बीजगणित: Difference between revisions
m (added Category:भारतीय गणितज्ञ using HotCat) |
(Content correction) |
||
Line 18: | Line 18: | ||
==उत्पत्ति== | ==उत्पत्ति== | ||
[[File:Hindu astronomer, 19th-century illustration.jpg|thumb|ब्रह्मगुप्त]] | [[File:Hindu astronomer, 19th-century illustration.jpg|thumb|ब्रह्मगुप्त]] | ||
हिंदू बीजगणित की उत्पत्ति निश्चित रूप से शुल्बा (800-500 ईसा पूर्व) और ब्राह्मण ( | हिंदू बीजगणित की उत्पत्ति निश्चित रूप से ''शुल्बा'' (800-500 ईसा पूर्व) और ब्राह्मण (सी 2000) की अवधि में देखी जा सकती है। | ||
"अज्ञात को | "अज्ञात को निरूपित करने के लिए वर्णमाला के अक्षरों का व्यवस्थित उपयोग करने वाले पहले हिंदू थे। वे समीकरणों का वर्गीकरण और विस्तृत अध्ययन करने वाले पहले व्यक्ति भी थे। इस प्रकार कहा जा सकता है कि उन्होंने बीजगणित के आधुनिक विज्ञान को जन्म दिया।"<ref>Datta, 1938, Vol.2, Preface</ref> | ||
''शुलबसूत्र'' में चर मात्रा का उल्लेख है। आर्यभट के ''आर्यभटीय'' ने रैखिक और द्विघात समीकरणों के समाधान का उल्लेख किया है। ब्रह्मगुप्त ने अपने ''ब्रह्म-स्फुण-सिद्धांत'' में प्रतीकों का उपयोग करके अज्ञात पर किए गए कार्यों का उल्लेख किया है। ''कुट्टकाध्याय:'' (अध्याय 18) अव्यक्त (या बीजगणितीय प्रतीकों) के साथ ''परिक्रमा'' (गणना) की व्याख्या करता है। इसलिए ब्रह्मगुप्त को बीजगणित का जनक माना जाता है। बीजगणित पर अन्य ग्रंथों में आर्यभट द्वितीय के ''महासिद्धांत'', श्रीपति के ''सिद्धांतशेखर'', भास्कर द्वितीय के ''बीजगणित,'' नारायण पंडित के ''बीजगणितवत्स'' शामिल हैं। | ''शुलबसूत्र'' में चर मात्रा का उल्लेख है। आर्यभट के ''आर्यभटीय'' ने रैखिक और द्विघात समीकरणों के समाधान का उल्लेख किया है। ब्रह्मगुप्त ने अपने ''ब्रह्म-स्फुण-सिद्धांत'' में प्रतीकों का उपयोग करके अज्ञात पर किए गए कार्यों का उल्लेख किया है। ''कुट्टकाध्याय:'' (अध्याय 18) अव्यक्त (या बीजगणितीय प्रतीकों) के साथ ''परिक्रमा'' (गणना) की व्याख्या करता है। इसलिए ब्रह्मगुप्त को बीजगणित का जनक माना जाता है। बीजगणित पर अन्य ग्रंथों में आर्यभट द्वितीय के ''महासिद्धांत'', श्रीपति के ''सिद्धांतशेखर'', भास्कर द्वितीय के ''बीजगणित,'' नारायण पंडित के ''बीजगणितवत्स'' शामिल हैं। | ||
ब्रह्मगुप्त ने ब्रह्म-स्फूट-सिद्धांत के ''कुट्टकाध्याय:'' में धनात्मक संख्याओं, ऋणात्मक संख्याओं और शून्य के साथ अंकगणितीय संक्रियाओं के नियम दिए हैं। इसके अलावा एक अज्ञात के साथ समीकरण, कई अज्ञात के साथ समीकरण, अज्ञात के | ब्रह्मगुप्त ने ब्रह्म-स्फूट-सिद्धांत के ''कुट्टकाध्याय:'' में धनात्मक संख्याओं, ऋणात्मक संख्याओं और शून्य के साथ अंकगणितीय संक्रियाओं के नियम दिए हैं। इसके अलावा ''एक अज्ञात के साथ समीकरण, कई अज्ञात के साथ समीकरण, अज्ञात के गुणनफल के साथ समीकरण और पहले और दूसरे क्रम/अनुक्रम के अनिश्चित समीकरण (कुट्टक और वर्ग-प्रकृति) ब्रह्मगुप्त द्वारा वर्णन किया जाता है ।'' | ||
