वास्तविक संख्याओं का निर्माण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 91: Line 91:
एक [[मीट्रिक स्थान|मापीय स्थान]] में सभी कॉची अनुक्रमों को अभिसरण करने के लिए बाध्य करने की एक मानक प्रक्रिया [[पूर्णता (टोपोलॉजी)|पूर्णता(टोपोलॉजी)]] नामक प्रक्रिया में मापीय स्थान में नए को जोड़ना है जिसे पूर्णता कहा जाता है।
एक [[मीट्रिक स्थान|मापीय स्थान]] में सभी कॉची अनुक्रमों को अभिसरण करने के लिए बाध्य करने की एक मानक प्रक्रिया [[पूर्णता (टोपोलॉजी)|पूर्णता(टोपोलॉजी)]] नामक प्रक्रिया में मापीय स्थान में नए को जोड़ना है जिसे पूर्णता कहा जाता है।


<math>\mathbb{R}</math> मापीय |''x''-''y''| के संबंध में क्यू के पूरा होने के रूप में परिभाषित किया गया है, जैसा कि नीचे विस्तृत किया जाएगा (अन्य मैट्रिक्स के संबंध में क्यू की पूर्णता के लिए, पी-एडिक नंबर देखें|'' p''-adic नंबर।)
<math>\mathbb{R}</math> को मापीय |''x''-''y''| के संबंध में Q के पूरा होने के रूप में परिभाषित किया गया है, जैसा कि नीचे विस्तृत किया जाएगा (अन्य मापन के संबंध में Q की पूर्णता के लिए, पी-एडिक संख्या देखें | )


चलो 'आर' तर्कसंगत संख्याओं के कॉची अनुक्रमों का समूच्चय (गणित) हो। यानी सीक्वेंस
'R' तर्कसंगत संख्याओं के कॉची अनुक्रमों का समूच्चय (गणित) हो। यानी सीक्वेंस
: ''एक्स''<sub>''1''</sub>, एक्स<sub>''2''</sub>, एक्स<sub>''3''</sub>,।।।
: ''एक्स''<sub>''1''</sub>, एक्स<sub>''2''</sub>, एक्स<sub>''3''</sub>,।।।
परिमेय संख्याओं की ऐसी कि प्रत्येक परिमेय के लिए {{nowrap|''ε'' > 0}}, एक पूर्णांक N स्थित है जैसे कि सभी प्राकृतिक संख्याओं के लिए {{nowrap|''m'',''n'' > ''N''}}, {{nowrap| {{!}}''x''<sub>''m''</sub> &minus; ''x''<sub>''n''</sub>{{!}} < ''ε''}}। यहाँ लंबवत पट्टियाँ निरपेक्ष मान दर्शाती हैं।
परिमेय संख्याओं की ऐसी कि प्रत्येक परिमेय के लिए {{nowrap|''ε'' > 0}}, एक पूर्णांक N स्थित है जैसे कि सभी प्राकृतिक संख्याओं के लिए {{nowrap|''m'',''n'' > ''N''}}, {{nowrap| {{!}}''x''<sub>''m''</sub> &minus; ''x''<sub>''n''</sub>{{!}} < ''ε''}}। यहाँ लंबवत पट्टियाँ निरपेक्ष मान दर्शाती हैं।
Line 161: Line 161:


