गणित का विकास: Difference between revisions

From Vigyanwiki
mNo edit summary
(infobox added)
Line 1: Line 1:
{{Infobox person
{{Infobox person
| name              = Mathematics
| name              = गणित
| era                = Ancient Era
|image=Nuvola_Math_and_Inf.svg|काल=प्राचीन काल
Early and Later Classical Era
प्रारंभिक तथा बाद का शास्त्रीय काल
Medieval Era
मध्ययुगीन काल}}
|image=Nuvola_Math_and_Inf.svg}}


भारतीय गणित का एक पुराना इतिहास है और प्राचीन भारतीय गणित का इतिहास([[Development of Mathematics]]) कई सदियों पुराना है। हम भारतीय गणित के इतिहास की चर्चा निम्नलिखित व्यापक अवधियों के संदर्भ में करेंगे:
भारतीय गणित का एक पुराना इतिहास है और प्राचीन भारतीय गणित का इतिहास([[Development of Mathematics]]) कई सदियों पुराना है। हम भारतीय गणित के इतिहास की चर्चा निम्नलिखित व्यापक अवधियों के संदर्भ में करेंगे:
Line 13: Line 12:
#मध्ययुगीन काल (1200 सीई से 1750 सीई)
#मध्ययुगीन काल (1200 सीई से 1750 सीई)


आधुनिक काल (1750 सीई के बाद) में भी भारतीयों द्वारा गणित में महत्वपूर्ण योगदान दिया गया है। महान भारतीय गणितज्ञ श्रीनिवास रामानुजन (1887-1920 सीई) और कई अन्य दिग्गजों ने 20वीं और 21वीं सदी में गणित की दुनिया में महत्वपूर्ण योगदान दिया है।
आधुनिक काल (1750 सीई के बाद) में भी भारतीयों द्वारा गणित में महत्वपूर्ण योगदान दिया गया है। महान भारतीय गणितज्ञ श्रीनिवास रामानुजन (1887-1920 सीई) <ref>"Srinivasa Ramanujan"</ref>और कई अन्य दिग्गजों ने 20वीं और 21वीं सदी में गणित की दुनिया में महत्वपूर्ण योगदान दिया है।


