डेल्टॉइड वक्र: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Roulette curve made from circles with radii that differ by factors of 3 or 1.5}}[[ज्यामिति]] में, एक डेल्टॉइड वक्र, जिसे ट्राइकसपॉइड वक्र या स्टेनर वक्र के रूप में भी जाना जाता है,और यह तीन कस्प (विलक्षणता) का एक [[हाइपोसाइक्लॉइड]] होता है। दूसरे शब्दों में, यह एकवृत्तकी [[परिधि]] पर एक बिंदु द्वारा बनाई गई रूलेट (वक्र) होती है, यह क्योंकि यह एक वृत्त के अंदर तीन या डेढ़ गुना त्रिज्या के साथ फिसले बिना लुढ़कता है। इसका नाम राजधानी ग्रीक अक्षर [[डेल्टा (पत्र)]]अक्षर) (Δ) के नाम पर रखा गया है, जो इससे मिलता जुलता है।
{{Short description|Roulette curve made from circles with radii that differ by factors of 3 or 1.5}}[[ज्यामिति]] में, डेल्टॉइड वक्र, जिसे ट्राइकसपॉइड वक्र या स्टेनर वक्र के रूप में भी जाना जाता है,और यह तीन कस्प (विलक्षणता) का [[हाइपोसाइक्लॉइड]] होता है। दूसरे शब्दों में, यह एकवृत्तकी [[परिधि]] पर बिंदु द्वारा बनाई गई रूलेट (वक्र) होती है, यह क्योंकि यह वृत्त के अंदर तीन या डेढ़ गुना त्रिज्या के साथ फिसले बिना लुढ़कता है। इसका नाम ग्रीक अक्षर में [[डेल्टा (पत्र)|डेल्टा (अक्षर)]] के नाम पर रखा गया है, जो (Δ) से मिलता जुलता है।


मुख्यतः रूप से, एक ''डेल्टॉइड'' किसी भी बंद आकृति को संदर्भित कर सकता है जिसमें वक्रों से जुड़े तीन कोने होते हैं जो बाहरी रूप से अवतल होते हैं, जिससे आंतरिक बिंदुओं को एक गैर-[[उत्तल सेट]] बनाते हैं।<ref>{{cite web|url=http://www.se16.info/js/halfarea.htm|title=Area bisectors of a triangle|website=www.se16.info|accessdate=26 October 2017}}</ref>
मुख्यतः ''डेल्टॉइड'' किसी भी बंद आकृति को संदर्भित करता है जिसमें वक्रों से जुड़े तीन कोने होते हैं जो बाहरी रूप से अवतल होता हैं, जो आंतरिक बिंदुओं पर गैर-[[उत्तल सेट|उत्तल समूह]] बनाते हैं।<ref>{{cite web|url=http://www.se16.info/js/halfarea.htm|title=Area bisectors of a triangle|website=www.se16.info|accessdate=26 October 2017}}</ref>
==समीकरण ==
==समीकरण ==
निम्नलिखित [[पैरामीट्रिक समीकरण]]ों द्वारा एक हाइपोसाइक्लॉइड का प्रतिनिधित्व ([[ROTATION]] और [[अनुवाद (ज्यामिति)]] तक) किया जा सकता है
निम्नलिखित [[पैरामीट्रिक समीकरण|पैरामीट्रिक समीकरणों]] द्वारा हाइपोसाइक्लॉइड का प्रतिनिधित्व ([[ROTATION|घूर्णन]] और [[अनुवाद (ज्यामिति)|अनुवाद ज्यामिति]] में किया जा सकता है
:<math>x=(b-a)\cos(t)+a\cos\left(\frac{b-a}at\right) \,</math>
:<math>x=(b-a)\cos(t)+a\cos\left(\frac{b-a}at\right) \,</math>
:<math>y=(b-a)\sin(t)-a\sin\left(\frac{b-a}at\right) \, ,</math>
:<math>y=(b-a)\sin(t)-a\sin\left(\frac{b-a}at\right) \, ,</math>
जहाँ a रोलिंग वृत्त की त्रिज्या है, b उस वृत्त की त्रिज्या है जिसके अंदर पूर्वोक्त वृत्त रोलिंग करता है। (उपरोक्त चित्रण में b = 3a त्रिभुजाकार का पता लगा रहता है।)
जहाँ a घूर्णन वृत्त की त्रिज्या है, तभ b उस वृत्त की त्रिज्या है जिसके अंदर पूर्वोक्त वृत्त घूर्णन करता है। (उपरोक्त चित्रण में b = 3a त्रिभुजाकार आकृति को इंगित कर रहा है।)