=== [[अति वास्तविक संख्या]] का उपयोग करके निर्माण ===
=== [[अति वास्तविक संख्या]] का उपयोग करके निर्माण ===
जैसा कि हाइपररियल नंबरों में होता है, कोई हाइपररेशनल का निर्माण करता है <sup>*</sup>क्यू एक [[ultrafilter]] के माध्यम से परिमेय संख्याओं से।<ref>https://sites.math.washington.edu/~morrow/336_15/papers/gianni.pdf {{Bare URL PDF|date=June 2022}}</ref><ref>https://math.berkeley.edu/~kruckman/ultrafilters.pdf {{Bare URL PDF|date=June 2022}}</ref> यहाँ एक हाइपररेशनल परिभाषा के अनुसार दो [[hyperinteger]] का अनुपात है। सभी सीमित (यानी परिमित) अवयवों के रिंग (गणित) बी पर विचार करें <sup>*</sup>प्र। तब ''बी'' का एक अद्वितीय [[अधिकतम आदर्श]] ''आई'', अतिसूक्ष्म संख्याएं हैं। भागफल वलय ''बी/आई'' वास्तविक संख्याओं का क्षेत्र (गणित) आर देता है {{Citation needed|reason=No explanation given as to how the irrational numbers arise.|date=June 2017}}। ध्यान दें कि बी [[आंतरिक सेट|आंतरिक समूच्चय]] नहीं है <sup>*</sup>प्र।
जैसा कि हाइपररियल संख्याों में होता है, कोई हाइपररेशनल का निर्माण करता है <sup>*</sup>क्यू एक [[ultrafilter]] के माध्यम से परिमेय संख्याओं से।<ref>https://sites.math.washington.edu/~morrow/336_15/papers/gianni.pdf {{Bare URL PDF|date=June 2022}}</ref><ref>https://math.berkeley.edu/~kruckman/ultrafilters.pdf {{Bare URL PDF|date=June 2022}}</ref> यहाँ एक हाइपररेशनल परिभाषा के अनुसार दो [[hyperinteger]] का अनुपात है। सभी सीमित (यानी परिमित) अवयवों के रिंग (गणित) बी पर विचार करें <sup>*</sup>प्र। तब ''बी'' का एक अद्वितीय [[अधिकतम आदर्श]] ''आई'', अतिसूक्ष्म संख्याएं हैं। भागफल वलय ''बी/आई'' वास्तविक संख्याओं का क्षेत्र (गणित) आर देता है {{Citation needed|reason=No explanation given as to how the irrational numbers arise.|date=June 2017}}। ध्यान दें कि बी [[आंतरिक सेट|आंतरिक समूच्चय]] नहीं है <sup>*</sup>प्र।
ध्यान दें कि यह निर्माण प्राकृतिक संख्याओं के समूच्चय पर एक गैर-प्रमुख अल्ट्राफिल्टर का उपयोग करता है, जिसके अस्तित्व को पसंद के अभिगृहीत द्वारा गारंटी दी जाती है।
ध्यान दें कि यह निर्माण प्राकृतिक संख्याओं के समूच्चय पर एक गैर-प्रमुख अल्ट्राफिल्टर का उपयोग करता है, जिसके अस्तित्व को पसंद के अभिगृहीत द्वारा गारंटी दी जाती है।



Revision as of 16:28, 16 February 2023

गणित में, वास्तविक संख्याओं को परिभाषित करने के कई समतुल्य विधि हैं। उनमें से एक यह है कि वे एक पूर्ण क्रमित क्षेत्र बनाते हैं जिसमें कोई छोटा पूर्ण क्रमित क्षेत्र नहीं होता है। इस प्रकार की परिभाषा यह सिद्ध नहीं करती है कि इस प्रकार के पूर्ण क्रमित क्षेत्र स्थित हैं, और अस्तित्व प्रमाण में एक गणितीय संरचना का निर्माण होता है जो परिभाषा को संतुष्ट करता है।

लेख ऐसे कई निर्माण प्रस्तुत करता है।[1] वे इस अर्थ में समतुल्य हैं कि, ऐसे किन्हीं दो निर्माणों के परिणाम दिए जाने पर, उनके बीच क्रमबद्ध क्षेत्र का एक अद्वितीय समरूपता है। यह उपरोक्त परिभाषा से उत्पन्न होता है और विशेष निर्माणों से स्वतंत्र है। ये समरूपता निर्माण के परिणामों की पहचान करने की अनुमति देते हैं, और क्रिया में, यह भूल जाते हैं कि कौन सा निर्माण चुना गया है।

अभिगृहीत परिभाषाएँ

वास्तविक संख्याओं की अभिगृहीत पद्धति में उन्हें एक पूर्ण क्रमित क्षेत्र के अवयवों के रूप में परिभाषित करना सम्मिलित है।[2][3][4] इसका अर्थ निम्नलिखित है। वास्तविक संख्याएँ एक समूच्चय (गणित) बनाती हैं, जिसे सामान्यतः निरूपित किया जाता है, जिसमें दो विशिष्ट अवयव 0 और 1 को दर्शाते हैं, और जिन पर दो द्विआधारी संचालन और एक द्विआधारी संबंध परिभाषित हैं; संक्रियाओं को वास्तविक संख्याओं का जोड़ और गुणा कहा जाता है और क्रमशः + और × के साथ निरूपित किया जाता है; द्विआधारी संबंध असमानता है, निरूपित इसके अतिरिक्त, अभिगृहीत कहे जाने वाले निम्नलिखित गुण संतुष्ट होने चाहिए।

