेटाडाइन उपकरण के विकास और पुनर्योजी ब्रेकिंग की क्षमता के बारे में जानते थे, जो इसे प्रदान करता था। इसलिए, एक अप्रयुक्त प्रणाली के लिए प्रतिबद्ध होने से पहले, उन्होंने मेट्रोपॉलिटन रेलवे के लिए मूल रूप से 1904 और 1907 के बीच निर्मित छह कारों को परिवर्तित करके एक परीक्षण ट्रेन का निर्माण किया। यह काम 1934 में एक्टन वर्क्स में किया गया था। चूंकि चार मोटरों को नियंत्रित करने के लिए एक एकल मेटाडाइन इकाई का उपयोग किया जा सकता था, और प्रत्येक मोटर कार में दो मोटरें थीं, वे बाहरी सिरों पर ड्राइविंग कैब के साथ दो-कार इकाइयों में बनाई गईं। इकाइयों को एक साथ युग्मित करके, दो-कार, चार-कार और छह-कार ट्रेन का परीक्षण किया जा सकता है। मेटाडाइन इकाई का वजन लगभग 3 टन था और इसमें तीन घूमने वाली मशीनें, एक एक्साइटर, एक रेगुलेटर और वास्तविक मेटाडाइन मशीन शामिल थीं, जो यंत्रवत् एक साथ जुड़ी हुई थीं। विद्युत रूप से, कर्षण आपूर्ति को मशीन में फीड किया गया था, और आउटपुट ने प्रतिरोध शुरू करने की आवश्यकता के बिना, मोटरों को फीड किया था।[19]

परीक्षण ट्रेन 1935 और 1936 के अधिकांश समय तक चली और मेट्रोपॉलिटन लाइन और डिस्ट्रिक्ट लाइन पर लगभग सभी विद्युतीकृत पटरियों पर इसका परीक्षण किया गया। एक बार अवधारणा विश्वसनीय साबित हो जाने के बाद, ट्रेन का उपयोग यात्री सेवा में भी किया गया था। पुनर्योजी ब्रेकिंग के अलावा, त्वरण विशेष रूप से सुचारू पाया गया। जब ओ और पी स्टॉक पर नई प्रणाली के साथ आगे बढ़ने का निर्णय लिया गया, तो परीक्षण ट्रेन को नष्ट कर दिया गया था, और उपकरण को ग्लूसेस्टर रेलवे कैरिज और वैगन कंपनी द्वारा निर्मित तीन बैटरी लोकोमोटिव [19] में फिट किया गया था, जो इसका हिस्सा थे 1936 और 1938 के बीच आपूर्ति किए गए नौ वाहनों का एक बैच। उपकरण विशेष रूप से बैटरी लोकोमोटिव के लिए उपयुक्त था, क्योंकि शुरुआती प्रतिरोधों की कमी ने शुरू करने और बार-बार रुकने पर बर्बाद होने वाली बिजली की मात्रा को कम कर दिया। धीमी गति पर, पारंपरिक नियंत्रण प्रणालियां अक्सर ज़्यादा गरम हो जाती हैं, लेकिन मेटाडाइन से लैस लोकोमोटिव बिना किसी समस्या के 100 टन वजन वाली ट्रेनों को 3 मील प्रति घंटे (4.8 किमी/घंटा) की गति से लंबी दूरी तक खींच सकते हैं। हालांकि, उपकरण की जटिलता, और मेटाडाइन मशीन को बनाए रखने में कठिनाई के परिणामस्वरूप लोकोमोटिव का पर्याप्त उपयोग नहीं किया जा सका, और उन्हें 1977 में स्क्रैपिंग के लिए वापस ले लिया गया था।[20]

ओ स्टॉक के मुख्य उत्पादन में 116 मोटर कारें शामिल थीं, जिन्हें 58 दो-कार इकाइयों में बनाया गया था। सितंबर 1937 में हाई स्ट्रीट केंसिंग्टन और पुटनी ब्रिज के बीच डिस्ट्रिक्ट लाइन पर चार-कार फॉर्मेशन के साथ परीक्षण शुरू हुआ और जनवरी 1938 में हैमरस्मिथ लाइन पर छह-कार फॉर्मेशन का काम शुरू हुआ। बिजली आपूर्ति प्रणाली पर जब छह मोटर कारों की एक ट्रेन शुरू हुई, और पुनर्योजी ब्रेक का उपयोग किए जाने पर इस तरह की ट्रेन ने सिस्टम में लौटने का प्रयास किया। एक और 58 ट्रेलर कारों को ऑर्डर करके और प्रत्येक दो-कार इकाई को तीन-कार इकाई में परिवर्तित करके, एक ट्रेलर कार को गठन में सम्मिलित करके इसे आंशिक रूप से कम किया गया था। मेट्रोपॉलिटन लाइन पर ट्रेनों को बदलने के लिए पी स्टॉक का एक बैच तब आदेश दिया गया था। यद्यपि O और P स्टॉक इकाइयों को एक साथ जोड़ा जा सकता है, विशेष रूप से मेटाडाइन इकाइयाँ समान नहीं थीं, और बिल्ड के बीच परस्पर विनिमय नहीं किया जा सकता था। 1950 के दशक के प्रारंभ तक, यह एक गंभीर नुकसान था, जब विफलताओं की एक श्रृंखला हुई, जिसके लिए व्यापक मरम्मत की आवश्यकता थी। 1938 ट्यूब स्टॉक से अतिरिक्त नियंत्रकों का उपयोग करते हुए उपकरण को हटाने और इसे न्यूमेटिक कैम मोटर (पीसीएम) प्रणाली से बदलने का निर्णय लिया गया। पहली परिवर्तित ट्रेन ने 31 मार्च 1955 को सेवा में प्रवेश किया, और स्टॉक को सीओ/सीपी स्टॉक में फिर से डिज़ाइन किया गया क्योंकि इसमें दोनों बैचों की कारें थीं। मेटाडाइन के सभी उपकरणों को बाद में बदल दिया गया था।[21]

कमियों के बावजूद, जिसके कारण इसका अंत हो गया, ओ स्टॉक ट्रेनों पर 1936 में शुरू की गई मेटाडाइन प्रणाली दुनिया में पहली थी जिसने इलेक्ट्रिक मल्टीपल यूनिट्स पर पुनर्योजी ब्रेकिंग प्रदान की। त्वरण एक ऐसी ट्रेन की तुलना में आसान था, जिसने प्रतिरोध शुरू करना शुरू कर दिया था, और ब्रेक लगाने पर मेटाडाइन यूनिट ने पटरियों पर बिजली वापस कर दी, जिसका इस्तेमाल जरूरत पड़ने पर अन्य ट्रेनों द्वारा किया जा सकता था। हालाँकि, स्थितियाँ हमेशा आदर्श नहीं थीं, और सबस्टेशनों को वास्तव में पुनर्जनन से निपटने के लिए डिज़ाइन नहीं किया गया था, जिसका अर्थ था कि अक्सर ट्रेन रिओस्टैटिक ब्रेकिंग में बदल जाती थी, जहाँ एक प्रतिरोध बैंक में शक्ति का प्रसार होता था। उपकरण का वजन भी एक गंभीर खामी थी।[1]

गन कंट्रोल

द्वितीय विश्व युद्ध से ठीक पहले की अवधि में, शक्ति-संचालित बंदूक नियंत्रणों में रुचि बढ़ रही थी, हालांकि सैन्य अधिकारी एक जटिल प्रणाली शुरू करने से घबराए हुए थे, जिसे क्षेत्र में बनाए रखना होगा। हालांकि, विमान की बढ़ती गति के साथ, सर्चलाइट्स, एंटी-एयरक्राफ्ट बंदूकें और दोहरे उद्देश्य वाली नौसेना बंदूकों को अपने आंदोलन को ट्रैक करने के लिए तेजी से आगे बढ़ने की आवश्यकता का मतलब था कि संचालित नियंत्रण का कुछ रूप आवश्यक था। इंजीनियरों को उपकरण का एक भारी टुकड़ा बनाने की समस्या का सामना करना पड़ा, जैसे कि इसकी बढ़ती गाड़ी पर एक बंदूक, इनपुट में परिवर्तन और बंदूक की वास्तविक स्थिति के बीच बहुत कम अंतराल के साथ एक सहज और सटीक तरीके से एक इनपुट सिग्नल को ट्रैक करना। माउंट। बंदूक को हर समय लक्ष्य पर निशाना साधने की जरूरत होती है, और ऐसा बने रहने के लिए सही वेग से चलती है।[22]

