एकीकृत संवृत प्रभाव क्षेत्र: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Algebraic structures |Ring}} | {{Algebraic structures |Ring}} | ||
[[क्रमविनिमेय बीजगणित]] में, अभिन्न रूप से बंद डोमेन | [[क्रमविनिमेय बीजगणित]] में, एक अभिन्न रूप से बंद डोमेन A एक [[अभिन्न डोमेन]] है जिसका अंशों के क्षेत्र में [[अभिन्न तत्व]] बंद होना स्वयं A है। स्पष्ट रूप से, इसका मतलब यह है कि यदि एक्स A के अंशों के क्षेत्र का एक तत्व है जो A में गुणांक वाले एक [[मोनिक बहुपद]] की जड़ है, तो एक्स स्वयं A का एक तत्व है। कई अच्छी तरह से अध्ययन किए गए डोमेन अभिन्न रूप से बंद क्षेत्र हैं पूर्णांक Z का वलय, अद्वितीय गुणनखंड डोमेन और नियमित स्थानीय वलय सभी अभिन्न रूप से बंद हैं। | ||
ध्यान दें कि एकीकृत रूप से बंद डोमेन [[उपवर्ग (सेट सिद्धांत)]] की निम्नलिखित श्रृंखला में दिखाई देते हैं:{{Commutative ring classes}} | ध्यान दें कि एकीकृत रूप से बंद डोमेन [[उपवर्ग (सेट सिद्धांत)]] की निम्नलिखित श्रृंखला में दिखाई देते हैं:{{Commutative ring classes}} | ||
Line 6: | Line 6: | ||
== मूल गुण == | == मूल गुण == | ||
मान लीजिए कि A अंश K के क्षेत्र के साथ एक अभिन्न रूप से बंद डोमेन है और L को K का एक क्षेत्र विस्तार होने दें। फिर x∈L A पर अभिन्न तत्व है अगर और केवल अगर यह के पर [[बीजगणितीय तत्व]] है और K पर इसका [[न्यूनतम बहुपद (क्षेत्र सिद्धांत)]] A में गुणांक हैं।<ref>Matsumura, Theorem 9.2</ref> विशेष रूप से, इसका मतलब यह है कि A पर L अभिन्न का कोई भी तत्व A [X] में मोनिक बहुपद का मूल है जो कि K [X] में अपरिवर्तनीय बहुपद है। | |||
यदि A क्षेत्र K में समाहित डोमेन है, तो हम K में A के अभिन्न समापन पर विचार कर सकते हैं (अर्थात K के सभी तत्वों का सेट जो A पर अभिन्न हैं)। यह [[अभिन्न बंद]] | यदि A क्षेत्र K में समाहित डोमेन है, तो हम K में A के अभिन्न समापन पर विचार कर सकते हैं (अर्थात K के सभी तत्वों का सेट जो A पर अभिन्न हैं)। यह [[अभिन्न बंद]] अभिन्न रूप से बंद डोमेन है। | ||
एकीकृत रूप से बंद डोमेन [[गोइंग-डाउन प्रमेय]] की परिकल्पना में भी भूमिका निभाते हैं। प्रमेय कहता है कि यदि A⊆B डोमेन का [[अभिन्न विस्तार]] है और A अभिन्न रूप से बंद डोमेन है, तो ऊपर और नीचे जाने वाली संपत्ति A⊆B विस्तार के लिए होती है। | एकीकृत रूप से बंद डोमेन [[गोइंग-डाउन प्रमेय]] की परिकल्पना में भी भूमिका निभाते हैं। प्रमेय कहता है कि यदि A⊆B डोमेन का [[अभिन्न विस्तार]] है और A अभिन्न रूप से बंद डोमेन है, तो ऊपर और नीचे जाने वाली संपत्ति A⊆B विस्तार के लिए होती है। | ||