==तकनीकी शब्द== | ==तकनीकी शब्द== | ||
===अज्ञात मात्रा=== | ===अज्ञात मात्रा=== |
Revision as of 08:11, 14 April 2022
बीजगणित : बीजगणित [1](Algebra) गणित के व्यापक क्षेत्रों में से एक है। बीजगणित के विज्ञान का हिंदू नाम बीजगणित है। बीज का अर्थ है "तत्व" या "विश्लेषण" और गणित का अर्थ है "गणना का विज्ञान"। बीजगणित का शाब्दिक अर्थ है "तत्वों के साथ गणना का विज्ञान या विश्लेषणात्मक गणना का विज्ञान।
ब्रह्मगुप्त (628) बीजगणित को कुट्टुका-गणित या कुट्टुका कहते हैं। कुट्टुका का अर्थ है चूर्ण करने वाला। बीजगणित को अव्यक्त-गणिता या अज्ञात के साथ गणना का विज्ञान भी कहा जाता है (अव्यक्त का अर्थ अज्ञात है) नाम के विपरीत व्यक्त-गणिता ज्यामिति और क्षेत्रमिति सहित अंकगणित के लिए ज्ञात (व्यक्त का अर्थ ज्ञात) के साथ गणना का विज्ञान है।
परिभाषा
भास्कर द्वितीय (1150) ने बीजगणित को "विश्लेषण (बीज) के रूप में परिभाषित किया है, निश्चित रूप से विभिन्न प्रतीकों (वर्ण) द्वारा समर्थित जन्मजात बुद्धि है, जो,मंद बुद्धि के निर्देश के लिए, प्राचीन ऋषियों द्वारा समझाया गया है जो गणितज्ञों को प्रबुद्ध करते हैं जैसे सूर्य कमल को विकिरण करता है;जिसने अब बीजगणित (bījagaṇita) नाम ले लिया है"।
उस बीजगणितीय विश्लेषण के लिए गहरी बुद्धि की आवश्यकता होती है और एक से अधिक अवसरों पर उनके द्वारा विचक्षणता देखी गई है।
"न तो विश्लेषण में प्रतीकों का समावेश होता है, न ही विभिन्न प्रकार के विश्लेषण होते हैं; केवल विचक्षणता ही विश्लेषण है, क्योंकि व्यापक कल्पना है। "विश्लेषण निश्चित रूप से स्पष्ट बुद्धि है।" "या केवल बुद्धि ही विश्लेषण है"। इस प्रश्न के उत्तर में, "यदि (अज्ञात मात्राओं) की खोज केवल बुद्धि द्वारा ही की जानी है, तो विश्लेषण की क्या आवश्यकता है?"वे कहते हैं, "क्योंकि बुद्धि निश्चित रूप से वास्तविक विश्लेषण है; प्रतीक इसके सहायक हैं। जिस सहज बुद्धि को प्राचीन ऋषियों ने मंदबुद्धि के लिए व्यक्त किया है, जो गणितज्ञों को सूर्य के रूप में विभिन्न प्रतीकों की सहायता से कमल को प्रकाशित करते हैं, उन्हें अब बीजगणित का नाम मिला है।
इस प्रकार, भास्कर द्वितीय के अनुसार, बीजगणित को विज्ञान के रूप में परिभाषित किया जा सकता है जो प्रतीकों के माध्यम से व्यक्त की गई संख्याओं सा व्यवहार करता है, और जिसमें बुद्धिमान कलाकृतियों और सरल उपकरणों की परिधि/व्यापकता और प्राथमिक आवश्यकता होती है।
बीजगणित का अर्थ है 'बीज'। अज्ञात राशियाँ एक बीज की तरह होती हैं और समीकरणों को हल करने पर उनके मूल्य स्पष्ट हो जाते हैं। चूँकि बीजगणित अज्ञात मात्राओं से संबंधित है, इसलिए इसे संस्कृत में बीजगणित कहा जाता है। 16वीं शताब्दी के प्रसिद्ध गणितज्ञ कृष्ण दैवज्ञ ने भास्कर द्वितीय के बीजगणित (1150 सीई) पर एक भाष्य बीजपल्लव लिखा था। कृष्ण दैवज्ञ, नीचे के रूप में बीजगणित नाम की व्याख्या करते हैं:
अव्यक्तत्वादिदं बीजमित्युक्तं शास्त्रकर्तृभिः
"चूंकि यह (मात्रा) अज्ञात है, इसे विज्ञान के निर्माताओं द्वारा बीज कहा जाता था,"
