फलन आरेख: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
[[File:Polynomial of degree three.svg|thumb|250x250px | फ़ंक्शन का आरेख <math>f(x)=\frac{x^3+3x^2-6x-8}{4}.</math>]][[गणित]] में, एक फलन का आरेख, क्रमित युग्म <math>f</math><math>(x, y)</math> का समुच्चय है , जहाँ <math>f(x) = y.</math> सामान्यतः जहां <math>x</math> और <math>f(x)</math> [[वास्तविक संख्या]]एं हैं, ये युग्म दो-आयामी स्थान में बिंदुओं के कार्टेशियन निर्देशांक हैं और इस प्रकार इस समतल का एक उपसमुच्चय बनाते हैं। | [[File:Polynomial of degree three.svg|thumb|250x250px | फ़ंक्शन का आरेख <math>f(x)=\frac{x^3+3x^2-6x-8}{4}.</math>]][[गणित]] में, एक फलन का आरेख, क्रमित युग्म <math>f</math><math>(x, y)</math> का समुच्चय है , जहाँ <math>f(x) = y.</math> सामान्यतः जहां <math>x</math> और <math>f(x)</math> [[वास्तविक संख्या]]एं हैं, ये युग्म दो-आयामी स्थान में बिंदुओं के कार्टेशियन निर्देशांक हैं और इस प्रकार इस समतल का एक उपसमुच्चय बनाते हैं। | ||
दो चर के फलनों के संबंध में <math>(x, y),</math> वह युग्म है जिसके फलन का आरेख सामान्यतः क्रमिक त्रयी <math>(x, y, z)</math> के समुच्चय को संदर्भित करता है जहाँ <math>f(x,y) = z,</math> जैसा कि ऊपर की परिभाषा में संदर्भित है। यह समुच्चय त्रि-आयामी स्थान का एक उप समुच्चय है और दो वास्तविक चर के निरंतर वास्तविक मूल्यवान फलन | दो चर के फलनों के संबंध में <math>(x, y),</math> वह युग्म है जिसके फलन का आरेख सामान्यतः क्रमिक त्रयी <math>(x, y, z)</math> के समुच्चय को संदर्भित करता है जहाँ <math>f(x,y) = z,</math> जैसा कि ऊपर की परिभाषा में संदर्भित है। यह समुच्चय त्रि-आयामी स्थान का एक उप समुच्चय है और दो वास्तविक चर के निरंतर वास्तविक मूल्यवान फलन के लिए, यह एक समतल है। | ||
[[विज्ञान]], [[अभियांत्रिकी]], प्रौद्योगिकी, [[वित्त]] और अन्य क्षेत्रों में, रेखांकन कई उद्देश्यों के लिए उपयोग किए जाने वाले उपकरण | [[विज्ञान]], [[अभियांत्रिकी]], प्रौद्योगिकी, [[वित्त]] और अन्य क्षेत्रों में, रेखांकन कई उद्देश्यों के लिए उपयोग किए जाने वाले उपकरण हैं। सबसे सरल मामले में एक चर को, सामान्यतः आयताकार समन्वय प्रणाली का उपयोग करके दूसरे के एक फलन के रूप में दर्शाया जाता है। | ||
फलन का आरेख, [[संबंध (गणित)|संबंध]] की एक विशेष विभक्ति | फलन का आरेख, [[संबंध (गणित)|संबंध]] की एक विशेष विभक्ति है। गणित की आधुनिक ढ़ाचों और, सामान्यतः समुच्चय सिद्धांत में, एक फलन वास्तव में इसके आरेख के समान है।<ref name="Pinter2014">{{cite book|author=Charles C Pinter|title=A Book of Set Theory|url=https://books.google.com/books?id=iUT_AwAAQBAJ&pg=PA49|year=2014|orig-year=1971|publisher=Dover Publications|isbn=978-0-486-79549-2|pages=49}}</ref> यद्यपि, यह सामान्यतः [[मानचित्र (गणित)|मानचित्र]] के रूप में फलनों को देखने के लिए उपयोगी होता है,<ref>{{cite book|author=T. M. Apostol|title=Mathematical Analysis|year=1981|publisher=Addison-Wesley|page=35}}</ref> जिसमें न केवल निविष्ट और निर्गत के मध्य संबंध सम्मिलित है, बल्कि यह भी कि कौन सा समुच्चय अनुक्षेत्र है, और कौन सा समुच्चय [[संहितात्मक]] है। उदाहरण के लिए, यह कहने के लिए कि एक फलन [[अधिसूचित कार्य]] पर है, उपअनुक्षेत्र को ध्यान में नहीं रखा जाना चाहिए। एक फलन का आरेख अपने बल उपअनुक्षेत्र को निर्धारित नहीं करता है।<ref>{{cite book|author=P. R. Halmos|title=A Hilbert Space Problem Book|url=https://archive.org/details/hilbertspaceprob00halm_811|url-access=limited|year=1982|publisher=Springer-Verlag|isbn=0-387-90685-1|page=[https://archive.org/details/hilbertspaceprob00halm_811/page/n47 31]}}</ref> एक ही वस्तु पर विचार करने के बाद भी किसी फलन और आरेख दोनों का उपयोग करने के लिए, वे इसे एक अलग दृष्टिकोण से देखने का संकेत देते हैं। | ||