ऐसी गणितीय संरचना का अस्तित्व एक प्रमेय है, जो ऐसी संरचना के निर्माण से सिद्ध होता है। अभिगृहीतों का एक परिणाम यह है कि यह संरचना एक समरूपता तक अद्वितीय है, और इस प्रकार, निर्माण की विधि का उल्लेख किए बिना, वास्तविक संख्याओं का उपयोग और हेरफेर किया जा सकता है।

अभिगृहीत

  1. जोड़ और गुणा के अंतर्गत एक क्षेत्र (गणित) है। दूसरे शब्दों में,
    • में सभी x, y और z के लिए, x + (y + z) = (x + y) + z और x × (y × z) = (x × y) × z। (जोड़ और गुणा की साहचर्यता)
    • में सभी x और y के लिए, x + y = y + x और x × y = y × x। (जोड़ और गुणा की क्रमविनिमेय संक्रिया)
    • में सभी x, y और z के लिए, x × (y + z) = (x × y) + (x × z)। (जोड़ पर गुणन का वितरण)
    • में सभी x के लिए, x + 0 = x। (योगात्मक पहचान अवयव का अस्तित्व)
    • 0 1 के बराबर नहीं है, और में सभी x के लिए, x × 1 = x।(गुणात्मक पहचान का अस्तित्व)
    • में प्रत्येक x के लिए, में एक अवयव −x स्थित है , जैसे कि x + (−x) = 0। (योगात्मक व्युत्क्रम अवयव का अस्तित्व)
    • में प्रत्येक x ≠ 0 के लिए, एक में अवयव x−1 स्थित है- जैसे कि x × x−1 = 1। (गुणात्मक व्युत्क्रमों का अस्तित्व)
  2. । के लिए पूर्ण रूप से क्रमित किया गया है । दूसरे शब्दों में,
    • में सभी x के लिए, x ≤ x। (प्रतिवर्त संबंध)
    • में सभी x और y के लिए, यदि x ≤ y और y ≤ x, तो x = y। (प्रतिसममित संबंध)
    • में सभी x, y, और z के लिए, यदि x ≤ y और y ≤ z, तो x ≤ z। (सकर्मक संबंध)
    • में सभी x और y के लिए, x ≤ y या y ≤ x। (कुल क्रम)
  3. जोड़ और गुणा क्रम के अनुकूल हैं। दूसरे शब्दों में,
    • में सभी x, y और z के लिए, यदि x ≤ y, तो x + z ≤ y + z। (अतिरिक्त के अंतर्गत क्रम का संरक्षण)
    • में सभी x और y के लिए, यदि 0 ≤ x और 0 ≤ y, तो 0 ≤ x × y (गुणन के अंतर्गत क्रम का संरक्षण)
  4. क्रम ≤ निम्नलिखित अर्थों में पूर्ण है: का प्रत्येक गैर-रिक्त उपसमुच्चय जो कि ऊपरी सीमा है जो कम से कम ऊपरी सीमा है। दूसरे शब्दों में,
    • यदि A, का एक गैर-रिक्त उपसमुच्चय है, और यदि A की में ऊपरी सीमा है, तो A की न्यूनतम ऊपरी सीमा u है, जैसे कि A की प्रत्येक ऊपरी सीमा के लिए, u ≤ v।

कम से कम ऊपरी सीमा पर गुण

अभिगृहीत 4, जिसके लिए क्रम को डेडेकिंड-पूर्ण होना आवश्यक है, आर्किमिडीयन गुण का तात्पर्य है।

वास्तविक के विवरण में अभिगृहीत महत्वपूर्ण है। उदाहरण के लिए, परिमेय संख्या Q का पूर्ण रूप से क्रमबद्ध क्षेत्र पूर्व तीन अभिगृहीतों को संतुष्ट करता है, परन्तु चौथे को नहीं। दूसरे शब्दों में, परिमेय संख्याओं के मॉडल भी पूर्व तीन अभिगृहीतों के मॉडल हैं।

ध्यान दें कि अभिगृहीत गैर-प्रथमक्रमणीयता है, क्योंकि यह वास्तविकताओं के संग्रह के विषय में एक कथन व्यक्त करता है, न कि मात्र ऐसी व्यक्तिगत संख्याओं के विषय में। जैसे, वास्तविक को प्रथम-क्रम तर्क सिद्धांत द्वारा नहीं दिया जाता है।

मॉडलों पर

वास्तविक संख्याओं का मॉडल एक गणितीय संरचना है जो उपरोक्त अभिगृहीतों को संतुष्ट करता है। कई मॉडलों के स्पष्ट निर्माण दिए गए हैं। कोई भी दो मॉडल समरूपी हैं; इसलिए, वास्तविक संख्याएँ समरूपता तक अद्वितीय हैं।