Line 32: | Line 32: | ||
* A नियमित स्थानीय वलय है। | * A नियमित स्थानीय वलय है। | ||
मान लीजिए A नोथेरियन | मान लीजिए A नोथेरियन अभिन्न डोमेन है। तब A अभिन्न रूप से बंद होता है यदि और केवल यदि (i) A सभी स्थानीयकरणों का प्रतिच्छेदन है <math>A_\mathfrak{p}</math> प्रमुख आदर्शों पर <math>\mathfrak{p}</math> ऊंचाई 1 और (ii) स्थानीयकरण <math>A_\mathfrak{p}</math> प्रमुख आदर्श पर <math>\mathfrak{p}</math> ऊँचाई 1 असतत मूल्यांकन वलय है। | ||
नोथेरियन रिंग [[क्रुल डोमेन]] है अगर और केवल अगर यह अभिन्न रूप से बंद डोमेन है। | नोथेरियन रिंग [[क्रुल डोमेन]] है अगर और केवल अगर यह अभिन्न रूप से बंद डोमेन है। | ||
Line 63: | Line 63: | ||
# ए<sub>''m''</sub> प्रत्येक [[अधिकतम आदर्श]] m के लिए अभिन्न रूप से बंद है। | # ए<sub>''m''</sub> प्रत्येक [[अधिकतम आदर्श]] m के लिए अभिन्न रूप से बंद है। | ||
स्थानीयकरण के तहत | स्थानीयकरण के तहत अभिन्न क्लोजर के संरक्षण से तुरंत 1 → 2 परिणाम; 2 → 3 तुच्छ है; 3 → 1 स्थानीयकरण के तहत अभिन्न क्लोजर के संरक्षण से परिणाम, मॉड्यूल # फ्लैटनेस का स्थानीयकरण, और ए-मॉड्यूल एम की संपत्ति शून्य है अगर और केवल अगर इसका स्थानीयकरण प्रत्येक अधिकतम आदर्श के संबंध में शून्य है। | ||
इसके विपरीत, 'Z'[t]/(t<sup>2</sup>+4) पूरी तरह से बंद नहीं है। | इसके विपरीत, 'Z'[t]/(t<sup>2</sup>+4) पूरी तरह से बंद नहीं है। |
Revision as of 07:03, 16 February 2023
Algebraic structures |
---|
क्रमविनिमेय बीजगणित में, एक अभिन्न रूप से बंद डोमेन A एक अभिन्न डोमेन है जिसका अंशों के क्षेत्र में अभिन्न तत्व बंद होना स्वयं A है। स्पष्ट रूप से, इसका मतलब यह है कि यदि एक्स A के अंशों के क्षेत्र का एक तत्व है जो A में गुणांक वाले एक मोनिक बहुपद की जड़ है, तो एक्स स्वयं A का एक तत्व है। कई अच्छी तरह से अध्ययन किए गए डोमेन अभिन्न रूप से बंद क्षेत्र हैं पूर्णांक Z का वलय, अद्वितीय गुणनखंड डोमेन और नियमित स्थानीय वलय सभी अभिन्न रूप से बंद हैं।
ध्यान दें कि एकीकृत रूप से बंद डोमेन उपवर्ग (सेट सिद्धांत) की निम्नलिखित श्रृंखला में दिखाई देते हैं:
- rngs ⊃ rings ⊃ commutative rings ⊃ integral domains ⊃ integrally closed domains ⊃ GCD domains ⊃ unique factorization domains ⊃ principal ideal domains ⊃ Euclidean domains ⊃ fields ⊃ algebraically closed fields
मूल गुण
मान लीजिए कि A अंश K के क्षेत्र के साथ एक अभिन्न रूप से बंद डोमेन है और L को K का एक क्षेत्र विस्तार होने दें। फिर x∈L A पर अभिन्न तत्व है अगर और केवल अगर यह के पर बीजगणितीय तत्व है और K पर इसका न्यूनतम बहुपद (क्षेत्र सिद्धांत) A में गुणांक हैं।[1] विशेष रूप से, इसका मतलब यह है कि A पर L अभिन्न का कोई भी तत्व A [X] में मोनिक बहुपद का मूल है जो कि K [X] में अपरिवर्तनीय बहुपद है।
यदि A क्षेत्र K में समाहित डोमेन है, तो हम K में A के अभिन्न समापन पर विचार कर सकते हैं (अर्थात K के सभी तत्वों का सेट जो A पर अभिन्न हैं)। यह अभिन्न बंद अभिन्न रूप से बंद डोमेन है।
एकीकृत रूप से बंद डोमेन गोइंग-डाउन प्रमेय की परिकल्पना में भी भूमिका निभाते हैं। प्रमेय कहता है कि यदि A⊆B डोमेन का अभिन्न विस्तार है और A अभिन्न रूप से बंद डोमेन है, तो ऊपर और नीचे जाने वाली संपत्ति A⊆B विस्तार के लिए होती है।
उदाहरण
निम्नलिखित अभिन्न रूप से बंद डोमेन हैं।
- प्रमुख आदर्श डोमेन (विशेष रूप से: पूर्णांक और कोई भी क्षेत्र)।
- अद्वितीय गुणनखंडन डोमेन (विशेष रूप से, किसी फ़ील्ड पर, पूर्णांकों पर, या किसी अद्वितीय गुणनखंडन डोमेन पर कोई बहुपद वलय)।
- जीसीडी डोमेन (विशेष रूप से, कोई बेज़ाउट डोमेन या मूल्यांकन डोमेन)।
- डेडेकिंड डोमेन।
- क्षेत्र पर सममित बीजगणित (चूंकि प्रत्येक सममित बीजगणित क्षेत्र में कई चर में बहुपद अंगूठी के लिए आइसोमोर्फिक है)।
- होने देना विशेषता का क्षेत्र हो न कि 2 और इसके ऊपर बहुपद की अंगूठी। अगर वर्ग-मुक्त बहुपद है | वर्ग-मुक्त गैर-स्थिर बहुपद है , तब अभिन्न रूप से बंद डोमेन है।[2] विशेष रूप से, अभिन्न रूप से बंद डोमेन है अगर .[3]
गैर-उदाहरण देने के लिए,[4] चलो कश्मीर क्षेत्र हो और (ए टी द्वारा उत्पन्न सबलजेब्रा है2 और टी3।) A अभिन्न रूप से बंद नहीं है: इसमें अंशों का क्षेत्र है , और मोनिक बहुपद चर X में मूल t है जो अंशों के क्षेत्र में है लेकिन A में नहीं है। यह इस तथ्य से संबंधित है कि समतल वक्र मूल में वक्र का विलक्षण बिंदु है।
अन्य डोमेन जो पूर्ण रूप से बंद नहीं है वह है ; इसमें तत्व नहीं है इसके अंशों के क्षेत्र में, जो मोनिक बहुपद को संतुष्ट करता है .
