ऐरिटी: Difference between revisions

From Vigyanwiki
Line 70: Line 70:


== शब्दावली ==
== शब्दावली ==
लैटिन नाम आमतौर पर विशिष्ट धर्मार्थों के लिए उपयोग किया जाता है, मुख्य रूप से लैटिन [[वितरण संख्या]]ओं पर आधारित होता है जिसका अर्थ n के समूह में होता है, हालांकि कुछ लैटिन [[बुनियादी संख्या]]ों या [[क्रमसूचक संख्या]] पर आधारित होते हैं। उदाहरण के लिए, 1-एरी कार्डिनल यूनिस पर आधारित है, न कि वितरणात्मक सिंगुली पर जिसका परिणाम सिंगुलरी होगा।
लैटिन नाम सामान्यतः विशिष्ट धर्मार्थों के लिए उपयोग किया जाता है, मुख्य रूप से लैटिन [[वितरण संख्या]]ओं पर आधारित होता है जिसका अर्थ n के समूह में होता है, यद्यपि कुछ लैटिन शब्द [[बुनियादी संख्या|बुनियादी संख्याओ]] या [[क्रमसूचक संख्या]] पर आधारित होते हैं। उदाहरण के लिए, 1-एरी गणनांक 'यूनिस' पर आधारित है, न कि वितरणात्मक 'सिंगुली' पर जिसका परिणाम 'सिंगुलरी' होगा।


  {| class="wikitable"
  {| class="wikitable"
Line 104: Line 104:
| Varying || || ''Variadic'' || Sum; e.g., <math display="inline">\sum</math>|| [[Variadic function]], [[Reduce (parallel pattern)|reduce]]
| Varying || || ''Variadic'' || Sum; e.g., <math display="inline">\sum</math>|| [[Variadic function]], [[Reduce (parallel pattern)|reduce]]
|}
|}
n-ary का अर्थ n ऑपरेंड (या पैरामीटर) है, लेकिन अक्सर इसे पॉलीएडिक के पर्याय के रूप में प्रयोग किया जाता है।
n-ary का अर्थ n संकार्य है, लेकिन सामान्यतः इसे पॉलीएडिक के पर्याय के रूप में प्रयोग किया जाता है।


इन शब्दों का प्रयोग अक्सर उस संख्या से संबंधित किसी भी चीज का वर्णन करने के लिए किया जाता है (उदाहरण के लिए, एकतरफा शतरंज 11×11 बोर्ड के साथ एक [[शतरंज संस्करण]] है, या 1603 की [[सहस्राब्दी याचिका]])।
इन शब्दों का प्रयोग सामान्यतः उस संख्या से संबंधित किसी भी वस्तु का वर्णन करने के लिए किया जाता है उदाहरण के लिए, एकतरफा शतरंज 11×11 बोर्ड के साथ एक [[शतरंज संस्करण]] है, या 1603 की [[सहस्राब्दी याचिका]] भी इसके उदाहरण हैं।


एक संबंध (गणित) (या [[विधेय (गणितीय तर्क)]]) की समानता संबंधित कार्टेशियन उत्पाद में एक फ़ंक्शन के डोमेन का आयाम है। (एरीटी एन का एक समारोह इस प्रकार एरिटी एन + 1 को संबंध के रूप में माना जाता है।)
एक संबंध या [[विधेय (गणितीय तर्क)|विधेय]] की समानता संबंधित कार्टेशियन उत्पाद में एक फलन के अनुक्षेत्र का आयाम है। एरीटी एन का एक फलन इस प्रकार एरिटी एन + 1 को संबंध के रूप में माना जाता है।)