और जटिल निर्देशांक में यह बन जाता है
और निर्देशांक में यह इस समीकरण द्वारा प्रदर्शित किया जाता है
:<math>z=2ae^{it}+ae^{-2it}</math>.
:<math>z=2ae^{it}+ae^{-2it}</math>.


कार्तीय समीकरण देने के लिए चर टी को इन समीकरणों से हटाया जा सकता है  
कार्तीय समीकरण देने के लिए चर t को इन समीकरणों से हटाया जा सकता है  
:<math>(x^2+y^2)^2+18a^2(x^2+y^2)-27a^4 = 8a(x^3-3xy^2),\,</math>
:<math>(x^2+y^2)^2+18a^2(x^2+y^2)-27a^4 = 8a(x^3-3xy^2),\,</math>
इसलिए तिकोना डिग्री चार का एक [[बीजगणितीय वक्र]] है। ध्रुवीय निर्देशांक में यह बन जाता है
इसलिए 4 डिग्री त्रिकोण के [[बीजगणितीय वक्र]] के रूप में प्रदर्शित होता है। जो ध्रुवीय निर्देशांकों में इस समीकरण का रूप ले लेता हैं
:<math>r^4+18a^2r^2-27a^4=8ar^3\cos 3\theta\,.</math>
:<math>r^4+18a^2r^2-27a^4=8ar^3\cos 3\theta\,.</math>
वक्र में तीन विलक्षणताएँ होती हैं, जिसके अनुरूप क्यूसेप्स होते हैं <math>t=0,\, \pm\tfrac{2\pi}{3}</math>. उपरोक्त पैरामीटरकरण का अर्थ है कि वक्र तर्कसंगत है जिसका अर्थ है कि इसमें [[ज्यामितीय जीनस]] शून्य है।
इस वक्र में तीन विलक्षणताएँ होती हैं, जिसके अनुरूप क्यूसेप्स <math>t=0,\, \pm\tfrac{2\pi}{3}</math> होते हैं, उपरोक्त परिमापीकरण का अर्थ है कि वक्र तर्कसंगत है जिसका अर्थ है कि इसमें [[ज्यामितीय जीनस]] का मान शून्य है।


एक रेखा खंड डेल्टॉइड पर प्रत्येक छोर के साथ स्लाइड कर सकता है और डेल्टॉइड के स्पर्शरेखा में रह सकता है। स्पर्शरेखा का बिंदु डेल्टॉइड के चारों ओर दो बार घूमता है जबकि प्रत्येक छोर एक बार इसके चारों ओर घूमता है।
एक रेखा खंड डेल्टॉइड पर प्रत्येक छोर के साथ स्लाइड कर सकता है और डेल्टॉइड के स्पर्शरेखा के द्वारा निरूपित होता है। स्पर्शरेखा का बिंदु डेल्टॉइड के चारों ओर दो बार घूर्णन करता है जबकि इसके प्रत्येक छोर कई बार घूर्णन करते हैं।