नोथेरियन अभिन्न रूप से बंद डोमेन
आयाम के नोथेरियन स्थानीय डोमेन ए के लिए, निम्नलिखित समतुल्य हैं।
- ए पूरी तरह से बंद है।
- A की उच्चिष्ठ गुणजावली मूलधन है।
- A असतत मूल्यांकन अंगूठी है (समतुल्य A Dedekind है।)
- A नियमित स्थानीय वलय है।
मान लीजिए A नोथेरियन अभिन्न डोमेन है। तब A अभिन्न रूप से बंद होता है यदि और केवल यदि (i) A सभी स्थानीयकरणों का प्रतिच्छेदन है प्रमुख आदर्शों पर ऊंचाई 1 और (ii) स्थानीयकरण प्रमुख आदर्श पर ऊँचाई 1 असतत मूल्यांकन वलय है।
नोथेरियन रिंग क्रुल डोमेन है अगर और केवल अगर यह अभिन्न रूप से बंद डोमेन है।
गैर-नोईथेरियन सेटिंग में, निम्नलिखित में से है: अभिन्न डोमेन पूरी तरह से बंद है अगर और केवल अगर यह सभी मूल्यांकन की अंगूठीों का प्रतिच्छेदन है जिसमें यह शामिल है।
सामान्य छल्ले
जीन पियरे सेरे, अलेक्जेंडर ग्रोथेंडिक, और मात्सुमुरा सहित लेखक सामान्य अंगूठी को अंगूठी के रूप में परिभाषित करते हैं जिसका स्थानीयकरण (कम्यूटेटिव बीजगणित) प्रमुख आदर्शों पर अभिन्न रूप से बंद डोमेन हैं। ऐसी अंगूठी अनिवार्य रूप से छोटी अंगूठी है,[5] और इसे कभी-कभी परिभाषा में शामिल किया जाता है। सामान्य तौर पर, यदि A नोथेरियन वलय वलय है, जिसके अधिकतम आदर्शों पर स्थानीयकरण सभी डोमेन हैं, तो A डोमेन का परिमित उत्पाद है।[6] विशेष रूप से यदि A नोथेरियन, सामान्य वलय है, तो उत्पाद में डोमेन अभिन्न रूप से बंद डोमेन हैं।[7] इसके विपरीत, अभिन्न रूप से बंद डोमेन का कोई परिमित उत्पाद सामान्य है। विशेष रूप से, अगर नोथेरियन, सामान्य और जुड़ा हुआ है, तो ए पूर्ण रूप से बंद डोमेन है। (cf. चिकनी किस्म)
बता दें कि A नोथेरियन रिंग है। तब (सामान्यता पर सेरे की कसौटी | सेरे की कसौटी) ए सामान्य है अगर और केवल अगर यह निम्नलिखित को संतुष्ट करता है: किसी भी प्रमुख आदर्श के लिए , <ओल प्रकार = मैं>
पूरी तरह से अभिन्न रूप से बंद डोमेन
मान लीजिए कि A प्रांत है और K इसके अंशों का क्षेत्र है। K में अवयव x को 'A पर लगभग अभिन्न' कहा जाता है यदि A और x द्वारा उत्पन्न K का अवयव A[x] A का भिन्नात्मक आदर्श है; यानी अगर कोई है ऐसा है कि सभी के लिए . तब A को 'पूरी तरह से बंद' कहा जाता है यदि K का प्रत्येक लगभग अभिन्न तत्व A में समाहित है। पूरी तरह से अभिन्न रूप से बंद डोमेन अभिन्न रूप से बंद है। इसके विपरीत, नोथेरियन अभिन्न रूप से बंद डोमेन पूरी तरह से एकीकृत रूप से बंद है।
मान लें कि ए पूरी तरह से बंद है। फिर औपचारिक शक्ति श्रृंखला की अंगूठी पूरी तरह से बंद है।[10] यह महत्वपूर्ण है क्योंकि एनालॉग अभिन्न रूप से बंद डोमेन के लिए झूठा है: R को कम से कम 2 ऊंचाई का वैल्यूएशन डोमेन होने दें (जो एकीकृत रूप से बंद है।) पूरी तरह से बंद नहीं है।[11] L को K का क्षेत्र विस्तार होने दें। फिर L में A का अभिन्न संवरण पूरी तरह से अभिन्न रूप से बंद है।[12] अभिन्न डोमेन पूरी तरह से पूरी तरह से बंद है अगर और केवल अगर ए के विभाजकों का समूह है।[13] इन्हें भी देखें: क्रुल डोमेन।
निर्माण के तहत एकीकृत रूप से बंद
निम्नलिखित शर्तें अभिन्न डोमेन ए के बराबर हैं:
- ए पूरी तरह से बंद है;
- एp (पी के संबंध में ए का स्थानीयकरण) प्रत्येक प्रमुख आदर्श पी के लिए अभिन्न रूप से बंद है;