[[कंप्यूटर प्रोग्रामिंग]] में, [[ऑपरेटर (प्रोग्रामिंग)|संक्रिया (प्रोग्रामिंग)]] और फंक्शन (कंप्यूटर विज्ञान) के बीच अक्सर एक [[सिंटेक्स (प्रोग्रामिंग भाषाएं)]] भेद होता है; सिंटैक्टिकल संक्रिया ों में आमतौर पर 0, 1, या 2 (टर्नरी ऑपरेशन ?: भी आम है) होता है। तर्कों की संख्या में कार्य व्यापक रूप से भिन्न होते हैं, हालांकि बड़ी संख्याएं बोझिल हो सकती हैं। कुछ प्रोग्रामिंग लैंग्वेज [[विविध कार्य]] के लिए भी समर्थन प्रदान करती हैं, अर्थात, तर्कों की एक चर संख्या को स्वीकार करते हुए फ़ंक्शंस।
[[कंप्यूटर प्रोग्रामिंग]] में, [[ऑपरेटर (प्रोग्रामिंग)|संक्रिया]] और फलन के बीच सामान्यतः एक [[सिंटेक्स (प्रोग्रामिंग भाषाएं)|सिंटेक्स]] भेद होता है; सिंटैक्टिकल संक्रियाओ में सामान्यतः 0, 1, या 2 (टर्नरी ऑपरेशन ?: भी आम है) होता है। तर्कों की संख्या में कार्य व्यापक रूप से भिन्न होते हैं, हालांकि बड़ी संख्याएं बोझिल हो सकती हैं। कुछ प्रोग्रामिंग लैंग्वेज [[विविध कार्य]] के लिए भी समर्थन प्रदान करती हैं, अर्थात, तर्कों की एक चर संख्या को स्वीकार करते हुए फ़ंक्शंस।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 13:33, 7 February 2023

एरिटी (/ˈærɪti/ (listen)) तर्कशास्त्र, गणित और कंप्यूटर विज्ञान में किसी फलन,संक्रिया या संबंध द्वारा लिए गए संकार्य या तर्कों की संख्या है। गणित में, एरिटी को रैंक भी कहा जा सकता है,[1][2] परंतु गणित में इस शब्द के और भी कई अर्थ हो सकते हैं। तर्कशास्त्र और दर्शनशास्त्र में इसे अदम्यता और पदवी भी कहते हैं।[3][4] भाषाविज्ञान में, इसे सामान्यतः संयोजकता नाम दिया गया है।[5]


उदाहरण

साधारण उपयोग में, एरिटी शब्द किंचित ही नियोजित होता है। उदाहरण के लिए, यह कहने के अपेक्षा कि जोड़ संक्रिया की एरिटी 2 है या योग 2 एरिटी की संक्रिया है, सामान्यतः यह कहा जाता है कि योग एक द्विआधारी संक्रिया है। सामान्यतः, किसी दिए गए संभाव्यता के साथ संकार्यों या संक्रियकों का नामकरण एन-आधारित अंक प्रणाली जैसे द्विआधारी अंक प्रणाली और हेक्साडेसिमल के लिए उपयोग किए जाने वाले एक प्रथा के समान होता है। एक लैटिन उपसर्ग को -ary अंत के साथ जोड़ा जाता है; उदाहरण के लिए:

  • एक शून्यात्मक फलन मे कोई तर्क नहीं होता है।
    • उदाहरण:
  • एक एकल फलन एक तर्क लेती है।
    • उदाहरण:
  • एक द्विआधारी फलन में दो तर्क होते हैं।
    • उदाहरण:
  • एक त्रिआधारी फलन में तीन तर्क होते हैं।
    • उदाहरण:
  • एक एन-धारी फलन मे एन तर्क होते है।
    • उदाहरण:


शून्यात्मक

कभी-कभी एक स्थिरांक को एरिटी 0 की एक संक्रिया मानना ​​उपयोगी होता है, और इसलिए इसे शून्यात्मक फलन कहते हैं।

इसके अतिरिक्त, गैर-फलनात्मक प्रोग्रामिंग में, तर्क के बिना भी कोई फलन सार्थक हो सकता है और साइड इफेक्ट के कारण आवश्यक नहीं कि यह स्थिर हो। सामान्यतः , ऐसे फलनों में वास्तव में कुछ छिपे हुए निविष्ट होते हैं जो वैश्विक चर हो सकते हैं, जिसमें तंत्र की पूरी स्थिति जैसे समय, मुफ्त मेमोरी, आदि शामिल है। उत्तरार्द्ध महत्वपूर्ण उदाहरण हैं जो सामान्यतः विशुद्ध रूप से फलनात्मक प्रोग्रामिंग भाषाओं में भी उपस्थित होते हैं।

एकात्मक

गणित और प्रोग्रामिंग में एकात्मक संक्रियाओ के उदाहरणों में 'सी' प्रोग्रामिंग भाषा में एकात्मक ऋण और धन, वृद्धि और ह्रास संक्रियाए शामिल हैं। गणित मे परवर्ती फलन, क्रमगुणित फलन, गुणात्मक प्रतिलोम, फ्लोर फलन, चिह्न फलन, आंशिक हिस्सा, निरपेक्ष मूल्य, वर्गमूल, जटिल सन्युग्म, और नॉर्म फलन उपस्थित है। कंप्यूटर विज्ञान मे संदर्भ और प्रोग्रामिंग मे तार्किक NOT संक्रिया गणित और प्रोग्रामिंग में एकात्मक संक्रियाओ के उदाहरण हैं।