== प्राचीन काल (600 ईसा पूर्व से पहले) ==
== प्राचीन काल (600 ईसा पूर्व से पहले) ==
मानव जाति का सबसे पुराना उपलब्ध कार्य ''[https://hi.wikipedia.org/wiki/%E0%A4%8B%E0%A4%97%E0%A5%8D%E0%A4%B5%E0%A5%87%E0%A4%A6#:~:text=%E0%A4%B8%E0%A4%A8%E0%A4%BE%E0%A4%A4%E0%A4%A8%20%E0%A4%A7%E0%A4%B0%E0%A5%8D%E0%A4%AE%20%E0%A4%95%E0%A4%BE%20%E0%A4%B8%E0%A4%AC%E0%A4%B8%E0%A5%87%20%E0%A4%86%E0%A4%B0%E0%A4%AE%E0%A5%8D%E0%A4%AD%E0%A4%BF%E0%A4%95,%E0%A4%B5%E0%A4%BF%E0%A4%A6%E0%A5%8D%E0%A4%B5%E0%A4%BE%E0%A4%A8%E0%A5%8B%E0%A4%82%20%E0%A4%AE%E0%A5%87%E0%A4%82%20%E0%A4%95%E0%A5%81%E0%A4%9B%20%E0%A4%AE%E0%A4%A4%E0%A4%AD%E0%A5%87%E0%A4%A6%20%E0%A4%B9%E0%A5%88%E0%A5%A4&text=%E0%A4%8B%E0%A4%97%E0%A5%8D%E0%A4%B5%E0%A5%87%E0%A4%A6%20%E0%A4%95%E0%A5%8B%20%E0%A4%87%E0%A4%A4%E0%A4%BF%E0%A4%B9%E0%A4%BE%E0%A4%B8%E0%A4%95%E0%A4%BE%E0%A4%B0%20%E0%A4%B9%E0%A4%BF%E0%A4%A8%E0%A5%8D%E0%A4%A6%2D%E0%A4%AF%E0%A5%82%E0%A4%B0%E0%A5%8B%E0%A4%AA%E0%A5%80%E0%A4%AF,%E0%A4%B0%E0%A4%9A%E0%A4%A8%E0%A4%BE%E0%A4%93%E0%A4%82%20%E0%A4%AE%E0%A5%87%E0%A4%82%20%E0%A4%8F%E0%A4%95%20%E0%A4%AE%E0%A4%BE%E0%A4%A8%E0%A4%A4%E0%A5%87%20%E0%A4%B9%E0%A5%88%E0%A4%82%E0%A5%A4 ऋग्वेद]  ''है। इसमें 10,462 मंत्रों के साथ 1,028 सूक्त हैं। ये मंत्र 2000 ईसा पूर्व से पहले सहस्राब्दियों में संकलित किए गए थे। इतिहासकार इसे वैदिक काल कहते हैं। इतिहासकारों के अनुसार प्राचीन काल 600 ईसा पूर्व का काल है। इस अवधि में, वेदों और वेदांगों के विहित ग्रंथों की रचना की गई।
मानव जाति का सबसे पुराना उपलब्ध कार्य ''[https://hi.wikipedia.org/wiki/%E0%A4%8B%E0%A4%97%E0%A5%8D%E0%A4%B5%E0%A5%87%E0%A4%A6#:~:text=%E0%A4%B8%E0%A4%A8%E0%A4%BE%E0%A4%A4%E0%A4%A8%20%E0%A4%A7%E0%A4%B0%E0%A5%8D%E0%A4%AE%20%E0%A4%95%E0%A4%BE%20%E0%A4%B8%E0%A4%AC%E0%A4%B8%E0%A5%87%20%E0%A4%86%E0%A4%B0%E0%A4%AE%E0%A5%8D%E0%A4%AD%E0%A4%BF%E0%A4%95,%E0%A4%B5%E0%A4%BF%E0%A4%A6%E0%A5%8D%E0%A4%B5%E0%A4%BE%E0%A4%A8%E0%A5%8B%E0%A4%82%20%E0%A4%AE%E0%A5%87%E0%A4%82%20%E0%A4%95%E0%A5%81%E0%A4%9B%20%E0%A4%AE%E0%A4%A4%E0%A4%AD%E0%A5%87%E0%A4%A6%20%E0%A4%B9%E0%A5%88%E0%A5%A4&text=%E0%A4%8B%E0%A4%97%E0%A5%8D%E0%A4%B5%E0%A5%87%E0%A4%A6%20%E0%A4%95%E0%A5%8B%20%E0%A4%87%E0%A4%A4%E0%A4%BF%E0%A4%B9%E0%A4%BE%E0%A4%B8%E0%A4%95%E0%A4%BE%E0%A4%B0%20%E0%A4%B9%E0%A4%BF%E0%A4%A8%E0%A5%8D%E0%A4%A6%2D%E0%A4%AF%E0%A5%82%E0%A4%B0%E0%A5%8B%E0%A4%AA%E0%A5%80%E0%A4%AF,%E0%A4%B0%E0%A4%9A%E0%A4%A8%E0%A4%BE%E0%A4%93%E0%A4%82%20%E0%A4%AE%E0%A5%87%E0%A4%82%20%E0%A4%8F%E0%A4%95%20%E0%A4%AE%E0%A4%BE%E0%A4%A8%E0%A4%A4%E0%A5%87%20%E0%A4%B9%E0%A5%88%E0%A4%82%E0%A5%A4 ऋग्वेद]  ''है। इसमें 10,552 मंत्रों के साथ 1,028 सूक्त हैं <ref>[https://vedicheritage.gov.in/samhitas/rigveda/ "Rigveda"]</ref>। ये मंत्र 2000 ईसा पूर्व से पहले सहस्राब्दियों में संकलित किए गए थे। इतिहासकार इसे वैदिक काल कहते हैं। इतिहासकारों के अनुसार प्राचीन काल 600 ईसा पूर्व का काल है। इस अवधि में, वेदों और वेदांगों के विहित ग्रंथों की रचना की गई।


