संयोजन वलय: Difference between revisions

From Vigyanwiki
m (9 revisions imported from alpha:संयोजन_वलय)
No edit summary
 
Line 38: Line 38:
==संदर्भ==
==संदर्भ==
*{{Citation | authorlink=Irving Adler | last1=Adler | first1=Irving | title=Composition rings | mr=0142573 | year=1962 | journal=[[Duke Mathematical Journal]] | issn=0012-7094 | volume=29 | pages=607–623 |url=http://projecteuclid.org/euclid.dmj/1077470398 | doi=10.1215/S0012-7094-62-02961-7 | issue=4}}
*{{Citation | authorlink=Irving Adler | last1=Adler | first1=Irving | title=Composition rings | mr=0142573 | year=1962 | journal=[[Duke Mathematical Journal]] | issn=0012-7094 | volume=29 | pages=607–623 |url=http://projecteuclid.org/euclid.dmj/1077470398 | doi=10.1215/S0012-7094-62-02961-7 | issue=4}}
[[Category: बीजगणितीय संरचनाएं]] [[Category: रिंग थ्योरी]]


[[Category: Machine Translated Page]]
[[Category:Created On 03/02/2023]]
[[Category:Created On 03/02/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]
[[Category:बीजगणितीय संरचनाएं]]
[[Category:रिंग थ्योरी]]

Latest revision as of 16:06, 10 February 2023

गणित में, (एडलर 1962) में प्रस्तावित किया गया एक संयोजन वलय, क्रमविनिमेय वलय (R, 0, +, -, ·) है, संभवतः एक पहचान 1 के बिना (गैर-इकाई वलय देखें), एक संक्रिया के साथ

अर्थात्, किन्हीं तीन तत्वों के लिए के लिए एक है

प्रायः ऐसा नहीं होता है , और न ही सामान्यतया ऐसा होता है (या ) से कोई बीजगणितीय संबंध है और .

उदाहरण

कुछ भी नया निवेदित किए बिना एक संयोजन वलय (कंपोजिशन वलय) में विनिमेय वलय R बनाने के कुछ पद्धतियाँ हैं।

  • संरचना द्वारा परिभाषित किया जा सकता है सभी के लिए f,g। परिणामी रचना वलय एक बल्कि निर्बाध है।
  • संरचना द्वारा परिभाषित किया जा सकता है सभी के लिए f,g। यह स्थिर फलनों के लिए संघटन नियम है।
  • यदि R एक बूलियन वलय है, तो गुणन रचना के रूप में दोगुना हो सकता है: सभी के लिए f,g।

R से निर्मित एक अन्य वलय पर एक रचना को परिभाषित करके और अधिक रोचक उदाहरण बनाए जा सकते हैं।

  • बहुपद वलय R [X] एक संयोजन वलय है जहाँ सभी के लिए .
  • औपचारिक घात श्रेणी वलय R''X'' एक प्रतिस्थापन ऑपरेशन भी है, लेकिन यह केवल तभी परिभाषित किया जाता है जब श्रेणी g को प्रतिस्थापित किया जा रहा है जिसमें शून्य स्थिर शब्द है (यदि नहीं, तो परिणाम की निरंतर अवधि मनमाना गुणांक के साथ एक अनंत श्रेणी द्वारा दी जाएगी)। इसलिए, R का उपसमुच्चय R''X'' शून्य स्थिर गुणांक के साथ घात श्रेणी द्वारा बनाई गई संरचना को बहुपद के समान प्रतिस्थापन नियम द्वारा दी गई संरचना के साथ एक संरचना वलय में बनाया जा सकता है। चूंकि अशून्य स्थिर श्रेणी अनुपस्थित हैं, इसलिए इस रचना वलय में गुणक इकाई नहीं है।
  • यदि R एक अभिन्न प्रभावक्षेत्र है, तो परिमेय कार्यों के क्षेत्र R(X) में भी बहुपदों से व्युत्पन्न एक प्रतिस्थापन संक्रिया होती है: अंश g को प्रतिस्थापित करना g1/g2 X के लिए डिग्री n के बहुपद में भाजक के साथ एक परिमेय फलन देता है , और एक अंश में प्रतिस्थापित करके दिया जाता है
हालांकि, औपचारिक घात श्रेणी के लिए, रचना को सदैव परिभाषित नहीं किया जा सकता है जब सही संकार्य g एक स्थिरांक हो: दिए गए सूत्र में भाजक समान रूप से शून्य नहीं होना चाहिए। इसलिए एक अच्छी तरह से परिभाषित संरचना संचालन के लिए R(X) के एक सबवलय तक सीमित होना चाहिए; एक उपयुक्त सबवलय तर्कसंगत कार्यों द्वारा दिया जाता है जिसमें अंश के पास शून्य स्थिर शब्द होता है, लेकिन भाजक के पास शून्येतर स्थिर शब्द होता है। फिर से इस रचना वलय की कोई गुणात्मक इकाई नहीं है; यदि R एक क्षेत्र है, तो यह वास्तव में औपचारिक घात श्रेणी उदाहरण का उप-वलय है।
  • बिंदुवार जोड़ और गुणा के तहत R से R तक सभी कार्यों का समुच्चय, और साथ कार्यों की संरचना द्वारा दिया गया, एक रचना वलय है। इस विचार की कई भिन्नताएं हैं, जैसे निरंतर, निर्विघ्ऩ, होलोमोर्फिक, या बहुपद कार्यों की वलय एक वलय से स्वयं तक, जब ये अवधारणाएं समझ में आती हैं।

यथार्थपूर्ण उदाहरण के लिए वलय को पूर्णांक से बहुपद प्रतिचित्रण का वलय माना जाता हैI एक वलय एंडोमोर्फिज्म

का के तहत छवि द्वारा निर्धारित किया जाता है चर का , जिसे हम निरूपित करते हैं

और यह छवि का कोई भी तत्व हो सकता है . इसलिए, कोई तत्वों पर विचार कर सकता है एंडोमोर्फिज्म के रूप में और असाइन करें , इसलिए इसे आसानी से सत्यापित करता है उपरोक्त सिद्धांतों को संतुष्ट करता है। उदाहरण के लिए

यह उदाहरण R[X] के लिए R के बराबर दिए गए उदाहरण के लिए आइसोमोर्फिक है , और सभी कार्यों के सब-वलय के लिए भी बहुपद कार्यों द्वारा गठित है।

यह भी देखें

संदर्भ

  • Adler, Irving (1962), "Composition rings", Duke Mathematical Journal, 29 (4): 607–623, doi:10.1215/S0012-7094-62-02961-7, ISSN 0012-7094, MR 0142573