चैनल क्षमता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Information-theoretical limit on transmission rate in a communication channel}}
{{Short description|Information-theoretical limit on transmission rate in a communication channel}}


 
चैनल क्षमता, [[ विद्युत अभियन्त्रण |विद्युत अभियन्त्रण]] , [[कंप्यूटर विज्ञान]], और [[सूचना सिद्धांत]] जिस दर पर तंग ऊपरी सीमा होती है, उस संचार चैनल पर सूचना को मज़बूती से प्रसारित किया जा सकता है।
 
चैनल क्षमता, [[ विद्युत अभियन्त्रण |विद्युत अभियन्त्रण]] , [[कंप्यूटर विज्ञान]], और [[सूचना सिद्धांत]] जिस दर पर तंग ऊपरी सीमा होती है, उस संचार चैनल पर सूचना को मज़बूती से प्रसारित किया जा सकता है।  


[[शोर-चैनल कोडिंग प्रमेय]] की शर्तों का पालन करते हुए प्रदत्त चैनल की चैनल क्षमता उच्चतम सूचना दर है। (प्रति इकाई समय सूचना की इकाइयों में) जिसे अव्यवस्थित रूप से छोटी त्रुटि संभाव्यता के साथ प्राप्त किया जा सकता है।<ref>{{cite web |url=http://www.cs.ucl.ac.uk/staff/S.Bhatti/D51-notes/node31.html |author=Saleem Bhatti |title=चैनल क्षमता|work=Lecture notes for M.Sc. Data Communication Networks and Distributed Systems D51 -- Basic Communications and Networks |url-status=dead |archive-url=https://web.archive.org/web/20070821212637/http://www.cs.ucl.ac.uk/staff/S.Bhatti/D51-notes/node31.html |archive-date=2007-08-21 }}</ref><ref>{{cite web | url = http://www.st-andrews.ac.uk/~www_pa/Scots_Guide/iandm/part8/page1.html | title = सिग्नल शोर की तरह दिखते हैं!| author = Jim Lesurf | work = Information and Measurement, 2nd ed.}}</ref>  
[[शोर-चैनल कोडिंग प्रमेय]] की शर्तों का पालन करते हुए प्रदत्त चैनल की चैनल क्षमता उच्चतम सूचना दर है। (प्रति इकाई समय सूचना की इकाइयों में) जिसे अव्यवस्थित रूप से छोटी त्रुटि संभाव्यता के साथ प्राप्त किया जा सकता है।<ref>{{cite web |url=http://www.cs.ucl.ac.uk/staff/S.Bhatti/D51-notes/node31.html |author=Saleem Bhatti |title=चैनल क्षमता|work=Lecture notes for M.Sc. Data Communication Networks and Distributed Systems D51 -- Basic Communications and Networks |url-status=dead |archive-url=https://web.archive.org/web/20070821212637/http://www.cs.ucl.ac.uk/staff/S.Bhatti/D51-notes/node31.html |archive-date=2007-08-21 }}</ref><ref>{{cite web | url = http://www.st-andrews.ac.uk/~www_pa/Scots_Guide/iandm/part8/page1.html | title = सिग्नल शोर की तरह दिखते हैं!| author = Jim Lesurf | work = Information and Measurement, 2nd ed.}}</ref>  
Line 45: Line 43:


== चैनल क्षमता की योगात्मकता ==
== चैनल क्षमता की योगात्मकता ==
चैनल क्षमता स्वतंत्र चैनलों पर योगात्मक है।<ref>{{cite book |last1=Cover |first1=Thomas M. |last2=Thomas |first2=Joy A. |title=सूचना सिद्धांत के तत्व|publisher=Wiley-Interscience |edition=Second |date=2006 |pages=206–207 |chapter=Chapter 7: Channel Capacity |isbn=978-0-471-24195-9}}</ref>  इसका अर्थ है कि संयुक्त रूप से दो स्वतंत्र चैनलों के प्रयोग से समान सैद्धांतिक क्षमता का उन्हें स्वतंत्र रूप से प्रयोग करने में सहायता मिलती है।  
चैनल क्षमता स्वतंत्र चैनलों पर योगात्मक है।<ref>{{cite book |last1=Cover |first1=Thomas M. |last2=Thomas |first2=Joy A. |title=सूचना सिद्धांत के तत्व|publisher=Wiley-Interscience |edition=Second |date=2006 |pages=206–207 |chapter=Chapter 7: Channel Capacity |isbn=978-0-471-24195-9}}</ref>  इसका अर्थ है कि संयुक्त रूप से दो स्वतंत्र चैनलों के प्रयोग से समान सैद्धांतिक क्षमता का उन्हें स्वतंत्र रूप से प्रयोग करने में सहायता मिलती है। अधिक औपचारिक रूप से, मान लीजिए  <math>p_{1}</math> और <math>p_{2}</math>ऊपर दिए गए दो स्वतंत्र चैनल बनें; <math>p_{1}</math> में एक इनपुट वर्णमाला <math>\mathcal{X}_{1}</math> और एक आउटपुट वर्णमाला <math>\mathcal{Y}_{1}</math> है। <math>p_{2}</math> के लिए आइडेम हम उत्पाद चैनल <math>p_{1}\times p_2</math> को परिभाषित करते हैं जैसा
 
अधिक औपचारिक रूप से, चलो <math>p_{1}</math> और <math>p_{2}</math> ऊपर के रूप में प्रतिरूपित दो स्वतंत्र चैनल बनें; <math>p_{1}</math> एक इनपुट वर्णमाला होना <math>\mathcal{X}_{1}</math> और एक आउटपुट वर्णमाला <math>\mathcal{Y}_{1}</math>. मैं आगे जा रहा हूँ <math>p_{2}</math>.
 
 
 
हम उत्पाद चैनल को परिभाषित करते हैं <math>p_{1}\times p_2</math> जैसा  


  <math>\forall (x_{1}, x_{2}) \in (\mathcal{X}_{1}, \mathcal{X}_{2}),\;(y_{1}, y_{2}) \in (\mathcal{Y}_{1}, \mathcal{Y}_{2}),\; (p_{1}\times p_{2})((y_{1}, y_{2}) | (x_{1},x_{2}))=p_{1}(y_{1}|x_{1})p_{2}(y_{2}|x_{2})</math>
  <math>\forall (x_{1}, x_{2}) \in (\mathcal{X}_{1}, \mathcal{X}_{2}),\;(y_{1}, y_{2}) \in (\mathcal{Y}_{1}, \mathcal{Y}_{2}),\; (p_{1}\times p_{2})((y_{1}, y_{2}) | (x_{1},x_{2}))=p_{1}(y_{1}|x_{1})p_{2}(y_{2}|x_{2})</math>
यह प्रमेय कहता है:
यह प्रमेय कहता है:<math display="block"> C(p_{1}\times p_{2}) = C(p_{1}) + C(p_{2})</math>{{Proof|
<math display="block"> C(p_{1}\times p_{2}) = C(p_{1}) + C(p_{2})</math>
 
{{Proof|


We first show that <math> C(p_{1}\times p_{2}) \geq C(p_{1}) + C(p_{2}) </math>.
We first show that <math> C(p_{1}\times p_{2}) \geq C(p_{1}) + C(p_{2}) </math>.
Line 115: Line 104:


== एक ग्राफ की शैनन क्षमता ==
== एक ग्राफ की शैनन क्षमता ==
{{main|Shannon capacity of a graph}}
{{main|ग्राफ की शैनन क्षमता}}
यदि G एक [[ अप्रत्यक्ष ग्राफ ]] है, तो इसका उपयोग एक संचार चैनल को परिभाषित करने के लिए किया जा सकता है जिसमें प्रतीक ग्राफ के कोने होते हैं, और दो कोडवर्ड एक दूसरे के साथ भ्रमित हो सकते हैं यदि प्रत्येक स्थिति में उनके प्रतीक समान या आसन्न हों। ऐसे चैनल की शैनन क्षमता को खोजने की कम्प्यूटेशनल जटिलता खुली रहती है, लेकिन यह एक अन्य महत्वपूर्ण ग्राफ इनवेरिएंट, लोवाज़ नंबर द्वारा ऊपरी सीमा में हो सकती है।<ref>{{citation | first = László | last = Lovász | author-link = László Lovász | title = On the Shannon Capacity of a Graph | journal = [[IEEE Transactions on Information Theory]] | volume = IT-25 | issue = 1 | year = 1979 | pages = 1–7 | doi = 10.1109/tit.1979.1055985 }}.</ref>
 


यदि G [[ अप्रत्यक्ष ग्राफ |अप्रत्यक्ष ग्राफ]] है तो इसका उपयोग एक संचार चैनल को परिभाषित करने के लिए किया जा सकता है जिसमें संकेताक्षर ग्राफ के कोने हैं, और दो कोडवर्ड एक दूसरे के साथ भ्रमित हो सकते हैं यदि प्रत्येक स्थिति में उनके संकेताक्षर समान या आसन्न हैं। ऐसे चैनल की शैनन क्षमता को खोजने की कम्प्यूटेशनल जटिलता खुली रहती है, लेकिन यह एक अन्य महत्वपूर्ण ग्राफ इनवेरिएंट, लोवाज़ नंबर द्वारा ऊपरी सीमा में हो सकती है।<ref>{{citation | first = László | last = Lovász | author-link = László Lovász | title = On the Shannon Capacity of a Graph | journal = [[IEEE Transactions on Information Theory]] | volume = IT-25 | issue = 1 | year = 1979 | pages = 1–7 | doi = 10.1109/tit.1979.1055985 }}.</ref>
== शोर-चैनल कोडिंग प्रमेय ==
== शोर-चैनल कोडिंग प्रमेय ==


शोर-चैनल कोडिंग प्रमेय बताता है कि किसी भी त्रुटि संभावना के लिए ε> 0 और किसी भी संचरण सूचना सिद्धांत के लिए # दर आर चैनल क्षमता सी से कम है, एक एन्कोडिंग और डिकोडिंग योजना है जो दर आर पर डेटा संचारित करती है जिसकी त्रुटि संभावना ε से कम है पर्याप्त बड़ी ब्लॉक लंबाई के लिए। साथ ही, चैनल क्षमता से अधिक किसी भी दर के लिए, रिसीवर पर त्रुटि की संभावना 0.5 हो जाती है क्योंकि ब्लॉक की लंबाई अनंत हो जाती है।
शोर-चैनल कोडिंग प्रमेय बताता है कि किसी भी त्रुटि संभावना के लिए ε> 0 और चैनल क्षमता सी से कम किसी भी संचरण दर आर के लिए, एन्कोडिंग और डिकोडिंग योजना है जो दर आर पर डेटा संचारित करती है जिसकी त्रुटि संभावना ε से कम है, एक के लिए पर्याप्त बड़ी ब्लॉक लंबाई है। चैनल की क्षमता से अधिक किसी दर के लिए, रिसीवर पर त्रुटि की संभावना 0.5 तक बढ़ जाती है क्योंकि ब्लॉक की लंबाई अनंत तक जाती है।