चार वेद हैं - ऋग्वेद, यजुर, साम, और अथर्व। यह वेद मंत्रों से बने हैं। इन वैदिक मंत्रों में कई गणितीय पहलू निहित हैं। उनमें से कुछ नीचे सूचीबद्ध हैं।
चार वेद हैं - ऋग्वेद, यजुर, साम, और अथर्व। यह वेद मंत्रों से बने हैं। इन वैदिक मंत्रों में कई गणितीय पहलू निहित हैं। उनमें से कुछ नीचे सूचीबद्ध हैं।
Line 48: Line 47:
इन छहों को वेदांग कहा जाता है।
इन छहों को वेदांग कहा जाता है।


''शुलबसूत्र'' नामक साहित्य की रचना इसी काल में हुई थी। वे कल्प वेदांग का एक हिस्सा हैं। संस्कृत शब्द ''शुलब'' का अर्थ है 'रस्सी'। ''सूत्र'' शब्द एक संक्षिप्त गूढ़ नियम या कथन को दर्शाता है। शुलबसूत्र ज्यामिति के विभिन्न पहलुओं से संबंधित हैं जो वेदियों के निर्माण में शामिल हैं। रस्सी (शुलब या रज्जू) और छड़ी या सूक्ति (शङ्कु) का उपयोग करते हुए, इन ग्रंथों में कई सटीक और अनुमानित निर्माण बताए गए हैं। वर्तमान में, हम आठ शुलबसूत्रों को उनके लेखकों के नाम पर जानते हैं। उनमें से चार लोकप्रिय हैं बौधायन-शुलबसूत्र, आपस्तंब-शुलबसूत्र, कात्यायन-शुलबसूत्र और मानव-सुलबसूत्र। इतिहासकारों का कहना है कि उनका काल 800 ईसा पूर्व से पहले का है। शुलबसूत्रों को ज्यामिति का सबसे प्राचीन ग्रंथ माना गया है। जो बाद में पाइथोगोरस प्रमेय के रूप में जाना जाने लगा, हम उसका एक सटीक सूत्रीकरण पहले से ही शुलबसूत्रों में पाते हैं।
''शुलबसूत्र'' नामक साहित्य की रचना इसी काल में हुई थी। वे कल्प वेदांग का एक हिस्सा हैं। संस्कृत शब्द ''शुलब'' का अर्थ है 'रस्सी'। ''सूत्र'' शब्द एक संक्षिप्त गूढ़ नियम या कथन को दर्शाता है। शुलबसूत्र ज्यामिति के विभिन्न पहलुओं से संबंधित हैं जो वेदियों के निर्माण में शामिल हैं। रस्सी (शुलब या रज्जू) और छड़ी या सूक्ति (शङ्कु) का उपयोग करते हुए, इन ग्रंथों में कई सटीक और अनुमानित निर्माण बताए गए हैं। वर्तमान में, हम आठ शुलबसूत्रों को उनके लेखकों के नाम पर जानते हैं। उनमें से चार लोकप्रिय हैं बौधायन-शुलबसूत्र, आपस्तंब-शुलबसूत्र, कात्यायन-शुलबसूत्र और मानव-सुलबसूत्र। इतिहासकारों का कहना है कि उनका काल 800 ईसा पूर्व से पहले का है। शुलबसूत्रों को ज्यामिति का सबसे प्राचीन ग्रंथ माना गया है। जो बाद में पाइथोगोरस प्रमेय के रूप में जाना जाने लगा, हम उसका एक सटीक सूत्रीकरण पहले से ही शुलबसूत्रों में पाते हैं।<ref>[https://www.sanskritimagazine.com/vedic_science/baudhayana-the-original-mathematician-behind-pythagoras-theorem/ "Pythagoras theorem found in Baudhayana's  Śulbasūtra"]  </ref>