लैम्ब्डा कैलकुलस में सभी फलन, और कुछ फलनात्मक प्रोग्रामिंग भाषाये तकनीकी रूप से एकात्मक हैं।

विलार्ड वैन ऑरमैन क्वीन के अनुसार, लैटिन में सिंगुली, बिनी, टर्नी आदि, 'यूनरी' के स्थान पर 'सिंगुलरी' सही विशेषण है।[6] अब्राहम रॉबिन्सन भी क्विन के सिद्धांत का अनुसरण करतें है।[7]

दर्शनशास्त्र में, विशेषण मोनाडिक का प्रयोग कभी-कभी एक एक स्थानीय संबंध का वर्णन करने के लिए किया जाता है जैसे 'इज स्क्वायर शैप्ट' एक द्विआधारी संबंध जैसे ,इज दी सिस्टर ऑफ' के विपरीत है।

द्विआधारी

प्रोग्रामिंग और गणित में आने वाले अधिकांश संक्रिया द्विआधारी संक्रियात्मक होते हैं। प्रोग्रामिंग और गणित दोनों के लिए, इनमें गुणा संक्रिया, मूलांक संक्रिया , सामान्यतः छोड़े गए घातांक संक्रिया , लघुगणक संक्रिया , अतिरिक्त संक्रिया और विभाजक संक्रिया सम्मिलित हैं। तार्किक विच्छेदन, एकल तार्किक संयोजन, जैसे तार्किक विधेय को सामान्यतः दो अलग-अलग संकार्य के साथ द्विआधारी संक्रिया के रूप में उपयोग किया जाता है। जटिल निर्देश श्रेणी संगणन स्थापत्य में, दो स्रोत संकार्य होना साधारण है।

त्रिआधारी

कंप्यूटर प्रोग्रामिंग भाषा C और इसके विभिन्न वंशज जैसे C++, C Sharp, C#, जावा, जूलिया, पर्ल आदि त्रिआधारी प्रतिबंधात्मक संक्रिया प्रदान करते हैं। प्रारंभ मे प्रतिबंधात्मक संकार्य का मूल्यांकन किया जाता है, और यदि यह सत्य है, तो संपूर्ण व्यंजक का परिणाम दूसरे संकार्य का मान है, अन्यथा यह तीसरे संकार्य का मान है। पायथन भाषा में x if C else y एक त्रिआधारी प्रतिबंधात्मक व्यंजक है, .

फोर्थ भाषा में */ एक त्रिआधारी संक्रिया होती है, जो पहले दो संख्याओं को गुणा करता है और तीसरे से विभाजित करता है, मध्यवर्ती परिणाम एक युग्म सेल संख्या होने के साथ इसका उपयोग तब किया जाता है जब मध्यवर्ती परिणाम एकल सेल को अधिप्रवाहित करेगा।

यूनिक्स डीसी परिगणक में विविध त्रिआधारी संक्रिया हैं, जैसे |, जो स्तंभ मे से तीन मानों को बाहर निकलेगा और कुशलतापूर्वक की गणना करेगा।

कई असेंबली भाषा अनुदेश त्रिआधारी या उच्चतर हैं जैसे MOV %AX, (%BX, %CX), जो रजिस्टर में MOV और एक AX, BX और CX. के परिकलित स्मृति स्थान की सामग्री के रजिस्टरों का योग है।

एन-आरी

गणितीय दृष्टिकोण से, n तर्कों के एक फलन को हमेशा एक एकल तर्क के फलन के रूप में माना जा सकता है जो कि कुछ उत्पाद स्थान का एक तत्व है। यद्यपि, संकेतन के लिए एन-आरी फलनों पर विचार करना सुविधाजनक हो सकता है, उदाहरण के लिए बहु-रेखीय मानचित्र जिस मे उत्पाद स्थान पर, रैखिक मानचित्र नहीं हैं।

प्रोग्रामिंग भाषाओं के लिए भी यही सच है, जहाँ कई तर्कों को लेने वाले फलनों को हमेशा परिभाषित किया जा सकता है, जैसे कि किसी वस्तु रचना के एकल तर्क को लेने वाले फलन आदि ।

परिवर्तनशीलता

कंप्यूटर विज्ञान में, तर्कों की एक चर संख्या को स्वीकार करने वाले फलन को विविध समारोह कहा जाता है। तर्क और दर्शन में, तर्कों की एक चर संख्या को स्वीकार करने वाले विधेय या संबंधों को मल्टीग्रेड विधेय, एनाडिक या परिवर्तनशील पॉलीएडिक कहा जाता है।[8]