- एm प्रत्येक अधिकतम आदर्श m के लिए अभिन्न रूप से बंद है।
स्थानीयकरण के तहत अभिन्न क्लोजर के संरक्षण से तुरंत 1 → 2 परिणाम; 2 → 3 तुच्छ है; 3 → 1 स्थानीयकरण के तहत अभिन्न क्लोजर के संरक्षण से परिणाम, मॉड्यूल # फ्लैटनेस का स्थानीयकरण, और ए-मॉड्यूल एम की संपत्ति शून्य है अगर और केवल अगर इसका स्थानीयकरण प्रत्येक अधिकतम आदर्श के संबंध में शून्य है।
इसके विपरीत, 'Z'[t]/(t2+4) पूरी तरह से बंद नहीं है।
पूरी तरह से अभिन्न रूप से बंद डोमेन के स्थानीयकरण को पूरी तरह से बंद करने की आवश्यकता नहीं है।[14] अभिन्न रूप से बंद डोमेन की सीधी सीमा अभिन्न रूप से बंद डोमेन है।
== अभिन्न रूप से बंद डोमेन == पर मॉड्यूल
This section needs expansion. You can help by adding to it. (February 2013) |
मान लीजिए A नोथेरियन अभिन्न रूप से बंद डोमेन है।
A का आदर्श I विभाजक अंश आदर्श है यदि और केवल यदि A/I के प्रत्येक संबद्ध प्रधान की ऊंचाई है।[15] बता दें कि पी ऊंचाई के ए में सभी प्रमुख आदर्शों के सेट को निरूपित करता है। यदि T अंतिम रूप से उत्पन्न मरोड़ वाला मॉड्यूल है, तो डालता है:
- ,
जो औपचारिक योग के रूप में समझ में आता है; यानी, भाजक। हम लिखते हैं डी के भाजक वर्ग के लिए। अगर एम के अधिकतम सबमॉड्यूल हैं, फिर [16] और द्वारा (बोरबाकी में) निरूपित किया जाता है .
यह भी देखें
उद्धरण
- ↑ Matsumura, Theorem 9.2
- ↑ Hartshorne 1977, Ch. II, Exercise 6.4.
- ↑ Hartshorne 1977, Ch. II, Exercise 6.5. (a)
- ↑ Taken from Matsumura
- ↑ If all localizations at maximal ideals of a commutative ring R are reduced rings (e.g. domains), then R is reduced. Proof: Suppose x is nonzero in R and x2=0. The annihilator ann(x) is contained in some maximal ideal . Now, the image of x is nonzero in the localization of R at since at means for some but then is in the annihilator of x, contradiction. This shows that R localized at is not reduced.
- ↑ Kaplansky, Theorem 168, pg 119.
- ↑ Matsumura 1989, p. 64
- ↑ Matsumura, Commutative algebra, pg. 125. For a domain, the theorem is due to Krull (1931). The general case is due to Serre.
- ↑ over an algebraically closed field
- ↑ An exercise in Matsumura.
- ↑ Matsumura, Exercise 10.4
- ↑ An exercise in Bourbaki.
- ↑ Bourbaki 1972, Ch. VII, § 1, n. 2, Theorem 1
- ↑ An exercise in Bourbaki.
- ↑ Bourbaki 1972, Ch. VII, § 1, n. 6. Proposition 10.
- ↑ Bourbaki 1972, Ch. VII, § 4, n. 7
संदर्भ
- Bourbaki, Nicolas (1972). Commutative Algebra. Paris: Hermann.
- Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157
- Kaplansky, Irving (September 1974). Commutative Rings. Lectures in Mathematics. University of Chicago Press. ISBN 0-226-42454-5.
- Matsumura, Hideyuki (1989). Commutative Ring Theory. Cambridge Studies in Advanced Mathematics (2nd ed.). Cambridge University Press. ISBN 0-521-36764-6.
- Matsumura, Hideyuki (1970). Commutative Algebra. ISBN 0-8053-7026-9.