== परिभाषा == | == परिभाषा == | ||
एक मानचित्रण दिया <math>f : X \to Y,</math> दूसरे शब्दों में एक फ़ंक्शन <math>f</math> साथ में इसके | एक मानचित्रण दिया <math>f : X \to Y,</math> दूसरे शब्दों में एक फ़ंक्शन <math>f</math> साथ में इसके अनुक्षेत्र के साथ <math>X</math> और उपअनुक्षेत्र <math>Y,</math> मैपिंग का आरेख है<ref>{{cite book|author=D. S. Bridges|title=Foundations of Real and Abstract Analysis|url=https://archive.org/details/springer_10.1007-978-0-387-22620-0|year=1991|publisher=Springer|page=[https://archive.org/details/springer_10.1007-978-0-387-22620-0/page/n292 285]|isbn=0-387-98239-6}}</ref> समुच्चय | ||
<math display=block>G(f) = \{(x,f(x)) : x \in X\},</math> | <math display=block>G(f) = \{(x,f(x)) : x \in X\},</math> | ||
जो एक सबसमुच्चय है <math>X\times Y</math>।एक फ़ंक्शन की अमूर्त परिभाषा में, <math>G(f)</math> वास्तव में बराबर है <math>f.</math> | जो एक सबसमुच्चय है <math>X\times Y</math>।एक फ़ंक्शन की अमूर्त परिभाषा में, <math>G(f)</math> वास्तव में बराबर है <math>f.</math> | ||
Line 29: | Line 28: | ||
समुच्चय का सबसमुच्चय है <math>\{1,2,3\} \times \{a,b,c,d\}</math> | समुच्चय का सबसमुच्चय है <math>\{1,2,3\} \times \{a,b,c,d\}</math> | ||
<math display=block>G(f) = \{ (1,a), (2,d), (3,c) \}.</math> | <math display=block>G(f) = \{ (1,a), (2,d), (3,c) \}.</math> | ||
आरेख से, | आरेख से, अनुक्षेत्र <math>\{1,2,3\}</math> आरेख में प्रत्येक जोड़ी के पहले घटक के समुच्चय के रूप में बरामद किया जाता है <math>\{1,2,3\} = \{x :\ \exists y,\text{ such that }(x,y) \in G(f)\}</math>। | ||
इसी तरह, एक फ़ंक्शन की सीमा को पुनर्प्राप्त किया जा सकता है <math>\{a,c,d\} = \{y : \exists x,\text{ such that }(x,y)\in G(f)\}</math>। | इसी तरह, एक फ़ंक्शन की सीमा को पुनर्प्राप्त किया जा सकता है <math>\{a,c,d\} = \{y : \exists x,\text{ such that }(x,y)\in G(f)\}</math>। | ||
उपअनुक्षेत्र <math>\{a,b,c,d\}</math>, यद्यपि, अकेले आरेख से निर्धारित नहीं किया जा सकता है। | |||
[[वास्तविक रेखा]] पर क्यूबिक बहुपद का आरेख | [[वास्तविक रेखा]] पर क्यूबिक बहुपद का आरेख | ||
Line 51: | Line 50: | ||
यदि इस समुच्चय को तीन आयामों में एक कार्टेशियन समन्वय प्रणाली#कार्टेशियन निर्देशांक पर प्लॉट किया जाता है, तो परिणाम एक सतह है (चित्र देखें)। | यदि इस समुच्चय को तीन आयामों में एक कार्टेशियन समन्वय प्रणाली#कार्टेशियन निर्देशांक पर प्लॉट किया जाता है, तो परिणाम एक सतह है (चित्र देखें)। | ||
सामान्यतः यह आरेख, फ़ंक्शन के ढाल और कई स्तर के घटता के साथ दिखाने के लिए सहायक होता है।स्तर के घटता को फ़ंक्शन की सतह पर मैप किया जा सकता है या नीचे के विमान पर पेश किया जा सकता है।दूसरा आंकड़ा फ़ंक्शन के आरेख के ऐसे ड्राइंग को दर्शाता है: | |||
<math display=block>f(x, y) = -(\cos(x^2) + \cos(y^2))^2.</math> | <math display=block>f(x, y) = -(\cos(x^2) + \cos(y^2))^2.</math> | ||
Revision as of 11:56, 9 February 2023
गणित में, एक फलन का आरेख, क्रमित युग्म का समुच्चय है , जहाँ सामान्यतः जहां और वास्तविक संख्याएं हैं, ये युग्म दो-आयामी स्थान में बिंदुओं के कार्टेशियन निर्देशांक हैं और इस प्रकार इस समतल का एक उपसमुच्चय बनाते हैं।
दो चर के फलनों के संबंध में वह युग्म है जिसके फलन का आरेख सामान्यतः क्रमिक त्रयी के समुच्चय को संदर्भित करता है जहाँ जैसा कि ऊपर की परिभाषा में संदर्भित है। यह समुच्चय त्रि-आयामी स्थान का एक उप समुच्चय है और दो वास्तविक चर के निरंतर वास्तविक मूल्यवान फलन के लिए, यह एक समतल है।
विज्ञान, अभियांत्रिकी, प्रौद्योगिकी, वित्त और अन्य क्षेत्रों में, रेखांकन कई उद्देश्यों के लिए उपयोग किए जाने वाले उपकरण हैं। सबसे सरल मामले में एक चर को, सामान्यतः आयताकार समन्वय प्रणाली का उपयोग करके दूसरे के एक फलन के रूप में दर्शाया जाता है।
फलन का आरेख, संबंध की एक विशेष विभक्ति है। गणित की आधुनिक ढ़ाचों और, सामान्यतः समुच्चय सिद्धांत में, एक फलन वास्तव में इसके आरेख के समान है।[1] यद्यपि, यह सामान्यतः मानचित्र के रूप में फलनों को देखने के लिए उपयोगी होता है,[2] जिसमें न केवल निविष्ट और निर्गत के मध्य संबंध सम्मिलित है, बल्कि यह भी कि कौन सा समुच्चय अनुक्षेत्र है, और कौन सा समुच्चय संहितात्मक है। उदाहरण के लिए, यह कहने के लिए कि एक फलन अधिसूचित कार्य पर है, उपअनुक्षेत्र को ध्यान में नहीं रखा जाना चाहिए। एक फलन का आरेख अपने बल उपअनुक्षेत्र को निर्धारित नहीं करता है।[3] एक ही वस्तु पर विचार करने के बाद भी किसी फलन और आरेख दोनों का उपयोग करने के लिए, वे इसे एक अलग दृष्टिकोण से देखने का संकेत देते हैं।
परिभाषा
एक मानचित्रण दिया दूसरे शब्दों में एक फ़ंक्शन साथ में इसके अनुक्षेत्र के साथ और उपअनुक्षेत्र मैपिंग का आरेख है[4] समुच्चय
उदाहरण
एक चर के कार्य
फ़ंक्शन का आरेख द्वारा परिभाषित
वास्तविक रेखा पर क्यूबिक बहुपद का आरेख
दो चर के कार्य
फ़ाइल: f (x, y) = - ((cosx)^2 + (cozy)^2)^2.PNG|thumb|250px|के आरेख का प्लॉट इसके अलावा नीचे के विमान पर इसकी ढाल का अनुमान है।
त्रिकोणमितीय फ़ंक्शन का आरेख
सामान्यतः यह आरेख, फ़ंक्शन के ढाल और कई स्तर के घटता के साथ दिखाने के लिए सहायक होता है।स्तर के घटता को फ़ंक्शन की सतह पर मैप किया जा सकता है या नीचे के विमान पर पेश किया जा सकता है।दूसरा आंकड़ा फ़ंक्शन के आरेख के ऐसे ड्राइंग को दर्शाता है:
यह भी देखें
- Asymptote
- चार्ट
- अवतल कार्य
- उत्तल समारोह
- समोच्च रेखा
- महत्वपूर्ण बिंदु (गणित)
- व्युत्पन्न
- एपिग्राफ (गणित)
- सामान्य (ज्यामिति)
- ढलान
- स्थिर बिंदु
- टेट्रव्यू
- ऊर्ध्वाधर अनुवाद
- y- y- अंत
संदर्भ
- ↑ Charles C Pinter (2014) [1971]. A Book of Set Theory. Dover Publications. p. 49. ISBN 978-0-486-79549-2.
- ↑ T. M. Apostol (1981). Mathematical Analysis. Addison-Wesley. p. 35.
- ↑ P. R. Halmos (1982). A Hilbert Space Problem Book. Springer-Verlag. p. 31. ISBN 0-387-90685-1.
- ↑ D. S. Bridges (1991). Foundations of Real and Abstract Analysis. Springer. p. 285. ISBN 0-387-98239-6.
- Zălinescu, Constantin (30 July 2002). Convex Analysis in General Vector Spaces. River Edge, N.J. London: World Scientific Publishing. ISBN 978-981-4488-15-0. MR 1921556. OCLC 285163112 – via Internet Archive.
बाहरी संबंध
- Weisstein, Eric W. "Function Graph." From MathWorld—A Wolfram Web Resource.