== उदाहरण आवेदन ==
== उदाहरण आवेदन ==


बी हर्ट्ज [[ बैंडविड्थ (सिग्नल प्रोसेसिंग) ]] और सिग्नल-टू-शोर अनुपात एस/एन के साथ एक योगात्मक सफेद गॉसियन शोर (एडब्ल्यूजीएन) चैनल के लिए चैनल क्षमता अवधारणा का एक अनुप्रयोग शैनन-हार्टले प्रमेय है:
बी हर्ट्ज [[ बैंडविड्थ (सिग्नल प्रोसेसिंग) |बैंडविड्थ (सिग्नल प्रोसेसिंग)]] और सिग्नल-टू-शोर अनुपात एस/एन के साथ एक योगात्मक सफेद गॉसियन शोर (एडब्ल्यूजीएन) चैनल के लिए चैनल क्षमता अवधारणा का एक अनुप्रयोग शैनन-हार्टले प्रमेय है:
:<math> C = B \log_2 \left( 1+\frac{S}{N} \right)\ </math>
:<math> C = B \log_2 \left( 1+\frac{S}{N} \right)\ </math>
C को [[ बिट्स प्रति सेकंड ]] में मापा जाता है यदि लघुगणक को आधार 2 में लिया जाता है, या Nat (यूनिट) प्रति सेकंड यदि [[ प्राकृतिक ]] लघुगणक का उपयोग किया जाता है, तो B को [[ हेटर्स ]]में माना जाता है; संकेत और शोर शक्तियाँ S और N एक रेखीय शक्ति_(भौतिकी)#इकाइयों (जैसे वाट या वोल्ट) में व्यक्त की जाती हैं<sup>2</sup>). चूंकि S/N के आंकड़े अक्सर [[ डेसिबल ]] में उद्धृत किए जाते हैं, इसलिए रूपांतरण की आवश्यकता हो सकती है। उदाहरण के लिए, 30 dB का सिग्नल-टू-नॉइज़ अनुपात एक रैखिक शक्ति अनुपात के अनुरूप होता है <math> 10^{30/10} = 10^3 = 1000</math>.
C को [[ बिट्स प्रति सेकंड |बिट्स प्रति सेकंड]] में मापा जाता है यदि लघुगणक को आधार 2 में लिया जाता है, या Nat (यूनिट) प्रति सेकंड यदि [[ प्राकृतिक ]] लघुगणक का उपयोग किया जाता है, तो B को [[हर्ट्ज़]] में माना जाता है; संकेत और शोर ऊर्जा S और N रैखिक ऊर्जा  इकाई (जैसे वाट या वोल्ट<sup>2</sup>) में व्यक्त की जाती हैं। चूंकि एस/एन आंकड़ों को अक्सर डीबी में उद्धृत किया जाता है, रूपांतरण की आवश्यकता हो सकती है। उदाहरण के लिए, 30 डीबी का संकेत-ध्वनि अनुपात <math> 10^{30/10} = 10^3 = 1000</math> के रेखीय शक्ति अनुपात के अनुरूप होता है।


== वायरलेस संचार में चैनल क्षमता ==
== वायरलेस संचार में चैनल क्षमता ==


यह अनुभाग<ref>{{citation | author = David Tse, Pramod Viswanath | title = Fundamentals of Wireless Communication | publisher = Cambridge University Press, UK | year=2005| isbn = 9780521845274 |url=https://books.google.com/books?id=66XBb5tZX6EC&q=%22Channel+capacity%22}}</ref> सिंगल-एंटीना, पॉइंट-टू-पॉइंट परिदृश्य पर केंद्रित है। एकाधिक एंटेना वाले सिस्टम में चैनल क्षमता के लिए, एमआईएमओ पर आलेख देखें।
यह खंड<ref>{{citation | author = David Tse, Pramod Viswanath | title = Fundamentals of Wireless Communication | publisher = Cambridge University Press, UK | year=2005| isbn = 9780521845274 |url=https://books.google.com/books?id=66XBb5tZX6EC&q=%22Channel+capacity%22}}</ref> सिंगल-एंटीना, पॉइंट-टू-पॉइंट परिदृश्य पर केंद्रित है। एकाधिक एंटेना वाली प्रणाली में चैनल क्षमता के लिए, एमआईएमओ पर आलेख देखें।