== प्रारंभिक शास्त्रीय काल (600 ईसा पूर्व से 400 सीई) ==
== प्रारंभिक शास्त्रीय काल (600 ईसा पूर्व से 400 सीई) ==
Line 55: Line 54:
छन्दसूत्र की रचना करने वाले पिंगल तीसरी शताब्दी ईसा पूर्व में रहते थे। ''छन्द'' (संस्कृत कविता के मीटर) से संबंधित इस मौलिक पाठ में, उन्होंने क्रमपरिवर्तन और संयोजन और संख्याओं के द्विआधारी प्रतिनिधित्व से संबंधित एल्गोरिदम के रूप में विभिन्न विकसित किए। उनका मेरु-प्रस्तार वही है जो वर्तमान में पास्कल के त्रिभुज के रूप में जाना जाता है।
छन्दसूत्र की रचना करने वाले पिंगल तीसरी शताब्दी ईसा पूर्व में रहते थे। ''छन्द'' (संस्कृत कविता के मीटर) से संबंधित इस मौलिक पाठ में, उन्होंने क्रमपरिवर्तन और संयोजन और संख्याओं के द्विआधारी प्रतिनिधित्व से संबंधित एल्गोरिदम के रूप में विभिन्न विकसित किए। उनका मेरु-प्रस्तार वही है जो वर्तमान में पास्कल के त्रिभुज के रूप में जाना जाता है।


मूल वशिष्ठ, पैतामह और सूर्य-सिद्धांत सहित प्राचीन खगोलीय सिद्धांत इसी काल के हैं। एक अन्य महत्वपूर्ण कार्य जिसका श्रेय इस काल को जाता है, वह है बख्शाली पाण्डुलिपि। 19वीं शताब्दी में इसकी खोज की कहानी निम्नलिखित है। बख्शाली एक गाँव का नाम है जो उस समय ब्रिटिश भारत के उत्तर-पश्चिम सीमांत प्रांत में था। यह वर्तमान पाकिस्तान में खैबर पख्तूनख्वा प्रांत में पेशावर के पास है। इस गांव में 1881 ई. में एक गणितीय कार्य की पांडुलिपि की खोज की गई थी। यह गलती से एक किसान को दोनों अपने घर के खंडहर पत्थर के बाड़े की खुदाई के दौरान मिला था। चूँकि इसके रचयिता का पता नहीं है, इसलिए इसे बख्शाली पाण्डुलिपि कहा जाता है। इतिहासकार इसकी सही अवधि की निश्चित समझ में आने में असमर्थ हैं। विभिन्न डेटिंग विधियों (यहां तक ​​कि कार्बन डेटिंग पर आधारित) के आधार पर पांडुलिपियों की अवधि का अनुमान पहली शताब्दी सीई से 7 वीं शताब्दी सीई तक भिन्न होता है। बख्शाली पांडुलिपि में अंकगणित, वाणिज्यिक गणित और कुछ बीजगणित के साथ-साथ ज्यामिति को कवर करने वाले समाधानों के साथ बड़ी संख्या में उदाहरणात्मक समस्याएं हैं।
मूल वशिष्ठ, पैतामह और सूर्य-सिद्धांत सहित प्राचीन खगोलीय सिद्धांत इसी काल के हैं। एक अन्य महत्वपूर्ण कार्य जिसका श्रेय इस काल को जाता है, वह है बख्शाली पाण्डुलिपि। 19वीं शताब्दी में इसकी खोज की कहानी निम्नलिखित है। <ref>Sarasvati, Svami Satya Prakash; Jyotishmati, Dr. Usha. ''The Bhakshali Manuscript''. p. 15.</ref>बख्शाली एक गाँव का नाम है जो उस समय ब्रिटिश भारत के उत्तर-पश्चिम सीमांत प्रांत में था। यह वर्तमान पाकिस्तान में खैबर पख्तूनख्वा प्रांत में पेशावर के पास है। इस गांव में 1881 ई. में एक गणितीय कार्य की पांडुलिपि की खोज की गई थी। यह गलती से एक किसान को दोनों अपने घर के खंडहर पत्थर के बाड़े की खुदाई के दौरान मिला था। चूँकि इसके रचयिता का पता नहीं है, इसलिए इसे बख्शाली पाण्डुलिपि कहा जाता है। इतिहासकार इसकी सही अवधि की निश्चित समझ में आने में असमर्थ हैं। विभिन्न डेटिंग विधियों (यहां तक ​​कि कार्बन डेटिंग पर आधारित) के आधार पर पांडुलिपियों की अवधि का अनुमान पहली शताब्दी सीई से 7 वीं शताब्दी सीई तक भिन्न होता है। बख्शाली पांडुलिपि में अंकगणित, वाणिज्यिक गणित और कुछ बीजगणित के साथ-साथ ज्यामिति को कवर करने वाले समाधानों के साथ बड़ी संख्या में उदाहरणात्मक समस्याएं हैं।


