बोह्र त्रिज्या: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 85: | Line 85: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 06/02/2023]] | [[Category:Created On 06/02/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 12:52, 16 February 2023
Symbol | a0 or rBohr |
---|---|
Named after | Niels Bohr |
Approximate values (to three significant digits) | |
SI units | 5.29×10−11 m |
natural units | 3.27×1024 ℓP |
बोह्र त्रिज्या (a0) वह भौतिक स्थिरांक है, जो परमाणु नाभिक और हाइड्रोजन परमाणु में इसकी मौलिक अवस्था में इलेक्ट्रॉन के बीच की सबसे संभावित दूरी के बराबर है। परमाणु के बोहर मॉडल में इसकी भूमिका के कारण इसका नाम नील्स बोह्र के नाम पर रखा गया है। इसका मान है 5.29177210903(80)×10−11 m.[1][2]
परिभाषा और मान
बोह्र त्रिज्या को नीचे लिखे गए सूत्र से परिभाषित किया जा सकता है।[3]
- मुक्त स्थान की पारगम्यता है,
- घटी हुई प्लैंक स्थिरांक है,
- इलेक्ट्रॉन द्रव्यमान है,
- प्राथमिक मान है,
- निर्वात में प्रकाश की गति है, और
- ठीक-संरचना स्थिरांक है।
बोह्र त्रिज्या (SI इकाइयों में) का कोडेटा मान 5.29177210903(80)×10−11 m.[1] है।
इतिहास
1913 में नील्स बोह्र द्वारा प्रस्तावित परमाणु संरचना के बोह्र मॉडल में, विद्युत स्थैतिक आकर्षण के कारण इलेक्ट्रॉन केंद्रीय परमाणु नाभिक की परिक्रमा करते हैं। मूल व्युत्पत्ति के कारण हम मान सकते हैं कि इलेक्ट्रॉनों में प्लांक स्थिरांक के पूर्णांक गुणकों में कक्षीय कोणीय गति होती है, जो इन स्तरों में से प्रत्येक के लिए निश्चित त्रिज्या की भविष्यवाणी के साथ-साथ उत्सर्जन स्पेक्ट्रा में असतत ऊर्जा स्तरों के अवलोकन से सफलतापूर्वक मेल खाती है। सबसे सरल परमाणु, हाइड्रोजन में एकल इलेक्ट्रॉन नाभिक की परिक्रमा करता है, और इसकी सबसे छोटी संभव कक्षा में कम ऊर्जा के साथ बोह्र त्रिज्या के लगभग बराबर कक्षीय त्रिज्या होती है। (यह कम द्रव्यमान के कारण बोह्र त्रिज्या नहीं है। वे लगभग 0.05% भिन्न हैं।)
1926 में प्रकाशित श्रोडिंगर समीकरण का पालन करते हुए परमाणु के बोह्र मॉडल को इलेक्ट्रॉन संभाव्यता क्लाउड द्वारा पृथक कर दिया जाता था। इस त्रुटिहीन और अतिसूक्ष्म संरचना का उत्पादन करने के लिए घूर्णन और क्वांटम निर्वात प्रभावों से और जटिल होती है। फिर भी बोह्र त्रिज्या सूत्र परमाणु भौतिकी की गणना में केंद्रित रहता है, मौलिक स्थिरांक के साथ यह अपने सरल संबंधों के कारण (यही कारण है कि इसे कम द्रव्यमान के अतिरिक्त वास्तविक इलेक्ट्रॉन द्रव्यमान का उपयोग करके परिभाषित किया गया है, जैसा कि ऊपर उल्लेख किया गया है)। इस प्रकार यह परमाणु की इकाइयों में लम्बाई की इकाई को प्रदर्शित करता हैं।
श्रोडिंगर के हाइड्रोजन परमाणु के क्वांटम-यांत्रिकी सिद्धांत में, बोह्र त्रिज्या रेडियल समन्वय का मान है जिसके लिए इलेक्ट्रॉन स्थिति की रेडियल संभाव्यता घनत्व उच्चतम है। इसके विपरीत, इलेक्ट्रॉन की रेडियल दूरी का अपेक्षित मान is 3/2a0 होता हैं।[4]