उत्पत्ति
हिंदू बीजगणित की उत्पत्ति निश्चित रूप से शुल्बा (800-500 ईसा पूर्व) और ब्राह्मण (सी 2000) की अवधि में देखी जा सकती है।
"अज्ञात को निरूपित करने के लिए वर्णमाला के अक्षरों का व्यवस्थित उपयोग करने वाले पहले हिंदू थे। वे समीकरणों का वर्गीकरण और विस्तृत अध्ययन करने वाले पहले व्यक्ति भी थे। इस प्रकार कहा जा सकता है कि उन्होंने बीजगणित के आधुनिक विज्ञान को जन्म दिया।"[2]
शुलबसूत्र में चर मात्रा का उल्लेख है। आर्यभट के आर्यभटीय ने रैखिक और द्विघात समीकरणों के समाधान का उल्लेख किया है। ब्रह्मगुप्त ने अपने ब्रह्म-स्फुण-सिद्धांत में प्रतीकों का उपयोग करके अज्ञात पर किए गए कार्यों का उल्लेख किया है। कुट्टकाध्याय: (अध्याय 18) अव्यक्त (या बीजगणितीय प्रतीकों) के साथ परिक्रमा (गणना) की व्याख्या करता है। इसलिए ब्रह्मगुप्त को बीजगणित का जनक माना जाता है। बीजगणित पर अन्य ग्रंथों में आर्यभट द्वितीय के महासिद्धांत, श्रीपति के सिद्धांतशेखर, भास्कर द्वितीय के बीजगणित, नारायण पंडित के बीजगणितवत्स शामिल हैं।
ब्रह्मगुप्त ने ब्रह्म-स्फूट-सिद्धांत के कुट्टकाध्याय: में धनात्मक संख्याओं, ऋणात्मक संख्याओं और शून्य के साथ अंकगणितीय संक्रियाओं के नियम दिए हैं। इसके अलावा एक अज्ञात के साथ समीकरण, कई अज्ञात के साथ समीकरण, अज्ञात के गुणनफल के साथ समीकरण और पहले और दूसरे क्रम/अनुक्रम के अनिश्चित समीकरण (कुट्टक और वर्ग-प्रकृति) ब्रह्मगुप्त द्वारा वर्णन किया जाता है ।
तकनीकी शब्द
अज्ञात मात्रा
अज्ञात मात्रा को स्थानंग-सूत्र (300 ईसा पूर्व से पहले) यावत -तावत (जितना या इतना, अर्थ एक मनमाना मात्रा) में बुलाया गया था। तथाकथित बख्शाली ग्रंथ में, इसे यदृच्छा , वाञ्च या कामिका (कोई भी वांछित मात्रा) कहा जाता था। आर्यभट प्रथम (499) अज्ञात मात्रा को गुलिक (शॉट) कहते हैं। यह शब्द दृढ़ता से किसी को संदेह की ओर ले जाता है कि शॉट का इस्तेमाल शायद अज्ञात का प्रतिनिधित्व करने के लिए किया गया था। सातवीं शताब्दी की शुरुआत से हिंदू बीजगणितविदों ने अव्यक्त (अज्ञात) शब्द को अधिक सामान्यतः नियोजित किया है।
समीकरण
समीकरण को ब्रह्मगुप्त (628) समा-करण या सम-करण (समान बनाना) या अधिक सरलता से समा (समीकरण) कहते हैं। पृथिदाकस्वामी (860) ने साम्य (समानता या समीकरण) शब्द का भी प्रयोग किया है; और श्रीपति (1039) साधु-करण (समान बनाना)। नारायण (1350) सम-करण, साम्य और समत्व (समानता) शब्दों का प्रयोग करते हैं। एक समीकरण में हमेशा दो पक्ष (पक्ष) होते हैं।
निरपेक्ष पद
बख्शाली ग्रंथ में निरपेक्ष शब्द को दृश्य (दृश्यमान) कहा गया है। बाद के हिंदू बीजगणितों में इसे निकट से संबद्ध शब्द रूप (उपस्थिति) से बदल दिया गया है, हालांकि इसे अंकगणित पर ग्रंथों में नियोजित करना जारी रखा गया है। इस प्रकार एक बीजीय समीकरण में निरपेक्ष पद के लिए हिंदू नाम का सही महत्व स्पष्ट है। यह समीकरण के दृश्य या ज्ञात भाग का प्रतिनिधित्व करता है जबकि इसका दूसरा भाग व्यावहारिक रूप से अदृश्य या अज्ञात है।
शक्ति/घात