=== बैंडलिमिटेड AWGN चैनल ===
=== बैंडलिमिटेड एडब्लूजीएन चैनल ===
{{main|Shannon–Hartley theorem}}
{{main|शैनन-हार्टले प्रमेय}}
[[File:Channel Capacity with Power- and Bandwidth-Limited Regimes.png|thumb|पावर-सीमित शासन और बैंडविड्थ-सीमित शासन के साथ AWGN चैनल क्षमता का संकेत दिया गया। यहां, <math>\frac{\bar{P}}{N_0}=1</math>; बी और सी को अन्य मूल्यों के लिए आनुपातिक रूप से बढ़ाया जा सकता है।]]यदि औसत प्राप्त शक्ति है <math>\bar{P}</math> [डब्ल्यू], कुल बैंडविड्थ है <math>W</math> हर्ट्ज़ में, और शोर शक्ति वर्णक्रमीय घनत्व है <math>N_0</math> [W/Hz], AWGN चैनल क्षमता है
[[File:Channel Capacity with Power- and Bandwidth-Limited Regimes.png|thumb|पावर-सीमित शासन और बैंडविड्थ-सीमित शासन के साथ AWGN चैनल क्षमता का संकेत दिया गया। यहां, <math>\frac{\bar{P}}{N_0}=1</math>; बी और सी को अन्य मूल्यों के लिए आनुपातिक रूप से बढ़ाया जा सकता है।]]यदि औसत प्राप्त शक्ति है <math>\bar{P}</math> [डब्ल्यू], कुल बैंडविड्थ है <math>W</math> हर्ट्ज़ में, और शोर शक्ति वर्णक्रमीय घनत्व है <math>N_0</math> [W/Hz], AWGN चैनल क्षमता है



Revision as of 18:36, 15 January 2023

चैनल क्षमता, विद्युत अभियन्त्रण , कंप्यूटर विज्ञान, और सूचना सिद्धांत जिस दर पर तंग ऊपरी सीमा होती है, उस संचार चैनल पर सूचना को मज़बूती से प्रसारित किया जा सकता है।

शोर-चैनल कोडिंग प्रमेय की शर्तों का पालन करते हुए प्रदत्त चैनल की चैनल क्षमता उच्चतम सूचना दर है। (प्रति इकाई समय सूचना की इकाइयों में) जिसे अव्यवस्थित रूप से छोटी त्रुटि संभाव्यता के साथ प्राप्त किया जा सकता है।[1][2]

1948 में क्लाउड ई. शैनन द्वारा विकसित सूचना सिद्धांत, चैनल क्षमता की धारणा को परिभाषित करता है और एक गणितीय मॉडल प्रदान करता है जिसके द्वारा इसकी गणना की जा सकती है। मुख्य परिणाम यह बताता है कि ऊपर वर्णित रूप में चैनल की क्षमता, चैनल के इनपुट और आउटपुट के बीच अधिकतम आपसी सूचना द्वारा दी गई है, जहां इनपुट वितरण के संबंध में अधिकतम जानकारी दी गई है।[3]

चैनल क्षमता की धारणा आधुनिक वायरलाइन और बेतार संचार प्रणालियों के विकास के लिए केन्द्रीय रही है, जिसमें नई त्रुटि सुधार कोडन तंत्र का आगमन हुआ है, जिसके परिणाम से चैनल क्षमता की सीमा काफी निकट आ गई है।

औपचारिक परिभाषा

संचार प्रणाली के लिए बुनियादी गणितीय मॉडल निम्नलिखित है:

जहाँ:

  • प्रेषित होने वाला संदेश है;
  • चैनल इनपुट संकेताक्षर है (, उस पर संकेताक्षर का अनुक्रम है) जो अक्षर में लिया गया है;
  • चैनल आउटपुट संकेताक्षर है (, संकेताक्षर का अनुक्रम है) जो अक्षर में लिया गया है;
  • प्रेषित संदेश का अनुमान है;
  • एक एनकोडिंग फ़ंक्शन है ब्लॉक की लंबाई  के लिए;
  • यह शोर वाला चैनल है, जो कि सशर्त संभाव्यता वितरण द्वारा प्रतिरूपित किया जाता है;और,
  • एक डिकोडिंग फ़ंक्शन है ब्लॉक की लंबाई  के लिए;