डेल्टॉइड का दोहरा वक्र है
डेल्टॉइड का दोहरा वक्र कुछ इस प्रकार प्रदर्शित किया जाता है
:<math>x^3-x^2-(3x+1)y^2=0,\,</math>
:<math>x^3-x^2-(3x+1)y^2=0,\,</math>
जिसका मूल बिंदु पर एक दोहरा बिंदु है जिसे वक्र देते हुए एक काल्पनिक घुमाव y ↦ iy द्वारा प्लॉटिंग के लिए दृश्यमान बनाया जा सकता है
जिसका मूल बिंदु पर दोहरा बिंदु है जिसे वक्र देते हुए काल्पनिक घूर्णन y ↦ iy द्वारा प्लॉटिंग के लिए दृश्यमान बनाया जा सकता है
:<math>x^3-x^2+(3x+1)y^2=0\,</math>
:<math>x^3-x^2+(3x+1)y^2=0\,</math>
वास्तविक तल की उत्पत्ति पर दोहरे बिंदु के साथ।
वास्तविक तल की उत्पत्ति पर दोहरे बिंदु के साथ प्रदर्शित किया गया हैं।


==क्षेत्र और परिधि==
==क्षेत्र और परिधि==


लियोनहार्ड यूलर एक ऑप्टिकल समस्या के संबंध में 1745 में वास्तविक डेल्टॉइड के पहले विचार का दावा करता है।है; इस प्रकार डेल्टॉइड का क्षेत्रफल रोलिंगवृत्तसे दोगुना है।<ref name="Weisstein">Weisstein, Eric W. "Deltoid." From [[MathWorld]]--A Wolfram Web Resource. http://mathworld.wolfram.com/Deltoid.html</ref>
लियोनहार्ड यूलर ऑप्टिकल समस्या के संबंध में 1745 में वास्तविक डेल्टॉइड के पहले विचार का इंगित करता है। इस प्रकार डेल्टॉइड का क्षेत्रफल रोलिंगवृत्तसे दोगुना है।<ref name="Weisstein">Weisstein, Eric W. "Deltoid." From [[MathWorld]]--A Wolfram Web Resource. http://mathworld.wolfram.com/Deltoid.html</ref> डेल्टॉइड की परिधि (कुल चाप लंबाई) 16a है।<ref name="Weisstein" />
डेल्टॉइड की परिधि (कुल चाप लंबाई) 16a है।<ref name="Weisstein" />
==इतिहास==
==इतिहास==
1599 की शुरुआत में [[गैलीलियो गैलीली]] और [[मारिन मेर्सेन]] द्वारा साधारण [[चक्रज]]्स का अध्ययन किया गया था, लेकिन गियर दांतों के लिए सबसे अच्छे रूप का अध्ययन करते हुए 1674 में ओले रोमर द्वारा पहली बार साइक्लॉयड वक्र की कल्पना की गई थी। [[लियोनहार्ड यूलर]] एक ऑप्टिकल समस्या के संबंध में 1745 में वास्तविक डेल्टॉइड के पहले विचार का प्रामाणित करता है।
1599 की शुरुआत में [[गैलीलियो गैलीली]] और [[मारिन मेर्सेन]] द्वारा साधारण [[चक्रज]]्स का अध्ययन किया गया था, लेकिन गियर दांतों के लिए सबसे अच्छे रूप का अध्ययन करते हुए 1674 में ओले रोमर द्वारा पहली बार साइक्लॉयड वक्र की कल्पना की गई थी। [[लियोनहार्ड यूलर]] ऑप्टिकल समस्या के संबंध में 1745 में वास्तविक डेल्टॉइड के पहले विचार का प्रामाणित करता है।


== अनुप्रयोग==
== अनुप्रयोग==
डेल्टोइड्स गणित के कई क्षेत्रों में उत्पन्न होते हैं। उदाहरण के लिए:
डेल्टोइड्स गणित के कई क्षेत्रों में उत्पन्न होते हैं। उदाहरण के लिए:


*ऑर्डर तीन के [[unistochastic]] मैट्रिसेस के जटिल eigenvalues ​​​​का सेट एक डेल्टॉइड बनाता है।
*ऑर्डर तीन के [[unistochastic]] मैट्रिसेस के जटिल eigenvalues ​​​​का सेट डेल्टॉइड बनाता है।
*ऑर्डर के यूनिस्टोकैस्टिक मैट्रिसेस के सेट का एक क्रॉस-सेक्शन तीन एक डेल्टॉइड बनाता है।
*ऑर्डर के यूनिस्टोकैस्टिक मैट्रिसेस के सेट का क्रॉस-सेक्शन तीन डेल्टॉइड बनाता है।
*[[समूह (गणित)]] SU(3) से संबंधित एकात्मक मैट्रिसेस के संभावित अंशों का सेट एक डेल्टॉइड बनाता है।
*[[समूह (गणित)]] SU(3) से संबंधित एकात्मक मैट्रिसेस के संभावित अंशों का सेट डेल्टॉइड बनाता है।
*दो डेल्टोइड्स का प्रतिच्छेदन क्रम छह के [[कॉम्प्लेक्स हैडमार्ड मैट्रिक्स]] के एक परिवार को पैरामीट्रिज करता है।
*दो डेल्टोइड्स का प्रतिच्छेदन क्रम छह के [[कॉम्प्लेक्स हैडमार्ड मैट्रिक्स]] के परिवार को पैरामीट्रिज करता है।
*दिए गए त्रिभुज की सभी सिमसन रेखाओं का समुच्चय, एक डेल्टॉइड के आकार का एक [[लिफाफा (गणित)]] बनाता है। 1856 में वक्र के आकार और समरूपता का वर्णन करने वाले [[जैकब स्टेनर]] के बाद इसे स्टेनर डेल्टॉइड या स्टेनर के हाइपोसाइक्लॉइड के रूप में जाना जाता है।<ref>Lockwood</ref>
*दिए गए त्रिभुज की सभी सिमसन रेखाओं का समुच्चय, डेल्टॉइड के आकार का [[लिफाफा (गणित)]] बनाता है। 1856 में वक्र के आकार और समरूपता का वर्णन करने वाले [[जैकब स्टेनर]] के बाद इसे स्टेनर डेल्टॉइड या स्टेनर के हाइपोसाइक्लॉइड के रूप में जाना जाता है।<ref>Lockwood</ref>
*समद्विभाजन का लिफ़ाफ़ा (गणित)#त्रिभुज का त्रिभुज क्षेत्र समद्विभाजक माध्यिका (ज्यामिति) के मध्यबिंदुओं पर शीर्षों के साथ एक त्रिभुजाकार (ऊपर परिभाषित व्यापक अर्थ में) है। डेल्टॉइड की भुजाएँ [[अतिशयोक्ति]] के चाप हैं जो त्रिभुज की भुजाओं के लिए स्पर्शोन्मुख हैं।<ref>Dunn, J. A., and Pretty, J. A., "Halving a triangle," ''[[Mathematical Gazette]]'' 56, May 1972, 105-108.</ref> [http://www.se16.info/js/halfarea.htm]
*समद्विभाजन का लिफ़ाफ़ा (गणित)#त्रिभुज का त्रिभुज क्षेत्र समद्विभाजक माध्यिका (ज्यामिति) के मध्यबिंदुओं पर शीर्षों के साथ त्रिभुजाकार (ऊपर परिभाषित व्यापक अर्थ में) है। डेल्टॉइड की भुजाएँ [[अतिशयोक्ति]] के चाप हैं जो त्रिभुज की भुजाओं के लिए स्पर्शोन्मुख हैं।<ref>Dunn, J. A., and Pretty, J. A., "Halving a triangle," ''[[Mathematical Gazette]]'' 56, May 1972, 105-108.</ref> [http://www.se16.info/js/halfarea.htm]
*काकेया_सेट#काकेया सुई समस्या के समाधान के रूप में एक डेल्टॉइड प्रस्तावित किया गया था।
*काकेया_सेट#काकेया सुई समस्या के समाधान के रूप में डेल्टॉइड प्रस्तावित किया गया था।