संबंधित स्थिरांक
बोह्र त्रिज्या लंबाई की संबंधित इकाइयों में से है, अन्य दो इलेक्ट्रॉन की कॉम्पटन तरंग दैर्ध्य हैं () और मौलिक इलेक्ट्रॉन त्रिज्या ()। इन स्थिरांकों में से किसी को फ़ाइन-स्ट्रक्चर स्थिरांक का उपयोग करके किसी भी अन्य के संदर्भ में लिखा जा सकता है :
हाइड्रोजन परमाणु और इसकी प्रणाली
हाइड्रोजन परमाणु में कम द्रव्यमान के प्रभाव को बोह्र त्रिज्या द्वारा प्रदर्शित किया गया है
जहाँ इलेक्ट्रॉन-प्रोटॉन प्रणाली का कम द्रव्यमान है।( के साथ प्रोटॉन का द्रव्यमान होना) कम द्रव्यमान का उपयोग मौलिक भौतिकी में दो-भौतिक समस्याओं का सामान्यीकरण किया जाता है जब हम इस अनुमान के बाहर निकलते हैं तो यह परिक्रमा करने वाले पदार्थ के द्रव्यमान की तुलना में नगण्य होता है। चूंकि इलेक्ट्रॉन-प्रोटॉन प्रणाली का घटा हुआ द्रव्यमान इलेक्ट्रॉन द्रव्यमान से थोड़ा सा छोटा होता है, कम बोह्र त्रिज्या बोह्र त्रिज्या से थोड़ा बड़ा होता है ( मीटर)।
इस परिणाम को अन्य प्रणालियों के लिए सामान्यीकृत किया जा सकता है, जैसे कि प्रणाली के कम द्रव्यमान का उपयोग करके और आवेश में संभावित परिवर्तन पर विचार करके पॉजिट्रोनियम (पॉज़िट्रॉन की परिक्रमा करने वाले इलेक्ट्रॉन) और म्यूओनियम (एक एंटी-म्यूऑन की परिक्रमा करने वाले इलेक्ट्रॉन)। सामान्यतः बोह्र मॉडल संबंधों (त्रिज्या, ऊर्जा, आदि) को इन विदेशी प्रणालियों के लिए सरलता से संशोधित किया जा सकता है (न्यूनतम क्रम तक) प्रणाली के लिए कम द्रव्यमान के साथ इलेक्ट्रॉन द्रव्यमान को बदलकर (साथ ही उचित होने पर आवेश समायोजित करना) . उदाहरण के लिए, पॉज़िट्रोनियम की त्रिज्या लगभग है , चूंकि पॉज़िट्रोनियम प्रणाली का घटा हुआ द्रव्यमान इलेक्ट्रॉन द्रव्यमान का आधा अर्ताथ होता है।
हाइड्रोजन जैसे परमाणु में बोह्र त्रिज्या होती हैं जो मुख्य रूप से के साथ नाभिक में प्रोटॉन की संख्या को स्केल करती है। इस बीच द्रव्यमान , के द्वारा उचित अनुमानित हो जाता है, इस प्रकार बढ़ते हुए परमाणु द्रव्यमान की सीमा में इन परिणामों को समीकरण में संक्षेपित किया गया है
अनुमानित संबंधों की तालिका नीचे दी गई है।
प्रणाली | त्रिज्या |
---|---|
हाइड्रोजन | |
पाजिट्रोनियम | |
म्यूओनियम | |
He+ | |
Li2+ |
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 "2018 CODATA Value: Bohr radius". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
- ↑ The number in parenthesis denotes the uncertainty of the last digits.
- ↑ David J. Griffiths, Introduction to Quantum Mechanics, Prentice-Hall, 1995, p. 137. ISBN 0-13-124405-1
- ↑ Nave, Rod. "The Most Probable Radius: Hydrogen Ground State". HyperPhysics. Dept. of Physics and Astronomy, Georgia State University. Retrieved 2 October 2021.
The Schrodinger equation confirms the first Bohr radius as the most probable radius.