यह कहना कि कोई भी दो मॉडल समरूपी हैं, इसका तात्पर्य है कि किसी भी दो मॉडल और के लिए, एक आक्षेप है जो क्षेत्र संचालन और क्रम दोनों को संरक्षित करता है। स्पष्ट रूप से,


तर्स्की का वास्तविक का अभिगृहीतीकरण

वास्तविक संख्याओं और उनके अंकगणित का एक वैकल्पिक संश्लिष्ट अभिगृहीतीकरण अल्फ्रेड टार्स्की द्वारा दिया गया था, जिसमें नीचे दर्शाए गए मात्र 8 अभिगृहीत और मात्र चार प्राथमिक धारणाएं सम्मिलित हैं: एक समुच्चय (गणित) जिसे वास्तविक संख्या कहा जाता है, को निरूपित किया जाता है, पर एक द्विआधारी संबंध जिसे क्रम कहा जाता है, जिसे इन्फ़िक्स <द्वारा दर्शाया जाता है, द्विआधारी संचालन जिसे जोड़ कहा जाता है, जोड़ + स्थिरांक 1 द्वारा दर्शाया गया है।

क्रम के सिद्धांत (प्राथमिक: , <):

अभिगृहीत 1. यदि x <y, तो y <x नहीं। अर्थात्, < एक असममित संबंध है।

अभिगृहीत 2.यदि x < z, तो एक y का अस्तित्व है जैसे x < y और y < z। दूसरे शब्दों में, "<" सघन क्रम है।

अभिगृहीत 3. "<"डेडेकिंड-पूर्ण है। अधिक औपचारिक रूप से, सभी X के लिए, , Y ⊆ , यदि सभी x ∈ X और y ∈ Y, x < y के लिए, तो एक z का अस्तित्व ऐसा है कि सभी x ∈ X और y ∈ Y के लिए, यदि z ≠ x और z ≠ y, तो x < z और z < y।

उपरोक्त कथन को कुछ हद तक स्पष्ट करने के लिए, X ⊆ और Y⊆ दें। अब हम दो सामान्य अंग्रेजी क्रियाओं को एक विशेष विधि से परिभाषित करते हैं जो हमारे उद्देश्य के अनुरूप है:

X ,Y से पूर्व आता है यदि और मात्र यदि प्रत्येक x ∈ X और प्रत्येक y ∈ Y, x < y के लिए।
वास्तविक संख्या z, X और Y को अलग करती है यदि और मात्र यदि प्रत्येक x ∈ X के साथ x ≠ z और प्रत्येक y ∈ Y के साथ y ≠ z, x < z और z < y।

अभिगृहीत 3 को तब इस प्रकार कहा जा सकता है:

यदि वास्तविक का एक समूच्चय वास्तविक के दूसरे समूच्चय से पूर्व आता है, तो दो समूच्चय को अलग करने वाली कम से कम एक वास्तविक संख्या स्थित होती है।

योग के अभिगृहीत (प्राथमिक: , <, +):

अभिगृहीत 4. x + (y + z) = (x + z) +y

अभिगृहीत 5. सभी x, y के लिए, एक z स्थित है जैसे कि x + zy

अभिगृहीत 6. यदि x + y < z + w, तो x < z या y < w

एक के लिए अभिगृहीत (प्राथमिक: , <, +, 1):

अभिगृहीत 7. 1 ∈

अभिगृहीत 8. 1 < 1 + 1।

इन अभिगृहीतों का अर्थ है कि विशिष्ट अवयव 1 के साथ रैखिक रूप से क्रमित समूह एबेलियन समूह है। डेडेकिंड-पूर्ण और विभाज्य समूह भी है।

मॉडलों के स्पष्ट निर्माण

हम सिद्ध नहीं करेंगे कि अभिगृहीतों का कोई भी मॉडल तुल्याकारी है। ऐसा प्रमाण किसी भी संख्या में आधुनिक विश्लेषण या समूच्चय सिद्धांत पाठ्यपुस्तकों में पाया जा सकता है। यद्यपि , हम कई निर्माणों की मूल परिभाषाओं और गुणों को रेखांकित करेंगे, क्योंकि इनमें से प्रत्येक गणितीय और ऐतिहासिक दोनों कारणों से महत्वपूर्ण है। जॉर्ज कैंटर/चार्ल्स मेरे, रिचर्ड डेडेकिंड/जोसेफ बर्ट्रेंड और कार्ल वीयरस्ट्रास के कारण पूर्व तीन, सभी एक दूसरे के कुछ वर्षों के भीतर हुए। प्रत्येक के लाभ और हानि हैं। तीनों विषयों में एक प्रमुख प्रेरणा गणित के छात्रों का निर्देश था।