ज्ञात या अज्ञात मात्रा की शक्ति के लिए सबसे पुराना हिंदू शब्द उत्तराध्यायन-सूत्र (सी। 300 ईसा पूर्व या उससे पहले) में पाए जाते हैं। इसमें दूसरी घात (शक्ति )वर्ग, तीसरी (घात) शक्ति घन, चौथी (घात)शक्ति वर्ग-वर्ग , छठी (घात) शक्ति घन-वर्ग , और बारहवीं (घात) शक्ति घन-वर्ग-वर्ग, योगात्मक सिद्धांत के बजाय गुणक का उपयोग करते हुए। इस कार्य में हमें तीसरे से अधिक विषम घातों को इंगित करने की कोई विधि नहीं मिलती है। बाद के समय में, पांचवीं शक्ति को वर्ग-घन-घात (घन और वर्ग का गुणन, घात = उत्पाद), सातवीं शक्ति वर्ग-वर्ग-घन-घात (वर्ग-वर्ग और घन का गुणन) आदि कहा जाता है। ब्रह्मगुप्त की चौथे से अधिक शक्तियों को व्यक्त करने की प्रणाली वैज्ञानिक रूप से बेहतर है। वह पाँचवीं शक्ति को पंच-घात(शाब्दिक रूप से, पाँचवें तक बढ़ा हुआ), छठी शक्ति को षड-घात (छठे तक बढ़ा हुआ) कहते हैं; इसी प्रकार किसी भी शक्ति के लिए शब्द उस शक्ति को इंगित करने वाली संख्या के नाम में प्रत्यय घात जोड़कर गढ़ा जाता है। भास्कर द्वितीय ने कभी-कभी एक और ऊपर की घातों /शक्तियों के लिए लगातार इसका पालन किया है। अनुयोगद्वार-सूत्र में, ईसाई युग की शुरुआत से पहले लिखी गई एक रचना, हमें उच्च शक्तियों, अभिन्न और साथ ही आंशिक, विशेष रूप से क्रमिक वर्ग (वर्ग) और वर्ग-मूल (वर्ग-मूल) के लिए कुछ दिलचस्प शब्द मिलते हैं। इसके अनुसार एक मात्रा का प्रथम-वर्ग (प्रथम वर्ग), मान लीजिए a2 का अर्थ है a; द्वितीय -वर्ग (दूसरा वर्ग) = (a2)2 = a4 ; तृतीया-वर्ग (तीसरा वर्ग) = ((a2)2 )2 = a8 और इसी तरह। सामान्य तौर पर, a का nवां वर्ग = a2x2x2x ……. n पदों के लिए =a2ⁿ। इसी तरह, प्रथम-वर्ग-मूल (प्रथम वर्गमूल) का अर्थ है a ; द्वितीय -वर्ग-मूल (दूसरा वर्गमूल) =√ (√a) = a1/4 ; और, सामान्य तौर पर, nth वर्ग-मूल के लिए a = a1/2ⁿ फिर से हम (a1/23)3 = a3/8 के लिए तृतीया-वर्ग -मूल -घना (तीसरे वर्गमूल का घन) पद पाते हैं।
"वर्ग" के लिए वर्गा शब्द का एक विशुद्ध रूप से ठोस अवधारणा में एक दिलचस्प मूल है। संस्कृत शब्द वर्गा का शाब्दिक अर्थ है "पंक्तियाँ," या "सेना" (इसी तरह की चीजों की)। एक गणितीय शब्द के रूप में इसका अनुप्रयोग एक वर्ग के चित्रमय निरूपण में उत्पन्न हुआ, जिसे कई वर्ग या छोटे वर्गों के सैनिकों में विभाजित किया गया था, क्योंकि पक्ष में कुछ माप की इकाइयाँ थीं।
गुणक
हिंदू बीजगणित में गुणांक के लिए किसी विशेष शब्द का व्यवस्थित उपयोग नहीं है। साधारणतया अज्ञात की शक्ति का उल्लेख उस शक्ति के गुणांक के संदर्भ में किया जाता है। ब्रह्मगुप्त द्वारा इसी तरह के उपयोग की व्याख्या में उनके टीकाकार पृथिदकस्वामी लिखते हैं, "अज्ञात के वर्ग का गुणांक जो 'अंक) होता है उसे 'वर्ग' कहा जाता है और वह संख्या जो (सरल) अज्ञात का गुणांक बनाती है, कहलाती है। अज्ञात मात्रा। हालाँकि, तकनीकी शब्द का कभी-कभार उपयोग भी किया जाता है। ब्रह्मगुप्त एक बार गुणांक को सांख्य (संख्या) और कई अन्य अवसरों पर गुणक, या गुणकार (गुणक) कहते हैं। चतुर्वेद पृथुदका स्वामी (860) इसे अंक (संख्या) कहते हैं या प्रकृति (गुणक)। ये शब्द श्रीपति (1039)5 और भास्कर द्वितीय (1150) के कार्यों में फिर से प्रकट होते हैं। पूर्व में भी इसी उद्देश्य के लिए रूप का इस्तेमाल किया गया था।
