निरंतर या असतत चर: Difference between revisions
m (6 revisions imported from alpha:निरंतर_या_असतत_चर) |
No edit summary |
||
Line 50: | Line 50: | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category: | |||
[[Category:Created On 13/02/2023]] | [[Category:Created On 13/02/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Multi-column templates]] | |||
[[Category:Pages using div col with small parameter]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Templates using under-protected Lua modules]] | |||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:गणितीय शब्दावली]] |
Revision as of 10:33, 22 February 2023
Part of a series on statistics |
Probability theory |
---|
गणित और सांख्यिकी में, एक मात्रात्मक चर (गणित) निरंतर या असतत हो सकता है यदि वे क्रमशः माप या गिनती द्वारा प्राप्त किए जाते हैं। यदि यह दो विशेष वास्तविक संख्या मानों को ग्रहण कर सकता है जैसे कि यह उन दोनों के बीच सभी वास्तविक मानों को भी ग्रहण कर सकता है (यहां तक कि वे मान भी जो स्वैच्छिक रूप से एक साथ बंद हैं), चर उस अंतराल (गणित) में निरंतर है। यदि यह ऐसा मान ग्रहण कर सकता है कि इसके प्रत्येक पक्ष में एक गैर-अतिसूक्ष्म अंतर है जिसमें कोई मान नहीं है जिसे चर ग्रहण कर सकता है, तो यह उस मान के चारों ओर असतत है।[1] कुछ संदर्भों में एक चर संख्या रेखा की कुछ श्रेणियों में असतत हो सकता है और अन्य में निरंतर हो सकता है।
निरंतर चर
एक सतत चर एक चर है जिसका मान मापने के द्वारा प्राप्त किया जाता है, अर्थात, जो मानों के अनंत समुच्चय को ग्रहण कर सकता है।
उदाहरण के लिए, वास्तविक संख्याओं की एक गैर-खाली सीमा पर एक चर निरंतर होता है, यदि वह उस सीमा में कोई मान ले सकता है। कारण यह है कि वास्तविक संख्याओं की कोई भी श्रेणी के बीच और साथ अनंत है।
गणना के विधियों अधिकांश उन समस्याओं में उपयोग किए जाते हैं जिनमें चर निरंतर होते हैं, उदाहरण के लिए निरंतर अनुकूलन समस्याओं में।[2]
आँकड़ों में, निरंतर चर के संभाव्यता वितरण को संभाव्यता घनत्व कार्यों के संदर्भ में व्यक्त किया जा सकता है।
निरंतर समय गतिशील प्रणाली में, चर समय को निरंतर माना जाता है, और समय के साथ कुछ चर के विकास का वर्णन करने वाला समीकरण एक अंतर समीकरण है। परिवर्तन की तात्कालिक दर एक सुपरिभाषित अवधारणा है।
असतत चर
इसके विपरीत, एक चर एक असतत चर है यदि और केवल यदि इस चर और के बीच एक-से-एक पत्राचार उपस्थित है , प्राकृतिक संख्याओं का समुच्चय। दूसरे शब्दों में; वास्तविक मूल्यों के एक विशेष अंतराल पर एक असतत चर वह है, जिसके लिए उस सीमा में किसी भी मूल्य के लिए जिस पर चर को लेने की अनुमति है, निकटतम अन्य अनुमेय मूल्य के लिए एक सकारात्मक न्यूनतम दूरी है। अनुमत मानों की संख्या या तो परिमित है या गणनीय रूप से अनंत है। सामान्य उदाहरण वे चर हैं जो पूर्णांक, गैर-ऋणात्मक पूर्णांक, धनात्मक पूर्णांक या केवल पूर्णांक 0 और 1 होने चाहिए।
कलन की विधियाँ असतत चरों से जुड़ी समस्याओं के लिए आसानी से स्वयं को उधार नहीं देती हैं। असतत चरों से जुड़ी समस्याओं के उदाहरणों में पूर्णांक प्रोग्रामिंग सम्मिलित है।
आँकड़ों में, असतत चरों के संभाव्यता वितरण को संभाव्यता द्रव्यमान कार्यों के संदर्भ में व्यक्त किया जा सकता है।
असतत समय की गतिशीलता में, चर समय को असतत माना जाता है, और समय के साथ कुछ चर के विकास के समीकरण को अंतर समीकरण कहा जाता है।
अर्थमिति में और सामान्यतः प्रतिगमन विश्लेषण में, कभी-कभी अनुभवजन्य रूप से एक दूसरे से संबंधित कुछ चर 0-1 चर होते हैं, केवल उन दो मानों को लेने की अनुमति दी जाती है। इस प्रकार के एक चर को डमी चर (सांख्यिकी) कहा जाता है। यदि आश्रित चर एक डमी चर है, तो लॉजिस्टिक प्रतिगमन या प्रोबिट प्रतिगमन सामान्यतः नियोजित होता है।
यह भी देखें
- निरंतर कार्य
- डेटा गिनें
- गणित पृथक करें
- सतत स्पेक्ट्रम
- असतत स्पेक्ट्रम
- असतत समय और निरंतर समय
- सतत-समय स्टोकेस्टिक प्रक्रिया
- असतत-समय स्टोकेस्टिक प्रक्रिया
- सतत मॉडलिंग
- असतत मॉडलिंग
- सतत ज्यामिति
- असतत ज्यामिति
- सतत श्रृंखला प्रतिनिधित्व
- असतत श्रृंखला प्रतिनिधित्व
- विवेक
- प्रक्षेप
- असतत उपाय
संदर्भ
- ↑ K.D. Joshi, Foundations of Discrete Mathematics, 1989, New Age International Limited, [1], page 7.
- ↑ Griva, Igor; Nash, Stephen; Sofer, Ariela (2009). Linear and nonlinear optimization (in English) (2nd ed.). Philadelphia: Society for Industrial and Applied Mathematics. p. 7. ISBN 978-0-89871-661-0. OCLC 236082842.