कॉची अनुक्रम से निर्माण

एक मापीय स्थान में सभी कॉची अनुक्रमों को अभिसरण करने के लिए बाध्य करने की एक मानक प्रक्रिया पूर्णता(टोपोलॉजी) नामक प्रक्रिया में मापीय स्थान में नए को जोड़ना है जिसे पूर्णता कहा जाता है।

को मापीय |x-y| के संबंध में Q के पूरा होने के रूप में परिभाषित किया गया है, जैसा कि नीचे विस्तृत किया जाएगा (अन्य मापन के संबंध में Q की पूर्णता के लिए, पी-एडिक संख्या देखें | )

'R' तर्कसंगत संख्याओं के कॉची अनुक्रमों का समूच्चय (गणित) हो। यानी सीक्वेंस

एक्स1, एक्स2, एक्स3,।।।

परिमेय संख्याओं की ऐसी कि प्रत्येक परिमेय के लिए ε > 0, एक पूर्णांक N स्थित है जैसे कि सभी प्राकृतिक संख्याओं के लिए m,n > N, |xmxn| < ε। यहाँ लंबवत पट्टियाँ निरपेक्ष मान दर्शाती हैं।

कॉची सीक्वेंस (xn) और (वाईn) को निम्नानुसार जोड़ा और गुणा किया जा सकता है:

(एक्सn) + (औरn) = (एक्सn + औरn)
(एक्सn) × (औरn) = (एक्सn × औरn)।

दो कौशी क्रमों को समतुल्य कहा जाता है यदि और मात्र यदि उनके बीच का अंतर शून्य हो जाता है। यह एक तुल्यता संबंध को परिभाषित करता है जो ऊपर परिभाषित कार्यों के साथ संगत है, और सभी तुल्यता वर्गों के समूच्चय 'R' को #Axiomatic परिभाषाओं को पूरा करने के लिए दिखाया जा सकता है। हम अनुक्रम के समतुल्य वर्ग के साथ परिमेय संख्या r की पहचान करके 'Q' को 'R' में एम्बेडिंग कर सकते हैं (r,r,r, …)

कॉशी अनुक्रमों के बीच निम्नलिखित तुलना को परिभाषित करके वास्तविक संख्याओं के बीच तुलना प्राप्त की जाती है: (xn) ≥ (yn) यदि और मात्र यदि x, y के समतुल्य है या एक पूर्णांक N स्थित है जैसे कि xnyn सभी के लिए

 n > N

निर्माण के द्वारा, प्रत्येक वास्तविक संख्या x को परिमेय संख्याओं के कॉशी अनुक्रम द्वारा दर्शाया जाता है। यह प्रतिनिधित्व अद्वितीय से बहुत दूर है; प्रत्येक परिमेय अनुक्रम जो x में अभिसरित होता है, x का निरूपण है। यह अवलोकन को दर्शाता है कि एक ही वास्तविक संख्या का अनुमान लगाने के लिए अक्सर विभिन्न अनुक्रमों का उपयोग किया जा सकता है।[5] एकमात्र वास्तविक संख्या अभिगृहीत जो परिभाषाओं से आसानी से पालन नहीं करता है, ≤ की पूर्णता है, अर्थात सबसे कम ऊपरी बाध्य गुण। इसे इस प्रकार सिद्ध किया जा सकता है: मान लीजिए कि S 'R' का एक अरिक्त उपसमुच्चय है और U, S के लिए एक उपरी सीमा है। यदि आवश्यक हो तो एक बड़ा मान प्रतिस्थापित करके, हम मान सकते हैं कि U परिमेय है। चूँकि S अरिक्त है, हम एक परिमेय संख्या L चुन सकते हैं जैसे कि L < s एस में कुछ एस के लिए। अब परिमेय के अनुक्रम को परिभाषित करें (यूn) और मैंn) निम्नलिखित नुसार:

आप समूच्चय करें0 = यू और एल0 = एल।

प्रत्येक n के लिए संख्या पर विचार करें:

एमn = (मेंn + एलn)/2

यदि एमn एस समूच्चय के लिए एक ऊपरी सीमा है:

यूn+1 = मn और मैंn+1 = एलn

अन्यथा समूच्चय करें:

एलn+1 = मn और आपn+1 = यूn

यह परिमेय के दो कौशी अनुक्रमों को परिभाषित करता है, और इसलिए हमारे पास वास्तविक संख्याएँ हैं l = (ln) और u = (un)। n पर प्रेरण द्वारा सिद्ध करना आसान है कि:

यूn सभी n के लिए S की ऊपरी सीमा है

और:

एलn किसी भी n के लिए S के लिए ऊपरी सीमा कभी नहीं होती है

इस प्रकार यू एस के लिए ऊपरी सीमा है। यह देखने के लिए कि यह कम से कम ऊपरी सीमा है, ध्यान दें कि (यू की सीमाn- एलn) 0 है, और इसलिए l = u। अब मान लीजिए b < u = l एस के लिए एक छोटी ऊपरी सीमा है। चूंकि (एलn) मोनोटोनिक बढ़ रहा है यह देखना आसान है b < ln कुछ एन के लिए परन्तु एलn एस के लिए ऊपरी सीमा नहीं है और न ही बी है। इसलिए यू एस के लिए सबसे कम ऊपरी सीमा है और ≤ पूर्ण है।

सामान्य दशमलव अंकन का प्राकृतिक विधि से कॉची अनुक्रमों में अनुवाद किया जा सकता है। उदाहरण के लिए, अंकन π = 3।1415।।। का अर्थ है कि π कॉशी अनुक्रम (3, 3।1, 3।14, 3।141, 3।1415, ।।।) का तुल्यता वर्ग है। समीकरण 0।999।।। = 1 बताता है कि अनुक्रम (0, 0।9, 0।99, 0।999,।।।) और (1, 1, 1, 1,।।।) समतुल्य हैं, अर्थात, उनका अंतर 0 में परिवर्तित हो जाता है।

'Q' की पूर्णता के रूप में 'R' के निर्माण का एक लाभ यह है कि यह निर्माण एक उदाहरण के लिए विशिष्ट नहीं है; इसका उपयोग अन्य मापीय रिक्त स्थान के लिए भी किया जाता है।

डेडेकाइंड कट्स द्वारा निर्माण

डेडेकाइंड ने अपरिमेय संख्या, वास्तविक संख्याओं के निर्माण के लिए अपने कट का उपयोग किया।

एक क्रम किए गए क्षेत्र में एक डेडेकाइंड कट इसका एक विभाजन है, (ए, बी), जैसे कि ए गैर-रिक्त है और नीचे की ओर बंद है, बी गैर-रिक्त है और ऊपर की ओर बंद है, और ए में कोई सबसे बड़ा अवयव नहीं है। वास्तविक संख्याओं को परिमेय संख्याओं के डेडेकिंड कटौती के रूप में निर्मित किया जा सकता है।[6][7]

सुविधा के लिए हम निचला समूच्चय ले सकते हैं किसी भी डेडेकाइंड कट के प्रतिनिधि के रूप में , तब से पूर्णतः निर्धारित करता है । ऐसा करने से हम सहज रूप से एक वास्तविक संख्या के विषय में सोच सकते हैं जो सभी छोटी परिमेय संख्याओं के समुच्चय द्वारा प्रदर्शित होती है। अधिक विस्तार से, एक वास्तविक संख्या समुच्चय का कोई उपसमुच्चय है निम्नलिखित शर्तों को पूरा करने वाली परिमेय संख्याओं की:[8]

  1. रिक्त नहीं है
  2. नीचे बंद है। दूसरे शब्दों में, सभी के लिए ऐसा है कि , यदि तब
  3. कोई सबसे बड़ा अवयव नहीं है। दूसरे शब्दों में, नहीं है ऐसा कि सभी के लिए ,
  • हम समूच्चय बनाते हैं सभी डेडेकाइंड कट्स के समूच्चय के रूप में वास्तविक संख्याओं का का , और वास्तविक संख्याओं पर कुल क्रम को निम्नानुसार परिभाषित करें:
  • हम परिमेय संख्या की पहचान करके परिमेय संख्याओं को वास्तविक में एम्बेड करते हैं सभी छोटी परिमेय संख्याओं के समुच्चय के साथ [8] चूँकि परिमेय संख्याएँ सघन क्रम हैं, इस प्रकार के समूच्चय में कोई सबसे बड़ा अवयव नहीं हो सकता है और इस प्रकार ऊपर दी गई वास्तविक संख्या होने की शर्तों को पूरा करता है।
  • जोड़ना[8]
  • घटाव कहाँ के पूरक (समूच्चय सिद्धांत) को दर्शाता है में ,
  • किसी संख्या का निषेध घटाव का एक विशेष मामला है:
  • गुणन को परिभाषित करना आसान नहीं है।[8]
    • यदि तब
    • या तो या नकारात्मक है, हम सर्वसमिकाओं का उपयोग करते हैं रूपान्तरण करने के लिए और/या धनात्मक संख्याओं के लिए और फिर ऊपर दी गई परिभाषा को लागू करें।
  • हम विभाजन (गणित) को एक समान विधि से परिभाषित करते हैं:
    • यदि तब
    • या तो या नकारात्मक है, हम सर्वसमिकाओं का उपयोग करते हैं रूपान्तरण करने के लिए एक गैर-ऋणात्मक संख्या और/या एक सकारात्मक संख्या के लिए और फिर उपरोक्त परिभाषा लागू करें।
  • उच्चतम यदि एक गैर-रिक्त समूच्चय वास्तविक संख्याओं की कोई ऊपरी सीमा होती है , तो इसकी कम से कम ऊपरी सीमा है वह बराबर है [8]