== बाद का शास्त्रीय काल (400 सीई से 1200 सीई) ==
== बाद का शास्त्रीय काल (400 सीई से 1200 सीई) ==
Line 64: Line 63:
* [[आर्यभट्ट]]
* [[आर्यभट्ट]]


* वराहमिहिर - छठी शताब्दी ईस्वी के एक बहुआयामी प्रतिभा उज्जैन में रहते थे। उन्होंने पंच-सिद्धांतिका और बृहतसंहिता लिखी। पंच-सिद्धांतिका खगोल विज्ञान पर एक काम है और बृहतसंहिता प्राकृतिक घटनाओं पर एक विश्वकोश है।
* वराहमिहिर <ref>[https://vedicmathschool.org/varahamihira/ "Varahamihira"]</ref> - छठी शताब्दी ईस्वी के एक बहुआयामी प्रतिभा उज्जैन में रहते थे। उन्होंने पंच-सिद्धांतिका और बृहतसंहिता लिखी। पंच-सिद्धांतिका खगोल विज्ञान पर एक काम है और बृहतसंहिता प्राकृतिक घटनाओं पर एक विश्वकोश है।


* [[ब्रह्मगुप्त]]
* [[ब्रह्मगुप्त]]
Line 101: Line 100:


* [https://math.illinoisstate.edu/schebol/teaching/320-10-files/Amartya.pdf Mathematics in Ancient India]
* [https://math.illinoisstate.edu/schebol/teaching/320-10-files/Amartya.pdf Mathematics in Ancient India]
*[https://www.storyofmathematics.com/indian.html/ Indian Mathematics and Mathematics]
*[https://www.esamskriti.com/e/Spirituality/Education/A-brief-history-of-Indian-Mathematics-1.aspx A Brief History of Indian Mathematics]
*[https://www.sanskritimagazine.com/vedic_science/indias-mathematical-heritage/ India’s Mathematical Heritage]


== संदर्भ ==
== संदर्भ ==

Revision as of 13:49, 12 April 2022

गणित
Nuvola Math and Inf.svg

भारतीय गणित का एक पुराना इतिहास है और प्राचीन भारतीय गणित का इतिहास(Development of Mathematics) कई सदियों पुराना है। हम भारतीय गणित के इतिहास की चर्चा निम्नलिखित व्यापक अवधियों के संदर्भ में करेंगे:

  1. प्राचीन काल (600 ईसा पूर्व से पहले)[1]
  2. प्रारंभिक शास्त्रीय काल (600 ईसा पूर्व से 400 सीई)
  3. बाद का शास्त्रीय काल (400 CE से 1200 CE)
  4. मध्ययुगीन काल (1200 सीई से 1750 सीई)

आधुनिक काल (1750 सीई के बाद) में भी भारतीयों द्वारा गणित में महत्वपूर्ण योगदान दिया गया है। महान भारतीय गणितज्ञ श्रीनिवास रामानुजन (1887-1920 सीई) [2]और कई अन्य दिग्गजों ने 20वीं और 21वीं सदी में गणित की दुनिया में महत्वपूर्ण योगदान दिया है।

प्राचीन काल (600 ईसा पूर्व से पहले)