शब्दावली

लैटिन नाम सामान्यतः विशिष्ट धर्मार्थों के लिए उपयोग किया जाता है, मुख्य रूप से लैटिन वितरण संख्याओं पर आधारित होता है जिसका अर्थ n के समूह में होता है, यद्यपि कुछ लैटिन शब्द बुनियादी संख्याओ या क्रमसूचक संख्या पर आधारित होते हैं। उदाहरण के लिए, 1-एरी गणनांक 'यूनिस' पर आधारित है, न कि वितरणात्मक 'सिंगुली' पर जिसका परिणाम 'सिंगुलरी' होगा।

x-ary Arity (Latin based) Adicity (Greek based) Example in mathematics Example in computer science
0-ary Nullary (from nūllus) Niladic A constant A function without arguments, True, False
1-ary Unary Monadic Additive inverse Logical NOT operator
2-ary Binary Dyadic Addition OR, XOR, AND
3-ary Ternary Triadic Triple product of vectors Conditional operator
4-ary Quaternary Tetradic Quaternion
5-ary Quinary Pentadic Quintile
6-ary Senary Hexadic
7-ary Septenary Hebdomadic
8-ary Octonary Ogdoadic
9-ary Novenary (alt. nonary) Enneadic
10-ary Denary (alt. decenary) Decadic
More than 2-ary Multary and multiary Polyadic
Varying Variadic Sum; e.g., Variadic function, reduce

n-ary का अर्थ n संकार्य है, लेकिन सामान्यतः इसे पॉलीएडिक के पर्याय के रूप में प्रयोग किया जाता है।

इन शब्दों का प्रयोग सामान्यतः उस संख्या से संबंधित किसी भी वस्तु का वर्णन करने के लिए किया जाता है उदाहरण के लिए, एकतरफा शतरंज 11×11 बोर्ड के साथ एक शतरंज संस्करण है, या 1603 की सहस्राब्दी याचिका भी इसके उदाहरण हैं।

एक संबंध या विधेय की समानता संबंधित कार्टेशियन उत्पाद में एक फलन के अनुक्षेत्र का आयाम है। एरीटी एन का एक फलन इस प्रकार एरिटी एन + 1 को संबंध के रूप में माना जाता है।)

कंप्यूटर प्रोग्रामिंग में, संक्रिया और फलन के बीच सामान्यतः एक सिंटेक्स भेद होता है; सिंटैक्टिकल संक्रियाओ में सामान्यतः 0, 1, या 2 (टर्नरी ऑपरेशन ?: भी आम है) होता है। तर्कों की संख्या में कार्य व्यापक रूप से भिन्न होते हैं, हालांकि बड़ी संख्याएं बोझिल हो सकती हैं। कुछ प्रोग्रामिंग लैंग्वेज विविध कार्य के लिए भी समर्थन प्रदान करती हैं, अर्थात, तर्कों की एक चर संख्या को स्वीकार करते हुए फ़ंक्शंस।

यह भी देखें


संदर्भ

  1. Hazewinkel, Michiel (2001). Encyclopaedia of Mathematics, Supplement III. Springer. p. 3. ISBN 978-1-4020-0198-7.
  2. Schechter, Eric (1997). Handbook of Analysis and Its Foundations. Academic Press. p. 356. ISBN 978-0-12-622760-4.
  3. Detlefsen, Michael; McCarty, David Charles; Bacon, John B. (1999). Logic from A to Z. Routledge. p. 7. ISBN 978-0-415-21375-2.
  4. Cocchiarella, Nino B.; Freund, Max A. (2008). Modal Logic: An Introduction to its Syntax and Semantics. Oxford University Press. p. 121. ISBN 978-0-19-536658-7.
  5. Crystal, David (2008). Dictionary of Linguistics and Phonetics (6th ed.). John Wiley & Sons. p. 507. ISBN 978-1-405-15296-9.
  6. Quine, W. V. O. (1940), Mathematical logic, Cambridge, Massachusetts: Harvard University Press, p. 13
  7. Robinson, Abraham (1966), Non-standard Analysis, Amsterdam: North-Holland, p. 19
  8. Oliver, Alex (2004). "Multigrade Predicates". Mind. 113 (452): 609–681. doi:10.1093/mind/113.452.609.


बाहरी संबंध

A monograph available free online: