कार्यात्मक (गणित): Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
[[File:Arclength.svg|400px|right|thumb|चाप लंबाई कार्यात्मक में इसके डोमेन के रूप में [[सुधार योग्य वक्र]]ों का वेक्टर स्थान है - एक उप-स्थान <math>C([0,1],\R^3)</math> - और एक वास्तविक स्केलर आउटपुट करता है। यह एक गैर रेखीय कार्यात्मक का एक उदाहरण है।]] | [[File:Arclength.svg|400px|right|thumb|चाप लंबाई कार्यात्मक में इसके डोमेन के रूप में [[सुधार योग्य वक्र]]ों का वेक्टर स्थान है - एक उप-स्थान <math>C([0,1],\R^3)</math> - और एक वास्तविक स्केलर आउटपुट करता है। यह एक गैर रेखीय कार्यात्मक का एक उदाहरण है।]] | ||
[[File:Integral as region under curve.svg|thumb|right|[[रीमैन इंटीग्रल]] पर परिभाषित कार्यों के वेक्टर स्थान पर एक [[रैखिक कार्यात्मक]] है {{math|[''a'', ''b'']}} जो रीमैन-इंटीग्रेबल से हैं {{mvar|a}} को {{mvar|b}}.]]गणित में कार्यात्मक (संज्ञा के रूप में) एक निश्चित प्रकार का कार्य है। शब्द की सटीक परिभाषा उपक्षेत्र (और कभी-कभी लेखक भी) के आधार पर भिन्न होती है। | [[File:Integral as region under curve.svg|thumb|right|[[रीमैन इंटीग्रल]] पर परिभाषित कार्यों के वेक्टर स्थान पर एक [[रैखिक कार्यात्मक]] है {{math|[''a'', ''b'']}} जो रीमैन-इंटीग्रेबल से हैं {{mvar|a}} को {{mvar|b}}.]]गणित में कार्यात्मक (संज्ञा के रूप में) एक निश्चित प्रकार का कार्य है। शब्द की सटीक परिभाषा उपक्षेत्र (और कभी-कभी लेखक भी) के आधार पर भिन्न होती है। | ||
* रैखिक बीजगणित में | * रैखिक बीजगणित में यह [[रैखिक रूप|रैखिक रूपों]] का पर्याय है। जो एक सदिश स्थान से रैखिक मानचित्रण हैं। <math>V</math> इसके क्षेत्र में (गणित) अर्थात दोहरे स्थान का एक तत्व <math>V^*</math> है।<ref name="LangAlgebra2002DefFunctional">{{harvnb|Lang|2002|p=142}} "Let ''E'' be a free module over a commutative ring ''A''. We view ''A'' as a free module of rank 1 over itself. By the '''dual module''' ''E''<sup>∨</sup> of ''E'' we shall mean the module Hom(''E'', ''A''). Its elements will be called '''functionals'''. Thus a functional on ''E'' is an ''A''-linear map ''f'' : ''E'' → ''A''."</ref> | ||
* [[कार्यात्मक विश्लेषण]] और संबंधित क्षेत्रों में | * [[कार्यात्मक विश्लेषण]] और संबंधित क्षेत्रों में यह सामान्यतः किसी स्थान से मानचित्रण के लिए संदर्भित होता है। <math>X</math> [[वास्तविक संख्या]] या जटिल संख्या के क्षेत्र में<ref name=KolmogorovDefFunctionalOnLinearSpace>{{harvnb|Kolmogorov|Fomin|1957|p=77}} "A numerical function ''f''(''x'') defined on a normed linear space ''R'' will be called a ''functional''. A functional ''f''(''x'') is said to be ''linear'' if ''f''(α''x'' + β''y'') = α''f''(''x'') β''f''(''y'') where ''x'', ''y'' ∈ ''R'' and α, β are arbitrary numbers."</ref>{{sfn|Wilansky|2013|p=7}} कार्यात्मक विश्लेषण में शब्द {{em|[[रैखिक कार्यात्मक]]}} रैखिक रूप का पर्याय है{{sfn|Wilansky|2013|p=7}}<ref name=Axler2015>{{Harvard citation text|Axler|2015}} p. 101, §3.92</ref><ref name=EOFLinearFunctional>{{springer|title=Linear functional|oldid=51214|author-last=Khelemskii|author-first=A.Ya.}}</ref> अर्थात् यह एक अदिश-मूल्यवान रेखीय मानचित्र है। लेखक के आधार पर इस तरह के मानचित्रण को रैखिक <math>X.</math> माना जा सकता है या नहीं या पूरे स्थान पर परिभाषित किया जा सकता है। | ||
* [[कंप्यूटर विज्ञान]] में, यह [[उच्च-क्रम के कार्य]]ों का पर्याय है, अर्थात ऐसे कार्य जो तर्कों के रूप में कार्य करते हैं या उन्हें वापस करते हैं। | * [[कंप्यूटर विज्ञान]] में, यह [[उच्च-क्रम के कार्य]]ों का पर्याय है, अर्थात ऐसे कार्य जो तर्कों के रूप में कार्य करते हैं या उन्हें वापस करते हैं। | ||
Line 46: | Line 46: | ||
जबकि स्थानीय है | जबकि स्थानीय है | ||
<math display=block>F(y) = \frac{\int_{x_0}^{x_1}y(x)\;\mathrm{d}x}{\int_{x_0}^{x_1} (1+ [y(x)]^2)\;\mathrm{d}x}</math> | <math display=block>F(y) = \frac{\int_{x_0}^{x_1}y(x)\;\mathrm{d}x}{\int_{x_0}^{x_1} (1+ [y(x)]^2)\;\mathrm{d}x}</math> | ||
गैर-स्थानीय है। यह | गैर-स्थानीय है। यह सामान्यतः तब होता है जब समीकरण के अंश और हर में इंटीग्रल अलग-अलग होते हैं जैसे द्रव्यमान के केंद्र की गणना में। | ||
== कार्यात्मक समीकरण == | == कार्यात्मक समीकरण == |
Revision as of 20:28, 15 February 2023
गणित में कार्यात्मक (संज्ञा के रूप में) एक निश्चित प्रकार का कार्य है। शब्द की सटीक परिभाषा उपक्षेत्र (और कभी-कभी लेखक भी) के आधार पर भिन्न होती है।
- रैखिक बीजगणित में यह रैखिक रूपों का पर्याय है। जो एक सदिश स्थान से रैखिक मानचित्रण हैं। इसके क्षेत्र में (गणित) अर्थात दोहरे स्थान का एक तत्व है।[1]
- कार्यात्मक विश्लेषण और संबंधित क्षेत्रों में यह सामान्यतः किसी स्थान से मानचित्रण के लिए संदर्भित होता है। वास्तविक संख्या या जटिल संख्या के क्षेत्र में[2][3] कार्यात्मक विश्लेषण में शब्द रैखिक कार्यात्मक रैखिक रूप का पर्याय है[3][4][5] अर्थात् यह एक अदिश-मूल्यवान रेखीय मानचित्र है। लेखक के आधार पर इस तरह के मानचित्रण को रैखिक माना जा सकता है या नहीं या पूरे स्थान पर परिभाषित किया जा सकता है।
- कंप्यूटर विज्ञान में, यह उच्च-क्रम के कार्यों का पर्याय है, अर्थात ऐसे कार्य जो तर्कों के रूप में कार्य करते हैं या उन्हें वापस करते हैं।
यह लेख मुख्य रूप से दूसरी अवधारणा से संबंधित है, जो 18वीं शताब्दी की शुरुआत में विविधताओं की कलन के हिस्से के रूप में उत्पन्न हुई थी। पहली अवधारणा, जो अधिक आधुनिक और सारगर्भित है, पर एक अलग लेख में रैखिक रूप नाम के तहत विस्तार से चर्चा की गई है। तीसरी अवधारणा उच्च-क्रम के कार्यों पर कंप्यूटर विज्ञान लेख में विस्तृत है।
मामले में जहां अंतरिक्ष कार्यों का एक स्थान है, कार्यात्मक एक समारोह का एक कार्य है,[6] और कुछ पुराने लेखक वास्तव में कार्यात्मक शब्द को फ़ंक्शन के कार्य के अर्थ में परिभाषित करते हैं। हालाँकि, तथ्य यह है कि कार्य का स्थान गणितीय रूप से आवश्यक नहीं है, इसलिए यह पुरानी परिभाषा नहीं हैप्रचलित।[citation needed] यह शब्द विविधताओं के कलन से उत्पन्न होता है, जहां कोई ऐसे फ़ंक्शन की खोज करता है जो किसी दिए गए कार्यात्मक को कम करता है (या अधिकतम करता है)। भौतिकी में एक विशेष रूप से महत्वपूर्ण अनुप्रयोग एक ऐसी प्रणाली की स्थिति की खोज है जो क्रिया (भौतिकी) को कम करती है (या अधिकतम करती है), या दूसरे शब्दों में लग्रांगियन यांत्रिकी # परिचय का समय अभिन्न अंग है।
विवरण
द्वैत
मानचित्रण
उसे उपलब्ध कराया सदिश स्थान से अंतर्निहित स्केलर क्षेत्र तक एक रैखिक कार्य है, उपरोक्त रैखिक मानचित्र एक दूसरे के लिए द्वैत (गणित) हैं, और कार्यात्मक विश्लेषण में दोनों को रैखिक कार्यात्मक कहा जाता है।
निश्चित अभिन्न
इंटीग्रल जैसे
- किसी धनात्मक फ़ंक्शन के ग्राफ़ के नीचे का क्षेत्र
- एलपी मानदंड| एक सेट पर एक फ़ंक्शन का मानदंड
- 2-आयामी यूक्लिडियन अंतरिक्ष में एक वक्र की चाप की लंबाई
आंतरिक उत्पाद स्थान
एक आंतरिक उत्पाद स्थान दिया गया और एक निश्चित वेक्टर द्वारा परिभाषित नक्शा पर एक रैखिक कार्यात्मक है वैक्टर का सेट ऐसा है कि शून्य एक सदिश उपसमष्टि है कार्यात्मक, या ऑर्थोगोनल पूरक के रिक्त स्थान या कर्नेल (रैखिक बीजगणित) कहा जाता है लक्षित उदाहरण के लिए, आंतरिक उत्पाद को एक निश्चित कार्य के साथ लेना हिल्बर्ट अंतरिक्ष पर एक (रैखिक) कार्यात्मक को परिभाषित करता है पर वर्ग समाकलन कार्यों की
मोहल्ला
यदि इनपुट वक्र के छोटे खंडों के लिए एक कार्यात्मक मूल्य की गणना की जा सकती है और फिर कुल मूल्य खोजने के लिए योग किया जाता है, तो कार्यात्मक को स्थानीय कहा जाता है। अन्यथा इसे गैर-स्थानीय कहा जाता है। उदाहरण के लिए:
कार्यात्मक समीकरण
पारंपरिक उपयोग तब भी लागू होता है जब कोई कार्यात्मक समीकरण के बारे में बात करता है, जिसका अर्थ है कार्यात्मक के बीच एक समीकरण: एक समीकरण कार्यों के बीच 'हल करने के लिए समीकरण' के रूप में पढ़ा जा सकता है, समाधान स्वयं कार्य करता है। इस तरह के समीकरणों में चर अज्ञात के कई सेट हो सकते हैं, जैसे कि जब यह कहा जाता है कि एक योगात्मक मानचित्र कॉची के कार्यात्मक समीकरण को संतुष्ट करने वाला एक है:
व्युत्पन्न और एकीकरण
Lagrangian यांत्रिकी में कार्यात्मक डेरिवेटिव का उपयोग किया जाता है। वे कार्यात्मकताओं कार्यात्मक व्युत्पन्न हैं; अर्थात्, वे इस बात की जानकारी रखते हैं कि जब इनपुट फ़ंक्शन में थोड़ी मात्रा में परिवर्तन होता है तो कार्यात्मक परिवर्तन कैसे होता है।
रिचर्ड फेनमैन ने क्वांटम यांत्रिकी के अपने पथ अभिन्न सूत्रीकरण सूत्रीकरण में केंद्रीय विचार के रूप में कार्यात्मक एकीकरण का उपयोग किया। यह उपयोग कुछ समारोह स्थान पर लिया गया अभिन्न अंग है।
यह भी देखें
संदर्भ
- ↑ Lang 2002, p. 142 "Let E be a free module over a commutative ring A. We view A as a free module of rank 1 over itself. By the dual module E∨ of E we shall mean the module Hom(E, A). Its elements will be called functionals. Thus a functional on E is an A-linear map f : E → A."
- ↑ Kolmogorov & Fomin 1957, p. 77 "A numerical function f(x) defined on a normed linear space R will be called a functional. A functional f(x) is said to be linear if f(αx + βy) = αf(x) βf(y) where x, y ∈ R and α, β are arbitrary numbers."
- ↑ 3.0 3.1 Wilansky 2013, p. 7.
- ↑ Axler (2015) p. 101, §3.92
- ↑ Khelemskii, A.Ya. (2001) [1994], "Linear functional", Encyclopedia of Mathematics, EMS Press
- ↑ Kolmogorov & Fomin 1957, pp. 62-63 "A real function on a space R is a mapping of R into the space R1 (the real line). Thus, for example, a mapping of Rn into R1 is an ordinary real-valued function of n variables. In the case where the space R itself consists of functions, the functions of the elements of R are usually called functionals."
- Axler, Sheldon (December 18, 2014), Linear Algebra Done Right, Undergraduate Texts in Mathematics (3rd ed.), Springer (published 2015), ISBN 978-3-319-11079-0
- Kolmogorov, Andrey; Fomin, Sergei V. (1957). Elements of the Theory of Functions and Functional Analysis. Dover Books on Mathematics. New York: Dover Books. ISBN 978-1-61427-304-2. OCLC 912495626.
- Lang, Serge (2002), "III. Modules, §6. The dual space and dual module", Algebra, Graduate Texts in Mathematics, vol. 211 (Revised third ed.), New York: Springer-Verlag, pp. 142–146, ISBN 978-0-387-95385-4, MR 1878556, Zbl 0984.00001
- Wilansky, Albert (17 October 2008) [1970]. Topology for Analysis. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-46903-4. OCLC 227923899.
- Sobolev, V.I. (2001) [1994], "Functional", Encyclopedia of Mathematics, EMS Press
- Linear functional at the nLab
- Nonlinear functional at the nLab
- Rowland, Todd. "Functional". MathWorld.
- Rowland, Todd. "Linear functional". MathWorld.