एक मानव ऑपरेटर त्रुटियों की आशंका करता है, और सिस्टम के संचालन में ज्ञात अंतराल के लिए क्षतिपूर्ति भी कर सकता है। इस व्यवहार की नकल इलेक्ट्रॉनिक संकेतों और कम-शक्ति वाले इलेक्ट्रोमेकैनिकल सिस्टम के लिए हासिल की गई थी, लेकिन बंदूक नियंत्रण पूरी तरह से अलग पैमाने पर था, टन वजन वाली मशीनरी के साथ और महत्वपूर्ण जड़ता को प्रति सेकंड 30 डिग्री तक की गति से स्थानांतरित करने की आवश्यकता होती है, और त्वरण 10 डिग्री प्रति सेकंड2. 1937 में, नौवाहनविभाग ने मेट्रोपोलिटन विकर्स को आठ-बैरल पोम-पोम गन के लिए एक नियंत्रण प्रणाली के लिए एक आदेश दिया था। पेस्टारिनी ने इतालवी नौसेना के लिए एक समान प्रणाली विकसित की थी। मूल डिजाइन ने कई बंदूकों पर घुड़सवार मोटरों के कवच के लिए निरंतर चालू आपूर्ति के लिए एक मेटाडाइन का इस्तेमाल किया। प्रत्येक को तब मैन्युअल रूप से फ़ील्ड करंट को समायोजित करके नियंत्रित किया गया था। अधिकांश डिजाइन कार्य करने वाले टस्टिन ने पाया कि फील्ड वाइंडिंग के शामिल होने के कारण सिस्टम में एक बड़ा समय स्थिर था। इसकी प्रतिक्रिया में सुधार करने के लिए, उन्होंने एक स्थिर धारा के साथ फील्ड वाइंडिंग की आपूर्ति की और प्रत्येक मोटर के आर्मेचर करंट को नियंत्रित करने के लिए आंशिक रूप से क्षतिपूर्ति मेटाडाइन का उपयोग किया। टस्टिन ने वार्ड लियोनार्ड नियंत्रण प्रणालियों, मेटाडाइन्स और एम्प्लिडाइन्स की तुलना की, और स्वीकार किया कि प्रत्येक की अपनी खूबियां थीं, लेकिन मेटाडाइन का पक्ष लिया, जिसके कर्षण नियंत्रण में उनके उपयोग से उन्हें कई वर्षों का अनुभव था।[6]


यह भी देखें

संदर्भ

टिप्पणियाँ

  1. 1.0 1.1 Bruce 1970, p. 165
  2. 2.0 2.1 Tustin 1952, p. 163
  3. 3.0 3.1 Dummelow 1949, p. 156
  4. 4.0 4.1 4.2 4.3 4.4 Bennett 1993, p. 10
  5. 5.0 5.1 Tustin 1952, p. 300
  6. 6.0 6.1 Bennett 1993, p. 131
  7. Tustin 1952, p. 164
  8. "Patent US1945447 - Control of Electric Motors". United States Patent Office. Retrieved 10 March 2013.
  9. "Patent US1945447 - Metadyne Motor". United States Patent Office. Retrieved 10 March 2013.
  10. Tustin 1952, p. 179.
  11. Tustin 1952, pp. 180–181.
  12. Tustin 1952, pp. 181–182.
  13. Tustin 1952, pp. 182–183.
  14. Tustin 1952, pp. 183–184.
  15. Tustin 1952, pp. 185–186.
  16. Tustin 1952, p. 187.
  17. Tustin 1952, pp. 189–190.
  18. Tustin 1952, pp. 190–191.
  19. 19.0 19.1 Bruce 1970, pp. 134–135
  20. Bruce 1987, p. 30
  21. Bruce 1970, pp. 135–136.
  22. Bennett 1993, pp. 130–131.

ग्रन्थसूची