मानव जाति का सबसे पुराना उपलब्ध कार्य ऋग्वेद है। इसमें 10,552 मंत्रों के साथ 1,028 सूक्त हैं [3]। ये मंत्र 2000 ईसा पूर्व से पहले सहस्राब्दियों में संकलित किए गए थे। इतिहासकार इसे वैदिक काल कहते हैं। इतिहासकारों के अनुसार प्राचीन काल 600 ईसा पूर्व का काल है। इस अवधि में, वेदों और वेदांगों के विहित ग्रंथों की रचना की गई।

चार वेद हैं - ऋग्वेद, यजुर, साम, और अथर्व। यह वेद मंत्रों से बने हैं। इन वैदिक मंत्रों में कई गणितीय पहलू निहित हैं। उनमें से कुछ नीचे सूचीबद्ध हैं।

  • 10 से 1019 तक घात में संख्याओं की गणना (तत्तिरीय-संहिता, 7.2.20)
  • संख्याओं के लिए दशमलव स्थान मान नामकरण।
  • विषम संख्या श्रृंखला (तत्तिरीय-संहिता, 7.2.11)
  • सम संख्या श्रृंखला (तत्तिरीय-संहिता, 7.2.13)
  • समांतर 4, 5, 10, 20 और 100 के साथ अंकगणितीय प्रगति (तत्तिरीय-संहिता, 7.2.15-19)
  • कारक और गैर-कारक (शतपथ-ब्राह्मण, 10.24.2.1-20)
  • श्रृंखला का योग (शतपथ-ब्राह्मण, 10.5.4)
  • गुणन संक्रिया (ऋग्वेद, 8.19.37)।
  • ज्यामितीय प्रगति (पंचविशति-ब्राह्मण, 18.3)

वैदिक मंत्रों के महत्व को समझने के लिए, छह सहायक विषयों का विकास हुआ। वे

  1. गणितीय संचालन
    शिक्षा जो ध्वनियों के वर्गीकरण और उच्चारण से संबंधित है (ध्वन्यात्मकता)
  2. व्याकरण जो व्याकरण से संबंधित है।
  3. छन्दः/छन्दस् जो छंद या मीटर के अध्ययन पर चर्चा करते हैं।
  4. कल्प जो यज्ञों के प्रदर्शन और वेदियों और अन्य सामानों के निर्माण पर चर्चा करते हैं।
  5. निरुक्त जो शब्दों की व्युत्पत्ति और उनके अर्थों से संबंधित है।
  6. ज्योतिष जो खगोल विज्ञान का विज्ञान है।

इन छहों को वेदांग कहा जाता है।

शुलबसूत्र नामक साहित्य की रचना इसी काल में हुई थी। वे कल्प वेदांग का एक हिस्सा हैं। संस्कृत शब्द शुलब का अर्थ है 'रस्सी'। सूत्र शब्द एक संक्षिप्त गूढ़ नियम या कथन को दर्शाता है। शुलबसूत्र ज्यामिति के विभिन्न पहलुओं से संबंधित हैं जो वेदियों के निर्माण में शामिल हैं। रस्सी (शुलब या रज्जू) और छड़ी या सूक्ति (शङ्कु) का उपयोग करते हुए, इन ग्रंथों में कई सटीक और अनुमानित निर्माण बताए गए हैं। वर्तमान में, हम आठ शुलबसूत्रों को उनके लेखकों के नाम पर जानते हैं। उनमें से चार लोकप्रिय हैं बौधायन-शुलबसूत्र, आपस्तंब-शुलबसूत्र, कात्यायन-शुलबसूत्र और मानव-सुलबसूत्र। इतिहासकारों का कहना है कि उनका काल 800 ईसा पूर्व से पहले का है। शुलबसूत्रों को ज्यामिति का सबसे प्राचीन ग्रंथ माना गया है। जो बाद में पाइथोगोरस प्रमेय के रूप में जाना जाने लगा, हम उसका एक सटीक सूत्रीकरण पहले से ही शुलबसूत्रों में पाते हैं।[4]

प्रारंभिक शास्त्रीय काल (600 ईसा पूर्व से 400 सीई)