एक अपरिमेय संख्या का प्रतिनिधित्व करने वाले डेडेकाइंड कट के उदाहरण के रूप में, हम 2 का वर्गमूल ले सकते हैं। इसे समूच्चय द्वारा परिभाषित किया जा सकता है [9] इसे उपरोक्त परिभाषाओं से देखा जा सकता है एक वास्तविक संख्या है, और वह । यद्यपि , कोई भी दावा तत्काल नहीं है। दिखा रहा है वास्तविक है उसे दिखाने की आवश्यकता है कोई सबसे बड़ा अवयव नहीं है, यानी किसी सकारात्मक तर्कसंगत के लिए साथ , एक तर्कसंगत है साथ और विकल्प काम करता है। तब परन्तु समानता दिखाने के लिए यह दिखाने की आवश्यकता है कि यदि के साथ कोई परिमेय संख्या है , तो सकारात्मक है में साथ

इस निर्माण का एक फायदा यह है कि प्रत्येक वास्तविक संख्या एक अद्वितीय कटौती से मेल खाती है। इसके अतिरिक्त, कटौती की परिभाषा की पहली दो आवश्यकताओं को शिथिल करके, विस्तारित वास्तविक संख्या प्रणाली को जोड़कर प्राप्त किया जा सकता है रिक्त समूच्चय के साथ और सभी के साथ

अति वास्तविक संख्या का उपयोग करके निर्माण

जैसा कि हाइपररियल संख्याों में होता है, कोई हाइपररेशनल का निर्माण करता है *क्यू एक ultrafilter के माध्यम से परिमेय संख्याओं से।[10][11] यहाँ एक हाइपररेशनल परिभाषा के अनुसार दो hyperinteger का अनुपात है। सभी सीमित (यानी परिमित) अवयवों के रिंग (गणित) बी पर विचार करें *प्र। तब बी का एक अद्वितीय अधिकतम आदर्श आई, अतिसूक्ष्म संख्याएं हैं। भागफल वलय बी/आई वास्तविक संख्याओं का क्षेत्र (गणित) आर देता है[citation needed]। ध्यान दें कि बी आंतरिक समूच्चय नहीं है *प्र। ध्यान दें कि यह निर्माण प्राकृतिक संख्याओं के समूच्चय पर एक गैर-प्रमुख अल्ट्राफिल्टर का उपयोग करता है, जिसके अस्तित्व को पसंद के अभिगृहीत द्वारा गारंटी दी जाती है।

यह पता चला है कि अधिकतम आदर्श क्रम का सम्मान करता है *प्र। इसलिए परिणामी क्षेत्र एक क्रमित क्षेत्र है। पूर्णता को कौशी अनुक्रमों के निर्माण के समान विधि से सिद्ध किया जा सकता है।

असली संख्या से निर्माण

प्रत्येक क्रमित क्षेत्र को असली संख्या में एम्बेड किया जा सकता है। वास्तविक संख्या एक अधिकतम उपक्षेत्र बनाती है जो आर्किमिडीयन समूह है (जिसका अर्थ है कि कोई वास्तविक संख्या असीम रूप से बड़ी या असीम रूप से छोटी नहीं है)। यह एम्बेडिंग अद्वितीय नहीं है, यद्यपि इसे कैनोनिकल विधि से चुना जा सकता है।

पूर्णांकों से निर्माण (यूडोक्सस रियल)