==यह भी देखें==
==यह भी देखें==
*[[एस्ट्रॉयड]], चार कस्प वाला एक वक्र
*[[एस्ट्रॉयड]], चार कस्प वाला वक्र
*वृत्ताकार त्रिभुज, वृत्ताकार चापों से बना तीन-नुकीला वक्र
*वृत्ताकार त्रिभुज, वृत्ताकार चापों से बना तीन-नुकीला वक्र
*[[आदर्श त्रिकोण]], अतिशयोक्तिपूर्ण रेखाओं से बना तीन-नुकीला वक्र
*[[आदर्श त्रिकोण]], अतिशयोक्तिपूर्ण रेखाओं से बना तीन-नुकीला वक्र
*[[स्यूडोट्राएंगल]], तीन स्पर्शरेखा उत्तल सेटों के बीच एक तीन-बिंदु वाला क्षेत्र
*[[स्यूडोट्राएंगल]], तीन स्पर्शरेखा उत्तल सेटों के बीच तीन-बिंदु वाला क्षेत्र
*तुसी युगल, एक दो-पुच्छ रूलेट
*तुसी युगल, दो-पुच्छ रूलेट
*[[पतंग (ज्यामिति)]], जिसे डेल्टॉइड भी कहा जाता है
*[[पतंग (ज्यामिति)]], जिसे डेल्टॉइड भी कहा जाता है



Revision as of 20:13, 13 February 2023

ज्यामिति में, डेल्टॉइड वक्र, जिसे ट्राइकसपॉइड वक्र या स्टेनर वक्र के रूप में भी जाना जाता है,और यह तीन कस्प (विलक्षणता) का हाइपोसाइक्लॉइड होता है। दूसरे शब्दों में, यह एकवृत्तकी परिधि पर बिंदु द्वारा बनाई गई रूलेट (वक्र) होती है, यह क्योंकि यह वृत्त के अंदर तीन या डेढ़ गुना त्रिज्या के साथ फिसले बिना लुढ़कता है। इसका नाम ग्रीक अक्षर में डेल्टा (अक्षर) के नाम पर रखा गया है, जो (Δ) से मिलता जुलता है।

मुख्यतः डेल्टॉइड किसी भी बंद आकृति को संदर्भित करता है जिसमें वक्रों से जुड़े तीन कोने होते हैं जो बाहरी रूप से अवतल होता हैं, जो आंतरिक बिंदुओं पर गैर-उत्तल समूह बनाते हैं।[1]

समीकरण

निम्नलिखित पैरामीट्रिक समीकरणों द्वारा हाइपोसाइक्लॉइड का प्रतिनिधित्व (घूर्णन और अनुवाद ज्यामिति में किया जा सकता है

जहाँ a घूर्णन वृत्त की त्रिज्या है, तभ b उस वृत्त की त्रिज्या है जिसके अंदर पूर्वोक्त वृत्त घूर्णन करता है। (उपरोक्त चित्रण में b = 3a त्रिभुजाकार आकृति को इंगित कर रहा है।)

और निर्देशांक में यह इस समीकरण द्वारा प्रदर्शित किया जाता है

.

कार्तीय समीकरण देने के लिए चर t को इन समीकरणों से हटाया जा सकता है

इसलिए 4 डिग्री त्रिकोण के बीजगणितीय वक्र के रूप में प्रदर्शित होता है। जो ध्रुवीय निर्देशांकों में इस समीकरण का रूप ले लेता हैं

इस वक्र में तीन विलक्षणताएँ होती हैं, जिसके अनुरूप क्यूसेप्स होते हैं, उपरोक्त परिमापीकरण का अर्थ है कि वक्र तर्कसंगत है जिसका अर्थ है कि इसमें ज्यामितीय जीनस का मान शून्य है।

एक रेखा खंड डेल्टॉइड पर प्रत्येक छोर के साथ स्लाइड कर सकता है और डेल्टॉइड के स्पर्शरेखा के द्वारा निरूपित होता है। स्पर्शरेखा का बिंदु डेल्टॉइड के चारों ओर दो बार घूर्णन करता है जबकि इसके प्रत्येक छोर कई बार घूर्णन करते हैं।

डेल्टॉइड का दोहरा वक्र कुछ इस प्रकार प्रदर्शित किया जाता है

जिसका मूल बिंदु पर दोहरा बिंदु है जिसे वक्र देते हुए काल्पनिक घूर्णन y ↦ iy द्वारा प्लॉटिंग के लिए दृश्यमान बनाया जा सकता है