प्रतीक
संचालन के प्रतीक: बख्शाली के काम में मौलिक कार्यों के लिए कोई विशेष प्रतीक नहीं हैं। किसी भी विशेष ऑपरेशन का उद्देश्य आमतौर पर आशुलिपि (शॉर्टहैंड) संक्षिप्त नाम, उस आयात के संस्कृत शब्द के प्रारंभिक शब्दांश, बाद में, कभी-कभी पहले, प्रभावित मात्रा को रखकर इंगित किया जाता है। इस प्रकार जोड़ के संचालन को यू (यूता से एक संक्षिप्त नाम, अर्थ जोड़ा गया), घटाव द्वारा इंगित किया जाता है, जो संभवतः क्ष से होता है (क्षय से संक्षिप्त, छोटा/कम), गु द्वारा गुणा (गुणा या गुणिता से, गुणा) और भाग द्वारा भा (भाग या भजिता से, विभाजित)।
भास्कर द्वितीय (1150) कहते हैं, "वे (ज्ञात और अज्ञात संख्याएं) जो ऋणात्मक हैं, उनके ऊपर एक बिंदु (बिंदु) के साथ लिखा जाना चाहिए।"
घातों और मूल के लिए प्रतीक: घातों और मूल के प्रतीक संस्कृत शब्दों के संक्षिप्त रूप हैं जिन्हें प्रभावित संख्या के बाद रखा गया है। इसलिए, वर्ग का प्रतिनिधित्व व (वर्ग से), घन द्वारा घ (घन से), चौथी घात व-व (वर्ग-वर्ग से), पांचवीं घात वा-घा-घा (वर्ग-घना-घात से) द्वारा किया जाता है। छठी घात घ-व (घन-वर्ग से), सातवीं घात व-व-घ-घा (वर्ग-वर्ग-घन-घात से) इत्यादि।
दो या दो से अधिक अज्ञात मात्राओं के गुणनफल को अज्ञात के बाद भा (भाविता, उत्पाद से) लिखकर या बिना अंतःस्थापित बिंदुओं के दिखाया जाता है; जैसे, यव-काघा-भा या यवकागभा का अर्थ है (या) 2 (का) 3। बख्शाली ग्रंथ में किसी मात्रा के वर्गमूल को उसके बाद मू लिखकर दर्शाया जाता है जो मूल का संक्षिप्त रूप है।
उदाहरण के लिए
21 या 4 मू 5
1 1 1
से अभिप्रेत है
तथा
23 7+ मू 4
1 1 1
से अभिप्रेत है
अन्य ग्रंथों में वर्गमूल का चिन्ह क (करणी , मूल या surd से) होता है, जिसे आमतौर पर प्रभावित मात्रा से पहले रखा जाता है।
उदाहरण के लिए क19 क 50 क 57 क 94 के रूप में दर्शाया गया है
अज्ञात के लिए प्रतीक :
भास्कर द्वितीया (1150) में कहा गया है, "यहाँ (बीजगणित में) ज्ञात और अज्ञात के प्रारंभिक अक्षर (नाम) लिखे जाने चाहिए ताकि उन्हें सूचित किया जा सके।" यह पहले भी कहा जा चुका है कि एक समय में अज्ञात मात्रा को यावत-तावत (जितना, उतना ही) कहा जाता था। बाद के समय में इस नाम, या इसके संक्षिप्त नाम का प्रयोग अज्ञात के लिए किया जाता है।
यावत्तावत् कालको नीलकोऽन्यो वर्णः पीतो लोहितश्चैतदाद्याः।
अव्यक्तानां कल्पिता मानसंज्ञास्तत्संख्यानं कर्तुमाचार्यवर्यैः ॥[3]
"महान आचार्यों ने यावत-तावत के प्रारंभिक अक्षरों और कालक (काला), नीलक (नीला), पीता (पीला), लोहित (लाल) आदि जैसे रंगों से अज्ञात का प्रतिनिधित्व करने के लिए प्रतीकों को ग्रहण किया।"
भास्कर द्वितीय (1150) कहते हैं: "यावत-तावत (इतना कि ), कालका (काला), नीलक (नीला), पीता (पीला), लोहित (लाल) और अन्य रंगों को आदरणीय प्रोफेसरों द्वारा अंकन के रूप में लिया गया है। अज्ञात के उपाय, उनके साथ गणना करने के उद्देश्य से।"
