फलन आरेख: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
[[विज्ञान]], [[अभियांत्रिकी]], प्रौद्योगिकी, [[वित्त]] और अन्य क्षेत्रों में, रेखांकन कई उद्देश्यों के लिए उपयोग किए जाने वाले उपकरण हैं।सबसे सरल मामले में एक चर को, सामान्यतः आयताकार समन्वय प्रणाली का उपयोग करके दूसरे के एक फलन के रूप में दर्शाया जाता है। | [[विज्ञान]], [[अभियांत्रिकी]], प्रौद्योगिकी, [[वित्त]] और अन्य क्षेत्रों में, रेखांकन कई उद्देश्यों के लिए उपयोग किए जाने वाले उपकरण हैं।सबसे सरल मामले में एक चर को, सामान्यतः आयताकार समन्वय प्रणाली का उपयोग करके दूसरे के एक फलन के रूप में दर्शाया जाता है। | ||
फलन का आरेख [[संबंध (गणित)|संबंध]] की एक विशेष विभक्ति | फलन का आरेख, [[संबंध (गणित)|संबंध]] की एक विशेष विभक्ति है।गणित की आधुनिक नींव में, और, सामान्यतः, समुच्चय सिद्धांत में, एक फ़ंक्शन वास्तव में इसके आरेख के बराबर है।<ref name="Pinter2014">{{cite book|author=Charles C Pinter|title=A Book of Set Theory|url=https://books.google.com/books?id=iUT_AwAAQBAJ&pg=PA49|year=2014|orig-year=1971|publisher=Dover Publications|isbn=978-0-486-79549-2|pages=49}}</ref> हालांकि, यह अक्सर [[मानचित्र (गणित)]] के रूप में कार्यों को देखने के लिए उपयोगी होता है,<ref>{{cite book|author=T. M. Apostol|title=Mathematical Analysis|year=1981|publisher=Addison-Wesley|page=35}}</ref> जिसमें न केवल इनपुट और आउटपुट के बीच संबंध शामिल है, बल्कि यह भी कि कौन सा समुच्चय डोमेन है, और कौन सा समुच्चय [[संहितात्मक]] है।उदाहरण के लिए, यह कहने के लिए कि एक फ़ंक्शन ([[अधिसूचित कार्य]]) पर है या कोडोमैन को ध्यान में नहीं रखा जाना चाहिए।अपने दम पर एक फ़ंक्शन का आरेख कोडोमैन को निर्धारित नहीं करता है।आम है<ref>{{cite book|author=P. R. Halmos|title=A Hilbert Space Problem Book|url=https://archive.org/details/hilbertspaceprob00halm_811|url-access=limited|year=1982|publisher=Springer-Verlag|isbn=0-387-90685-1|page=[https://archive.org/details/hilbertspaceprob00halm_811/page/n47 31]}}</ref> एक ही वस्तु पर विचार करने के बाद भी किसी फ़ंक्शन के फ़ंक्शन और आरेख दोनों का उपयोग करने के लिए, वे इसे एक अलग दृष्टिकोण से देखने का संकेत देते हैं। | ||
फ़ाइल: x^4 - 4^x.PNG|350px|thumb|फ़ंक्शन का आरेख <math>f(x) = x^4 - 4^x</math> [[अंतराल (गणित)]] पर [−2,+3]।यह भी दिखाया गया है कि दो वास्तविक जड़ें हैं और स्थानीय न्यूनतम जो अंतराल में हैं। | फ़ाइल: x^4 - 4^x.PNG|350px|thumb|फ़ंक्शन का आरेख <math>f(x) = x^4 - 4^x</math> [[अंतराल (गणित)]] पर [−2,+3]।यह भी दिखाया गया है कि दो वास्तविक जड़ें हैं और स्थानीय न्यूनतम जो अंतराल में हैं। | ||
Revision as of 11:31, 9 February 2023
गणित में, एक फलन का आरेख, क्रमित युग्म का समुच्चय है , जहाँ सामान्यतः जहां और वास्तविक संख्याएं हैं, ये युग्म दो-आयामी स्थान में बिंदुओं के कार्टेशियन निर्देशांक हैं और इस प्रकार इस समतल का एक उपसमुच्चय बनाते हैं।