प्रारंभिक शास्त्रीय काल 600 ईसा पूर्व से शुरू होता है। जिस अवधि में बौद्ध और जैन धर्म के सिद्धांतों की उत्पत्ति हुई, वह आमतौर पर इतिहासकारों द्वारा लगभग 500 ईसा पूर्व का है। बौद्ध और जैन परंपराओं में गणित का विज्ञान भी लोकप्रिय है। बौद्ध गणित को एक महान कला मानते हैं। वे इसे सांख्नयान कहते हैं - संख्याओं का विज्ञान । जैन मतगणना की कला को अपनी दार्शनिक शिक्षा का अनिवार्य अंग मानते हैं। वे अपने पवित्र साहित्य को चार विभागों में वर्गीकृत करते हैं। वे द्रव्यानुयोग, करणा -करणानुयोग, गितानुयोग और धर्मकथानुयोग हैं। गणितानुयोग में अंकगणित और खगोल विज्ञान शामिल हैं। कुछ जैन ग्रंथ, जो गणित की दृष्टि से महत्वपूर्ण हैं, सूर्य-प्रज्ञापति, चंद्र प्रज्ञापति, स्थानांग-सूत्र, भगवती-सूत्र, तत्त्वार्थधिगम-सूत्र और अनुयोगद्वार-सूत्र हैं।

छन्दसूत्र की रचना करने वाले पिंगल तीसरी शताब्दी ईसा पूर्व में रहते थे। छन्द (संस्कृत कविता के मीटर) से संबंधित इस मौलिक पाठ में, उन्होंने क्रमपरिवर्तन और संयोजन और संख्याओं के द्विआधारी प्रतिनिधित्व से संबंधित एल्गोरिदम के रूप में विभिन्न विकसित किए। उनका मेरु-प्रस्तार वही है जो वर्तमान में पास्कल के त्रिभुज के रूप में जाना जाता है।

मूल वशिष्ठ, पैतामह और सूर्य-सिद्धांत सहित प्राचीन खगोलीय सिद्धांत इसी काल के हैं। एक अन्य महत्वपूर्ण कार्य जिसका श्रेय इस काल को जाता है, वह है बख्शाली पाण्डुलिपि। 19वीं शताब्दी में इसकी खोज की कहानी निम्नलिखित है। [5]बख्शाली एक गाँव का नाम है जो उस समय ब्रिटिश भारत के उत्तर-पश्चिम सीमांत प्रांत में था। यह वर्तमान पाकिस्तान में खैबर पख्तूनख्वा प्रांत में पेशावर के पास है। इस गांव में 1881 ई. में एक गणितीय कार्य की पांडुलिपि की खोज की गई थी। यह गलती से एक किसान को दोनों अपने घर के खंडहर पत्थर के बाड़े की खुदाई के दौरान मिला था। चूँकि इसके रचयिता का पता नहीं है, इसलिए इसे बख्शाली पाण्डुलिपि कहा जाता है। इतिहासकार इसकी सही अवधि की निश्चित समझ में आने में असमर्थ हैं। विभिन्न डेटिंग विधियों (यहां तक ​​कि कार्बन डेटिंग पर आधारित) के आधार पर पांडुलिपियों की अवधि का अनुमान पहली शताब्दी सीई से 7 वीं शताब्दी सीई तक भिन्न होता है। बख्शाली पांडुलिपि में अंकगणित, वाणिज्यिक गणित और कुछ बीजगणित के साथ-साथ ज्यामिति को कवर करने वाले समाधानों के साथ बड़ी संख्या में उदाहरणात्मक समस्याएं हैं।

बाद का शास्त्रीय काल (400 सीई से 1200 सीई)

बाद के शास्त्रीय काल को विद्वानों द्वारा 'भारतीय गणित का स्वर्ण युग' माना जाता है। इस काल में अनेक महान गणितज्ञ फले-फूले। इस अवधि के दौरान भारतीय गणितीय योगदान और खोजों को दुनिया के कई अन्य क्षेत्रों में प्रेषित किया गया। यह स्वर्ण काल ​​प्रसिद्ध खगोलशास्त्री आर्यभट से शुरू होता है और प्रसिद्ध लीलावती के लेखक भास्कर द्वितीय में समाप्त होता है।

इस काल के कुछ प्रसिद्ध खगोलशास्त्री और गणितज्ञ इस प्रकार हैं:

  • वराहमिहिर [6] - छठी शताब्दी ईस्वी के एक बहुआयामी प्रतिभा उज्जैन में रहते थे। उन्होंने पंच-सिद्धांतिका और बृहतसंहिता लिखी। पंच-सिद्धांतिका खगोल विज्ञान पर एक काम है और बृहतसंहिता प्राकृतिक घटनाओं पर एक विश्वकोश है।

मध्ययुगीन काल (1200 सीई से 1750 सीई)

इस मध्ययुगीन काल में 13वीं से 18वीं शताब्दी ईस्वी पूर्व के ग्रंथों पर कई भाष्य लिखे गए। केरल में गणित और खगोल विज्ञान का एक महान विद्यालय फला-फूला।

  • नारायण पंडित 14वीं शताब्दी के प्रसिद्ध गणितज्ञ थे। उनकी रचना, गितकौमुदी की रचना 1356 ईस्वी में हुई थी। यह कई और परिणामों और उदाहरणों के साथ लीलावती के आकार का लगभग तीन गुना है। उदाहरण के लिए, इसमें भद्रगष्ट नामक एक अलग अध्याय है जो जादू वर्गों के गणित से संबंधित है। कॉम्बिनेटरिक्स का विषय जो वस्तुओं के चयन और व्यवस्था (क्रमपरिवर्तन और संयोजन) से संबंधित है, को भी इस काम में बड़े पैमाने पर पेश किया गया है।
  • गणेश दैवज्ञ, जो 16वीं शताब्दी के पूर्वार्द्ध में रहते थे, एक प्रतिष्ठित खगोलशास्त्री थे, जो कोंकण क्षेत्र के नंदीग्राम के रहने वाले थे। उनका काम, बुद्धिविलासिनील लीलावतील पर बेहतरीन टिप्पणियों में से एक माना जाता है क्योंकि यह विस्तृत उपपत्ति (प्रमाण) देता है। उन्होंने एक प्रसिद्ध खगोलीय ग्रंथ, ग्रहलाघव की भी रचना की।
  • 16वीं शताब्दी के कृष्ण दैवज्ञ ने बीजपल्लव की रचना की, जो बीजगणित पर एक भाष्य है, जिसमें कई भी शामिल हैं। उपपट्टी (सबूत)।
  • शंकरवारियार नीलकंठ सोमसुत्वन के छात्र थे। वह 16वीं शताब्दी ई. में रहते थे। लीलावती क्रियाकर्माकारी पर उनका भाष्य बहुत प्रसिद्ध है।
  • ज्येष्टदेव, नीलकंठ सोमसुत्वन के एक कनिष्ठ सहयोगी ने मलयालम भाषा में प्रसिद्ध कृति युक्तिभाषा लिखी। 1530 ईस्वी के आसपास लिखी गई, यह पुस्तक खगोल विज्ञान और गणित के क्षेत्र में माधव और नीलकंठ के सभी योगदानों के विस्तृत प्रमाण प्रस्तुत करती है। इसे कैलकुलस/ कलन की पहली पाठ्यपुस्तक के रूप में जाना जाता है।
  • पुटुमण सोमयाजी ने सोलहवीं शताब्दी ईस्वी में एक खगोलीय कार्य, करणापद्धति लिखा था।
  • सदरत्नमाला के लेखक शंकरवर्मन उन्नीसवीं शताब्दी के पूर्वार्द्ध में फले-फूले।

बाहरी संपर्क

संदर्भ

  1. A Primer to Bhāratīya Gaṇitam , Bhāratīya-Gaṇita-Praveśa- Part-1. Samskrit Promotion Foundation. 2021. ISBN 978-81-951757-2-7.
  2. "Srinivasa Ramanujan"
  3. "Rigveda"
  4. "Pythagoras theorem found in Baudhayana's Śulbasūtra"
  5. Sarasvati, Svami Satya Prakash; Jyotishmati, Dr. Usha. The Bhakshali Manuscript. p. 15.
  6. "Varahamihira"