मान लें कि और को यादृच्छिक चर के रूप में तैयार किया गया है। इसके अलावा, मान लीजिए की दिए गए का सशर्त संभाव्यता वितरण फलन है, जो संचार चैनल की अंतर्निहित निश्चित संपत्ति है।

तब सीमांत वितरण का चुनाव पूरी तरह से पहचान के कारण संयुक्त संभाव्यता वितरण को निर्धारित करता है

जो, बदले में, पारस्परिक सूचना को प्रेरित करता है। चैनल क्षमता को इस रूप में परिभाषित किया गया है:

जहां के सभी संभावित विकल्पों पर सुप्रीमम लिया जाता है।

चैनल क्षमता की योगात्मकता

चैनल क्षमता स्वतंत्र चैनलों पर योगात्मक है।[4] इसका अर्थ है कि संयुक्त रूप से दो स्वतंत्र चैनलों के प्रयोग से समान सैद्धांतिक क्षमता का उन्हें स्वतंत्र रूप से प्रयोग करने में सहायता मिलती है। अधिक औपचारिक रूप से, मान लीजिए और ऊपर दिए गए दो स्वतंत्र चैनल बनें; में एक इनपुट वर्णमाला और एक आउटपुट वर्णमाला है। के लिए आइडेम हम उत्पाद चैनल को परिभाषित करते हैं जैसा


यह प्रमेय कहता है:

Proof

We first show that .

Let and be two independent random variables. Let be a random variable corresponding to the output of through the channel , and for through .

By definition .

तब से और स्वतंत्र हैं, साथ ही और , से स्वतंत्र है . हम आपसी जानकारी की निम्नलिखित संपत्ति को लागू कर सकते हैं: अभी के लिए हमें केवल एक वितरण खोजने की जरूरत है ऐसा है कि . असल में, और , के लिए दो संभाव्यता वितरण और को प्राप्त करने और , पर्याप्त:

अर्थात। अब चलिए दिखाते हैं .

होने देना चैनल के लिए कुछ वितरण हो परिभाषित करने और संबंधित आउटपुट . होने देना की वर्णमाला हो , के लिए , और समान रूप से और .

पारस्परिक जानकारी की परिभाषा के अनुसार, हमारे पास है


एंट्रॉपी (सूचना सिद्धांत) के अंतिम पद को फिर से लिखते हैं।

उत्पाद चैनल की परिभाषा के अनुसार, . किसी दिए गए जोड़े के लिए , हम फिर से लिख सकते हैं जैसा:

इस समानता को सब पर समेट कर , हमने प्राप्त किया

.

अब हम आपसी सूचनाओं पर एक ऊपरी सीमा दे सकते हैं:

यह संबंध सर्वोच्च पर संरक्षित है। इसलिए

हमारे द्वारा सिद्ध की गई दो असमानताओं को मिलाकर, हम प्रमेय का परिणाम प्राप्त करते हैं:

एक ग्राफ की शैनन क्षमता

यदि G अप्रत्यक्ष ग्राफ है तो इसका उपयोग एक संचार चैनल को परिभाषित करने के लिए किया जा सकता है जिसमें संकेताक्षर ग्राफ के कोने हैं, और दो कोडवर्ड एक दूसरे के साथ भ्रमित हो सकते हैं यदि प्रत्येक स्थिति में उनके संकेताक्षर समान या आसन्न हैं। ऐसे चैनल की शैनन क्षमता को खोजने की कम्प्यूटेशनल जटिलता खुली रहती है, लेकिन यह एक अन्य महत्वपूर्ण ग्राफ इनवेरिएंट, लोवाज़ नंबर द्वारा ऊपरी सीमा में हो सकती है।[5]

शोर-चैनल कोडिंग प्रमेय

शोर-चैनल कोडिंग प्रमेय बताता है कि किसी भी त्रुटि संभावना के लिए ε> 0 और चैनल क्षमता सी से कम किसी भी संचरण दर आर के लिए, एन्कोडिंग और डिकोडिंग योजना है जो दर आर पर डेटा संचारित करती है जिसकी त्रुटि संभावना ε से कम है, एक के लिए पर्याप्त बड़ी ब्लॉक लंबाई है। चैनल की क्षमता से अधिक किसी दर के लिए, रिसीवर पर त्रुटि की संभावना 0.5 तक बढ़ जाती है क्योंकि ब्लॉक की लंबाई अनंत तक जाती है।

उदाहरण आवेदन

बी हर्ट्ज बैंडविड्थ (सिग्नल प्रोसेसिंग) और सिग्नल-टू-शोर अनुपात एस/एन के साथ एक योगात्मक सफेद गॉसियन शोर (एडब्ल्यूजीएन) चैनल के लिए चैनल क्षमता अवधारणा का एक अनुप्रयोग शैनन-हार्टले प्रमेय है:

C को बिट्स प्रति सेकंड में मापा जाता है यदि लघुगणक को आधार 2 में लिया जाता है, या Nat (यूनिट) प्रति सेकंड यदि प्राकृतिक लघुगणक का उपयोग किया जाता है, तो B को हर्ट्ज़ में माना जाता है; संकेत और शोर ऊर्जा S और N रैखिक ऊर्जा इकाई (जैसे वाट या वोल्ट2) में व्यक्त की जाती हैं। चूंकि एस/एन आंकड़ों को अक्सर डीबी में उद्धृत किया जाता है, रूपांतरण की आवश्यकता हो सकती है। उदाहरण के लिए, 30 डीबी का संकेत-ध्वनि अनुपात के रेखीय शक्ति अनुपात के अनुरूप होता है।

वायरलेस संचार में चैनल क्षमता

यह खंड[6] सिंगल-एंटीना, पॉइंट-टू-पॉइंट परिदृश्य पर केंद्रित है। एकाधिक एंटेना वाली प्रणाली में चैनल क्षमता के लिए, एमआईएमओ पर आलेख देखें।

बैंडलिमिटेड एडब्लूजीएन चैनल

पावर-सीमित शासन और बैंडविड्थ-सीमित शासन के साथ AWGN चैनल क्षमता का संकेत दिया गया। यहां, ; बी और सी को अन्य मूल्यों के लिए आनुपातिक रूप से बढ़ाया जा सकता है।

यदि औसत प्राप्त शक्ति है [डब्ल्यू], कुल बैंडविड्थ है हर्ट्ज़ में, और शोर शक्ति वर्णक्रमीय घनत्व है [W/Hz], AWGN चैनल क्षमता है

[बिट्स/एस],

कहां प्राप्त सिग्नल-टू-शोर अनुपात (SNR) है। इस परिणाम को शैनन-हार्टले प्रमेय के रूप में जाना जाता है।[7] जब SNR बड़ा होता है (SNR ≫ 0 dB), क्षमता शक्ति में लघुगणक और बैंडविड्थ में लगभग रैखिक है। इसे बैंडविड्थ-सीमित शासन कहा जाता है।

जब एसएनआर छोटा होता है (एसएनआर ≪ 0 डीबी), क्षमता शक्ति में रैखिक है लेकिन बैंडविड्थ के प्रति असंवेदनशील है। इसे शक्ति-सीमित शासन कहा जाता है।

बैंडविड्थ-सीमित शासन और शक्ति-सीमित शासन चित्र में सचित्र हैं।

आवृत्ति-चयनात्मक AWGN चैनल

लुप्त होती की क्षमता | आवृत्ति-चयनात्मक चैनल तथाकथित पानी भरने वाले एल्गोरिदम बिजली आवंटन द्वारा दिया जाता है,

कहां और सबचैनल का लाभ है , साथ शक्ति की कमी को पूरा करने के लिए चुना गया।

धीमा-लुप्त होती चैनल

एक लुप्त होती | धीमी-लुप्त होती चैनल में, जहां सुसंगतता समय विलंबता की आवश्यकता से अधिक है, चैनल द्वारा समर्थित विश्वसनीय संचार की अधिकतम दर के रूप में कोई निश्चित क्षमता नहीं है, , यादृच्छिक चैनल लाभ पर निर्भर करता है , जो ट्रांसमीटर के लिए अज्ञात है। यदि ट्रांसमीटर दर पर डेटा को एनकोड करता है [बिट्स / एस / हर्ट्ज], एक गैर-शून्य संभावना है कि डिकोडिंग त्रुटि संभावना को मनमाने ढंग से छोटा नहीं किया जा सकता है,

,

जिस स्थिति में कहा जाता है कि सिस्टम आउटेज में है। एक गैर-शून्य संभावना के साथ कि चैनल गहरा फीका है, धीमी गति से लुप्त होती चैनल की क्षमता सख्त अर्थों में शून्य है। हालांकि, का सबसे बड़ा मूल्य निर्धारित करना संभव है जैसे आउटेज की संभावना मै रुक जाना . इस मान को के रूप में जाना जाता है -आउटेज क्षमता।

तेजी से लुप्त होती चैनल

एक फेडिंग | फास्ट-फेडिंग चैनल में, जहां विलंबता की आवश्यकता सुसंगतता समय से अधिक है और कोडवर्ड की लंबाई कई सुसंगतता अवधियों तक फैली हुई है, बड़ी संख्या में सुसंगतता समय अंतरालों पर कोडिंग करके कई स्वतंत्र चैनल फ़ेड्स पर औसत कर सकते हैं। इस प्रकार, संचार की विश्वसनीय दर प्राप्त करना संभव है [बिट्स/सेकंड/हर्ट्ज] और इस मूल्य को तेजी से लुप्त होती चैनल की क्षमता के रूप में बोलना सार्थक है।

यह भी देखें

उन्नत संचार विषय

बाहरी कड़ियाँ

  • "Transmission rate of a channel", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • AWGN Channel Capacity with various constraints on the channel input (interactive demonstration)


संदर्भ

  1. Saleem Bhatti. "चैनल क्षमता". Lecture notes for M.Sc. Data Communication Networks and Distributed Systems D51 -- Basic Communications and Networks. Archived from the original on 2007-08-21.
  2. Jim Lesurf. "सिग्नल शोर की तरह दिखते हैं!". Information and Measurement, 2nd ed.
  3. Thomas M. Cover, Joy A. Thomas (2006). सूचना सिद्धांत के तत्व. John Wiley & Sons, New York. ISBN 9781118585771.
  4. Cover, Thomas M.; Thomas, Joy A. (2006). "Chapter 7: Channel Capacity". सूचना सिद्धांत के तत्व (Second ed.). Wiley-Interscience. pp. 206–207. ISBN 978-0-471-24195-9.
  5. Lovász, László (1979), "On the Shannon Capacity of a Graph", IEEE Transactions on Information Theory, IT-25 (1): 1–7, doi:10.1109/tit.1979.1055985.
  6. David Tse, Pramod Viswanath (2005), Fundamentals of Wireless Communication, Cambridge University Press, UK, ISBN 9780521845274
  7. इलेक्ट्रिकल इंजीनियरिंग की पुस्तिका. Research & Education Association. 1996. p. D-149. ISBN 9780878919819.

श्रेणी: सूचना सिद्धांत श्रेणी: दूरसंचार सिद्धांत श्रेणी: टेलीविजन शब्दावली