एक अपेक्षाकृत कम ज्ञात निर्माण मात्र पूर्णांकों के योज्य समूह का उपयोग करके वास्तविक संख्याओं को परिभाषित करने की अनुमति देता है विभिन्न संस्करणों के साथ।[12][13][14] निर्माण स्वचालित प्रमेय सिद्ध कर रहा है IsarMathLib परियोजना द्वारा।[15] Shenitzer (1987) और Arthan (2004) इस निर्माण को यूडोक्सस रियल के रूप में देखें, जिसका नाम एक प्राचीन यूनानी खगोलशास्त्री और कनिडस के गणितज्ञ यूडोक्सस के नाम पर रखा गया है।

एक 'लगभग समाकारिता' को एक मानचित्र होने दें ऐसा समूच्चय परिमित है। (ध्यान दें कि प्रत्येक के लिए लगभग समरूपता है ।) बिंदुवार जोड़ के अंतर्गत लगभग समरूपता एक एबेलियन समूह बनाती है। हम कहते हैं कि दो लगभग समरूपताएं समूच्चय यदि लगभग बराबर हैं परिमित है। यह लगभग समरूपता के समूच्चय पर एक तुल्यता संबंध को परिभाषित करता है। वास्तविक संख्याओं को इस संबंध के समतुल्य वर्गों के रूप में परिभाषित किया गया है। वैकल्पिक रूप से, लगभग समान रूप से बहुत से मान लेने वाले लगभग समरूपता एक उपसमूह बनाते हैं, और वास्तविक संख्या का अंतर्निहित योजक समूह भागफल समूह है। इस प्रकार से परिभाषित वास्तविक संख्याओं को जोड़ने के लिए हम उन लगभग समरूपताओं को जोड़ते हैं जो उनका प्रतिनिधित्व करते हैं। वास्तविक संख्याओं का गुणन लगभग समरूपताओं की कार्यात्मक संरचना से मेल खाता है। यदि लगभग समरूपता द्वारा दर्शाई गई वास्तविक संख्या को दर्शाता है हम कहते हैं यदि घिरा हुआ है या अनंत संख्या में सकारात्मक मान लेता है । यह इस प्रकार से निर्मित वास्तविक संख्याओं के समूच्चय पर कुल क्रम संबंध को परिभाषित करता है।

अन्य निर्माण

Faltin et al. (1975) लिखें: कुछ गणितीय संरचनाओं में उतने ही संशोधन हुए हैं या उन्हें उतने ही रूपों में प्रस्तुत किया गया है जितनी कि वास्तविक संख्याएँ। हर पीढ़ी अपने मूल्यों और गणितीय उद्देश्यों के आलोक में वास्तविकताओं की फिर से जांच करती है।[16] कई अन्य निर्माण दिए गए हैं, इनके द्वारा:

एक सिंहावलोकन के लिए, देखें Weiss (2015)

एक के एक समीक्षक के रूप में: विवरण सभी सम्मिलित हैं, परन्तु हमेशा की प्रकार वे थकाऊ हैं और बहुत शिक्षाप्रद नहीं हैं।[17]


यह भी देखें


संदर्भ

  1. Weiss 2015.
  2. http://math.colorado.edu/~nita/RealNumbers.pdf[bare URL PDF]
  3. http://homepages.math.uic.edu/~saunders/MATH313/INRA/INRA_chapters0and1.pdf[bare URL PDF]
  4. https://www.math.uci.edu/~mfinkels/140A/Introduction%2520and%2520Logic%2520Notes.pdf[bare URL PDF]
  5. Kemp 2016.
  6. https://www.math.ucdavis.edu/~temple/MAT25/HomeworkProblems.pdf[bare URL PDF]
  7. http://math.furman.edu/~tlewis/math41/Pugh/chap1/sec2.pdf[bare URL PDF]
  8. 8.0 8.1 8.2 8.3 8.4 Pugh 2002.
  9. Hersh 1997.
  10. https://sites.math.washington.edu/~morrow/336_15/papers/gianni.pdf[bare URL PDF]
  11. https://math.berkeley.edu/~kruckman/ultrafilters.pdf[bare URL PDF]
  12. Arthan 2004.
  13. A'Campo 2003.
  14. Street 2003.
  15. IsarMathLib.
  16. Faltin et al. 1975.
  17. MR693180 (84j:26002) review of Rieger1982.


ग्रन्थसूची

  • de Bruijn, N.G. (1977). "Construction of the system of real numbers". Nederl. Akad. Wetensch. Verslag Afd. Natuurk. 86 (9): 121–125.
  • Knopfmacher, Arnold; Knopfmacher, John (1987). "A new construction of the real numbers (via infinite products)". Nieuw Arch. Wisk. 4 (5): 19–31.