दो चर के फलनों के संबंध में वह युग्म है जिसके फलन का आरेख सामान्यतः क्रमिक त्रयी के समुच्चय को संदर्भित करता है जहाँ जैसा कि ऊपर की परिभाषा में संदर्भित है। यह समुच्चय त्रि-आयामी स्थान का एक उप समुच्चय है और दो वास्तविक चर के निरंतर वास्तविक मूल्यवान फलन लिए, यह एक समतल है।
विज्ञान, अभियांत्रिकी, प्रौद्योगिकी, वित्त और अन्य क्षेत्रों में, रेखांकन कई उद्देश्यों के लिए उपयोग किए जाने वाले उपकरण हैं।सबसे सरल मामले में एक चर को, सामान्यतः आयताकार समन्वय प्रणाली का उपयोग करके दूसरे के एक फलन के रूप में दर्शाया जाता है।
फलन का आरेख, संबंध की एक विशेष विभक्ति है।गणित की आधुनिक नींव में, और, सामान्यतः, समुच्चय सिद्धांत में, एक फ़ंक्शन वास्तव में इसके आरेख के बराबर है।[1] हालांकि, यह अक्सर मानचित्र (गणित) के रूप में कार्यों को देखने के लिए उपयोगी होता है,[2] जिसमें न केवल इनपुट और आउटपुट के बीच संबंध शामिल है, बल्कि यह भी कि कौन सा समुच्चय डोमेन है, और कौन सा समुच्चय संहितात्मक है।उदाहरण के लिए, यह कहने के लिए कि एक फ़ंक्शन (अधिसूचित कार्य) पर है या कोडोमैन को ध्यान में नहीं रखा जाना चाहिए।अपने दम पर एक फ़ंक्शन का आरेख कोडोमैन को निर्धारित नहीं करता है।आम है[3] एक ही वस्तु पर विचार करने के बाद भी किसी फ़ंक्शन के फ़ंक्शन और आरेख दोनों का उपयोग करने के लिए, वे इसे एक अलग दृष्टिकोण से देखने का संकेत देते हैं। फ़ाइल: x^4 - 4^x.PNG|350px|thumb|फ़ंक्शन का आरेख अंतराल (गणित) पर [−2,+3]।यह भी दिखाया गया है कि दो वास्तविक जड़ें हैं और स्थानीय न्यूनतम जो अंतराल में हैं।
परिभाषा
एक मानचित्रण दिया दूसरे शब्दों में एक फ़ंक्शन साथ में इसके डोमेन के साथ और कोडोमैन मैपिंग का आरेख है[4] समुच्चय
उदाहरण
एक चर के कार्य
फ़ंक्शन का आरेख द्वारा परिभाषित
वास्तविक रेखा पर क्यूबिक बहुपद का आरेख
दो चर के कार्य
फ़ाइल: f (x, y) = - ((cosx)^2 + (cozy)^2)^2.PNG|thumb|250px|के आरेख का प्लॉट इसके अलावा नीचे के विमान पर इसकी ढाल का अनुमान है।
त्रिकोणमितीय फ़ंक्शन का आरेख
अक्सर यह आरेख, फ़ंक्शन के ढाल और कई स्तर के घटता के साथ दिखाने के लिए सहायक होता है।स्तर के घटता को फ़ंक्शन की सतह पर मैप किया जा सकता है या नीचे के विमान पर पेश किया जा सकता है।दूसरा आंकड़ा फ़ंक्शन के आरेख के ऐसे ड्राइंग को दर्शाता है:
यह भी देखें
- Asymptote
- चार्ट
- अवतल कार्य
- उत्तल समारोह
- समोच्च रेखा
- महत्वपूर्ण बिंदु (गणित)
- व्युत्पन्न
- एपिग्राफ (गणित)
- सामान्य (ज्यामिति)
- ढलान
- स्थिर बिंदु
- टेट्रव्यू
- ऊर्ध्वाधर अनुवाद
- y- y- अंत
संदर्भ
- ↑ Charles C Pinter (2014) [1971]. A Book of Set Theory. Dover Publications. p. 49. ISBN 978-0-486-79549-2.
- ↑ T. M. Apostol (1981). Mathematical Analysis. Addison-Wesley. p. 35.
- ↑ P. R. Halmos (1982). A Hilbert Space Problem Book. Springer-Verlag. p. 31. ISBN 0-387-90685-1.
- ↑ D. S. Bridges (1991). Foundations of Real and Abstract Analysis. Springer. p. 285. ISBN 0-387-98239-6.
- Zălinescu, Constantin (30 July 2002). Convex Analysis in General Vector Spaces. River Edge, N.J. London: World Scientific Publishing. ISBN 978-981-4488-15-0. MR 1921556. OCLC 285163112 – via Internet Archive.
बाहरी संबंध
- Weisstein, Eric W. "Function Graph." From MathWorld—A Wolfram Web Resource.