"उन उदाहरणों में जहां दो, तीन या अधिक अज्ञात मात्राएं होती हैं, उनके लिए यावत-तावत, आदि जैसे रंग ग्रहण किए जाने चाहिए। जैसा कि पिछले शिक्षकों ने माना था, वे हैं: यावत-तावत(इतना कि ), कालका (काला), नालक (नीला), पुतका (पीला), लोहितक (लाल), हरितक (हरा), श्वेतक (सफेद), चित्रक (विभिन्न), कपिलक (तावनी), पिंगलक (लाल-भूरा), धुम्रक (धुआं- रंगीन), पातालक (गुलाबी), शवलक (चित्तीदार), श्यामलक (काली), मेशक (गहरा नीला) आदि। का से शुरू होने वाले अक्षरों के भ्रम को रोकने के लिए अज्ञात के उपायों के रूप में लिया जाना चाहिए।
इस प्रकार अज्ञात राशियों को दर्शाने के लिए जैसे प्रतीकों का उपयोग किया जाता था। आज के संदर्भ में हम देखते हैं कि x, y, z आदि अक्षरों का प्रयोग अज्ञात राशियों को निरूपित करने के लिए किया जा रहा है। निम्न तालिका बीजगणित पर प्रारंभिक कार्यों में अज्ञात मात्राओं के अर्थ के लिए उपयोग किए जाने वाले विभिन्न नामों और प्रतीकों को देती है।
Term | Symbol | Meaning | Reference |
---|---|---|---|
यावत-तावत | या | ज्यादा से ज्यादा | स्थानांगसूत्र,
भास्कर प्रथम, भास्कर द्वितीय, |
यदृच्छा , वाञ्च या कामिका | य वा का | इच्छित मात्रा | बख्शाली पाण्डुलिपि |
गुलिका | गु | गोला | आर्यभट्ट |
कालक, नीलक, पिता, लोहित (लाल) | का नी पी लो | काला नीला,
पीला लाल |
ब्रह्मगुप्त, भास्कर द्वितीय, |
बख्शाली पाण्डुलिपि में उल्लेख है कि जहाँ पाँच अज्ञात हैं, वहाँ पहले अध्यादेशों के अक्षरों का उपयोग किया गया था। अर्थात् प्रथम से प्र (पहला ), द्वितिय से द्वि (दूसरा ), तृतीय से तृ (तीसरा) , चतुर्थ से च (चौथा) और पंचम से पं (पांचवें) अज्ञात का प्रतिनिधित्व करने के लिए है।
संकेतों के नियम
कौटिल्य के अर्थशास्त्र में ऋणात्मक (ऋण) जैसी नकारात्मक मात्राओं का उल्लेख है। ब्रह्मगुप्त ब्रह्म-स्फूट-सिद्धांत में सकारात्मक और नकारात्मक संख्याओं को निरूपित करने के लिए धन और ऋण शब्दों का उपयोग करता है। आजकल पूर्णांकों में धनात्मक संख्याएँ, ऋणात्मक संख्याएँ और शून्य[4] शामिल हैं।
योग
धनयोर्धनमृणमृणयोर्धनर्णयोरन्तरं समैक्यं खम् ।
ऋणमैक्यं च धनमृणधनशून्ययोः शून्ययोः शून्यम् ॥[5]
ब्रह्मगुप्त (62.8) कहते हैं:
"दो धनात्मक संख्याओं का योग धनात्मक होता है। दो ऋणात्मक संख्याओं का योग ऋणात्मक होता है। धनात्मक और ऋणात्मक संख्याओं का योग उनका अंतर होता है। यदि धनात्मक और ऋणात्मक संख्याएँ समान हों, तो उनका योग शून्य होता है। शून्य और ऋणात्मक संख्याओं का योग है ऋणात्मक। एक धनात्मक संख्या और शून्य का योग धनात्मक होता है। दो शून्यों का योग शून्य होता है।"
घटाव
ऊनमधिकाद्विशोध्यं धनं धनादृणमृणादधिकमूनम् ।
व्यस्तं तदन्तरं स्यादृणं धनं धनमृणं भवति ॥[6]
ब्रह्मगुप्त कहते हैं: "बड़े से छोटा घटाया जाना चाहिए; (अंतिम परिणाम है) सकारात्मक, यदि सकारात्मक से सकारात्मक है। और नकारात्मक, यदि नकारात्मक से नकारात्मक है। यदि, हालांकि, कम से बड़ा घटाया जाता है, तो वह अंतर उलट जाता है (संकेत में) नकारात्मक, सकारात्मक हो जाता है और सकारात्मक नकारात्मक हो जाता है। जब सकारात्मक को नकारात्मक से घटाया जाना है या सकारात्मक से नकारात्मक है तो उन्हें एक साथ जोड़ा जाना चाहिए।
गुणा
ऋणमृणधनयोर्घातो धनमृणयोर्धनवधो धनं भवति ।
शून्यर्णयो: खधनयो: खशून्ययोर्वा वधः शून्यम् ॥[7]
ब्रह्मगुप्त कहते हैं: "एक धनात्मक और ऋणात्मक संख्या का गुणनफल ऋणात्मक होता है; दो ऋणात्मक का गुणनफल धनात्मक होता है; धनात्मक का गुणनफल धनात्मक होता है। शून्य और ऋणात्मक का गुणनफल, या शून्य और धनात्मक का गुणनफल शून्य होता है। दो का गुणनफल शून्य शून्य है।
विभाजन
धनभक्तं धनमृणहृतमृणं धनं भवति खं खभक्तं खम्।
भक्तमृणेन धनमृणं धनेन हृतमृणमृणं भवति ॥[8]
ब्रह्मगुप्त कहते हैं: "सकारात्मक से विभाजित सकारात्मक या नकारात्मक से विभाजित नकारात्मक हो जाता है। लेकिन सकारात्मक को नकारात्मक से विभाजित किया जाता है और नकारात्मक को सकारात्मक से विभाजित किया जाता है।
विकास और समावेश
ब्रह्मगुप्त कहते हैं:
"एक धनात्मक या ऋणात्मक संख्या का वर्ग धनात्मक होता है। (का चिह्न) मूल वही होता है, जिससे वर्ग निकाला गया था।"
भास्कर द्वितीय: "एक धनात्मक और ऋणात्मक संख्या का वर्ग धनात्मक होता है; एक धनात्मक संख्या का वर्गमूल धनात्मक होने के साथ-साथ ऋणात्मक भी होता है। ऋणात्मक संख्या का कोई वर्गमूल नहीं होता, क्योंकि यह अवर्गाकार होती है।"
ऋणात्मक मात्रा
एक ऋणात्मक राशि के संबंध में, एक दिशा में चलना सकारात्मक माना जाता है, विपरीत दिशा में आगे बढ़ना नकारात्मक या ऋणात्मक माना जाता है।
कृष्ण दैवज्ञ एक रेखा के साथ सकारात्मक और नकारात्मक दिशाओं को दर्शाता है। यदि पूर्व को सकारात्मक दिशा माना जाता है, तो पश्चिम को नकारात्मक माना जाना चाहिए।
कृष्ण दैवज्ञ, काल (समय) और वास्तु (वस्तु) के संदर्भ में नकारात्मक और सकारात्मक के इन विरोधों के बारे में भी बात करते हैं। समय के संबंध में, यदि भविष्य सकारात्मक को दर्शाता है, तो इसके विपरीत, अतीत नकारात्मक होगा। अगर हम कुछ उधार लेते हैं, तो हम उसे चुकाने के लिए ऋणी होते हैं। इसे ऋण (ऋणात्मक) कहते हैं। इसके विपरीत धन (सकारात्मक) है जहां हम वस्तु स्वयं हमारी है या हम कुछ प्राप्त करने के लिए बाध्य हैं। सामान्य शब्दावली में, धन और ऋण के लिए क्रमशः दो शब्द धन और का उपयोग किया जाता है। ऋणात्मक संख्याओं का विचार अर्थशास्त्र में वापस जाता है।
इन सभी अवधारणाओं को कृष्ण दैवज्ञ ने अपनी टिप्पणी में संक्षेप में प्रस्तुत किया है:
ऋणत्वमिह त्रिधा तावदस्ति देशतः कालतः वस्तुतश्चेति ..तच्च वैपरीत्यमेव। .. तत्रैकरेखा स्थिता द्वितीया दिक विपरीता दिगित्युच्यते । यथा पूर्वविपरीता पश्चिमा दिक् । यथा उत्तरदिग्विपरीता दक्षिणा दिगित्यादि । तथा च पूर्वापरदेशयोर्मध्ये एकतरस्य धनत्वे कल्पितं तं प्रति तदितरस्य ऋणत्वम्।[9]
"ऋणात्मकता या नकारात्मकता तीन प्रकार की होती है - स्थान, समय और वस्तु के अनुसार। यह संक्षेप में इसके विपरीत है। जिस प्रकार पश्चिम पूर्व की विपरीत दिशा और दक्षिण से उत्तर दिशा है। इस प्रकार पूर्व और पश्चिम में स्थित दो स्थानों के बीच, यदि एक को सकारात्मक माना जाता है तो दूसरा अपेक्षाकृत नकारात्मक होता है।"
मौलिक संचालन
संचालन की संख्या
बीजगणित में मौलिक कार्यों की संख्या सभी हिंदू बीजगणितों द्वारा छह मानी जाती है, अर्थात् "जोड़, घटाव, गुणा,
विभाजन, वर्गकरण और वर्गमूल का निष्कर्षण। तो घनफल निकालना (क्यूबिंग)और घनमूल (क्यूब-रूट) का निष्कर्षण जो अंकगणित के मूलभूत कार्यों में शामिल है, को बीजगणित से बाहर रखा गया है।
लेकिन सूत्र
(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a + b)3 = a3 + 3ab(a+b) + b3,
जैसा कि पहले कहा गया है, अंकगणित पर ब्रह्मगुप्त (628) से शुरू होने वाले लगभग सभी हिंदू ग्रंथों में दिया गया है।
जोड़ना और घटाना
ब्रह्मगुप्त कहते हैं: अज्ञातों में से उनके वर्ग, घन, चौथी शक्ति, पांचवीं शक्ति, छठी शक्ति आदि, जोड़ और घटाव समान (निष्पादित) हैं; अलग-अलग (उनका मतलब बस उनके) बयान से अलग है।
भास्कर द्वितीय:
"जोड़ और घटाव अज्ञात के बीच एक ही प्रजाति (जाति) के लोगों के लिए किया जाता है; विभिन्न प्रजातियों का उनका मतलब उनके अलग बयान से है।"
गुणा
ब्रह्मगुप्त कहते हैं: दो समान अज्ञातों का गुणनफल एक वर्ग है; अज्ञात जैसे तीन या अधिक का गुणनफल उस पद की शक्ति है। विषम प्रजातियों के अज्ञातों का गुणन प्रतीकों के पारस्परिक उत्पाद के समान होता है; इसे भाविता (उत्पाद या तथ्य) कहा जाता है।
विभाजन
भास्कर द्वितीय कहते हैं : जो कुछ भी अज्ञात और ज्ञात है, भाजक को गुणा (अलग) किया जाता है और लाभांश से घटाया जाता है
क्रमिक रूप से ताकि कोई अवशेष न बचे, वे क्रमिक चरणों में भागफल बनाते हैं।
समकोणन
बीजीय व्यंजक का वर्ग करने का नियम है
(a+b)² =a²+b²+2ab
या अपने सामान्य रूप में
(a+b+c+d+ ... )2=a2+b2+c2+d2+ ..+2Σab
वर्गमूल
बीजीय व्यंजक का वर्गमूल ज्ञात करने के लिए भास्कर II निम्नलिखित नियम देता है:
"अज्ञात मात्राओं का वर्गमूल ज्ञात कीजिए जो वर्ग हैं; फिर शेष पदों में से उन मूलों के गुणनफल दो और दो से घटाएं; यदि वहाँ
ज्ञात पद हो, ज्ञात का वर्गमूल लेने के बाद उसी प्रकार शेष के साथ आगे बढ़ें।"
बाहरी संपर्क
Brahmagupta's Algebra - Mathematics
अग्रिम पठन
- Bhāskara (II.), Edward Strachey. Bija Ganita: Or The Algebra Of The Hindus... ISBN-13 978-1249957041.
यह भी देखें
संदर्भ
उद्धरण
- ↑ Algebra
- ↑ Datta, 1938, Vol.2, Preface
- ↑ Bījagaṇita, ch. Avyakta-kalpanā, vs.5, p.7
- ↑ A Primer to Bhāratīya Gaṇitam , Bhāratīya-Gaṇita-Praveśa- Part-1. Samskrit Promotion Foundation. 2021. ISBN 978-81-951757-2-7.
- ↑ Brahma-sphuţa-siddhānta (ch.18, vs.30, p.309)
- ↑ Brahma-sphuta-siddhanta, ch.18, vs.31 p.309
- ↑ Brahma-sphuţa-siddhānta (ch.18, vs.33, p.310)
- ↑ Brahma-sphuta-siddhanta (ch.18, vs.34, p.310)
- ↑ Bijapallava, com. on Bijaganita p.13