वास्तविक तल की उत्पत्ति पर दोहरे बिंदु के साथ प्रदर्शित किया गया हैं।

क्षेत्र और परिधि

लियोनहार्ड यूलर ऑप्टिकल समस्या के संबंध में 1745 में वास्तविक डेल्टॉइड के पहले विचार का इंगित करता है। इस प्रकार डेल्टॉइड का क्षेत्रफल रोलिंगवृत्तसे दोगुना है।[2] डेल्टॉइड की परिधि (कुल चाप लंबाई) 16a है।[2]

इतिहास

1599 की शुरुआत में गैलीलियो गैलीली और मारिन मेर्सेन द्वारा साधारण चक्रज्स का अध्ययन किया गया था, लेकिन गियर दांतों के लिए सबसे अच्छे रूप का अध्ययन करते हुए 1674 में ओले रोमर द्वारा पहली बार साइक्लॉयड वक्र की कल्पना की गई थी। लियोनहार्ड यूलर ऑप्टिकल समस्या के संबंध में 1745 में वास्तविक डेल्टॉइड के पहले विचार का प्रामाणित करता है।

अनुप्रयोग

डेल्टोइड्स गणित के कई क्षेत्रों में उत्पन्न होते हैं। उदाहरण के लिए:

  • ऑर्डर तीन के unistochastic मैट्रिसेस के जटिल eigenvalues ​​​​का सेट डेल्टॉइड बनाता है।
  • ऑर्डर के यूनिस्टोकैस्टिक मैट्रिसेस के सेट का क्रॉस-सेक्शन तीन डेल्टॉइड बनाता है।
  • समूह (गणित) SU(3) से संबंधित एकात्मक मैट्रिसेस के संभावित अंशों का सेट डेल्टॉइड बनाता है।
  • दो डेल्टोइड्स का प्रतिच्छेदन क्रम छह के कॉम्प्लेक्स हैडमार्ड मैट्रिक्स के परिवार को पैरामीट्रिज करता है।
  • दिए गए त्रिभुज की सभी सिमसन रेखाओं का समुच्चय, डेल्टॉइड के आकार का लिफाफा (गणित) बनाता है। 1856 में वक्र के आकार और समरूपता का वर्णन करने वाले जैकब स्टेनर के बाद इसे स्टेनर डेल्टॉइड या स्टेनर के हाइपोसाइक्लॉइड के रूप में जाना जाता है।[3]
  • समद्विभाजन का लिफ़ाफ़ा (गणित)#त्रिभुज का त्रिभुज क्षेत्र समद्विभाजक माध्यिका (ज्यामिति) के मध्यबिंदुओं पर शीर्षों के साथ त्रिभुजाकार (ऊपर परिभाषित व्यापक अर्थ में) है। डेल्टॉइड की भुजाएँ अतिशयोक्ति के चाप हैं जो त्रिभुज की भुजाओं के लिए स्पर्शोन्मुख हैं।[4] [1]
  • काकेया_सेट#काकेया सुई समस्या के समाधान के रूप में डेल्टॉइड प्रस्तावित किया गया था।

यह भी देखें

  • एस्ट्रॉयड, चार कस्प वाला वक्र
  • वृत्ताकार त्रिभुज, वृत्ताकार चापों से बना तीन-नुकीला वक्र
  • आदर्श त्रिकोण, अतिशयोक्तिपूर्ण रेखाओं से बना तीन-नुकीला वक्र
  • स्यूडोट्राएंगल, तीन स्पर्शरेखा उत्तल सेटों के बीच तीन-बिंदु वाला क्षेत्र
  • तुसी युगल, दो-पुच्छ रूलेट
  • पतंग (ज्यामिति), जिसे डेल्टॉइड भी कहा जाता है

संदर्भ

  1. "Area bisectors of a triangle". www.se16.info. Retrieved 26 October 2017.
  2. 2.0 2.1 Weisstein, Eric W. "Deltoid." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Deltoid.html
  3. Lockwood
  4. Dunn, J. A., and Pretty, J. A., "Halving a triangle," Mathematical Gazette 56, May 1972, 105-108.