उरेलमेंट: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
{{short description|Concept in set theory}} | {{short description|Concept in set theory}} | ||
[[समुच्चय सिद्धान्त]] में, गणित की एक शाखा, | [[समुच्चय सिद्धान्त]] में, गणित की एक शाखा, उरेलमेंट एक ऐसी वस्तु है तत्व हो सकता है गणित एक [[समुच्चय सिद्धान्त|समुच्चय]] परमाणु या व्यक्ति के रूप में भी जाना जाता है। | ||
== सिद्धांत == | === सिद्धांत === | ||
प्रथम-क्रम सिद्धांत में | प्रथम-क्रम सिद्धांत में उरेलमेंट के अभ्यास के कई अलग-अलग अनिवार्य समकक्ष नियम हैं। | ||
एक | एक नियम यह है कि पहले क्रम के सिद्धांत में दो प्रकार,के [[समुच्चय सिद्धान्त|समुच्चय]] और यूरेलेमेंट के साथ काम किया जाए, जिसमें ए ई बी केवल परिभाषित हो जब b एक समुच्चय हो, B के साथ जब एक समुच्चय हो ।इस विषय में, यदि यू एक उरेलमेंट है, तो यह कहने के लिए कोई उद्देश्य है की यह <math>X \in U</math>, यद्यपि <math>U \in X</math> पूरी तरह से वैध है। | ||
एक और | एक और नियम यह है कि एक संरचना (गणितीय तर्क) में काम करना है#कई-शोर्टेड संरचनाएं | एक-बदबूदार सिद्धांत जिसमें समुच्चय और उरेलमेंटs को अलग करने के लिए उपयोग किया जाता है।चूंकि गैर-खाली समुच्चय में सदस्य होते हैं जबकि उरेलमेंटs नहीं करते हैं, Unary संबंध केवल खाली समुच्चय को उरेलमेंटs से अलग करने के लिए आवश्यक है।ध्यान दें कि इस मामले में, एक्सटेंशनलिटी के स्वयंसिद्ध को केवल उन वस्तुओं पर लागू करने के लिए तैयार किया जाना चाहिए जो उरेलमेंटs नहीं हैं। | ||
यह स्थिति | यह स्थिति समुच्चय और वर्ग (समुच्चय सिद्धांत) के सिद्धांतों के उपचार के अनुरूप है।वास्तव में, उरेलमेंटs कुछ अर्थों में [[उचित वर्ग]]ों के लिए दोहरे हैं: उरेलमेंटs में सदस्य नहीं हो सकते हैं जबकि उचित वर्ग सदस्य नहीं हो सकते।अलग -अलग तरीके से, उरेलमेंटs [[न्यूनतम तत्व]] ऑब्जेक्ट हैं, जबकि उचित वर्ग सदस्यता संबंध द्वारा अधिकतम वस्तुएं हैं (जो, निश्चित रूप से, एक आदेश संबंध नहीं है, इसलिए इस सादृश्य को शाब्दिक रूप से नहीं लिया जाना है)। | ||
== | == समुच्चय सिद्धांत में उरेलमेंटs == | ||
1908 के Zermelo | 1908 के Zermelo समुच्चय सिद्धांत में उरेलमेंटs शामिल थे, और इसलिए एक संस्करण है जिसे अब ZFA या ZFCA (यानी ZFA के साथ पसंद के स्वयंसिद्ध) कहा जाता है।<ref>Dexter Chua et al.: [https://ncatlab.org/nlab/show/ZFA ZFA: Zermelo–Fraenkel set theory with atoms], on: ncatlab.org: nLab, revised on July 16, 2016.</ref> यह जल्द ही महसूस किया गया कि इस और बारीकी से संबंधित [[स्वयंसिद्ध सेट सिद्धांत|स्वयंसिद्ध समुच्चय सिद्धांत]] के संदर्भ में, मूत्रमार्गों की आवश्यकता नहीं थी क्योंकि वे आसानी से एक समुच्चय सिद्धांत में बिना उरेलमेंटs के मॉडलिंग किए जा सकते हैं।<ref name="Jech">{{cite book|last=Jech|first=Thomas J.|author-link=Thomas Jech|title=The Axiom of Choice|url=https://archive.org/details/axiomofchoice0000jech|url-access=registration|year=1973|publisher=Dover Publ.|location=Mineola, New York|isbn=0486466248|page=[https://archive.org/details/axiomofchoice0000jech/page/45 45]}}</ref> इस प्रकार, कैनोनिकल स्वयंसिद्ध समुच्चय थ्योरी Zermelo -Fraenkel समुच्चय थ्योरी और [[ZFC]] के मानक एक्सपोज़िशन उरेलमेंटs का उल्लेख नहीं करते हैं (एक अपवाद के लिए, Suppes देखें<ref name="Suppes">{{cite book|last=Suppes|first=Patrick|title=Axiomatic Set Theory|year=1972|publisher=Dover Publ.|location=New York|isbn=0486616304|url=https://archive.org/details/axiomaticsettheo00supp_0|edition=[Éd. corr. et augm. du texte paru en 1960]|author-link=Patrick Suppes|access-date=17 September 2012|url-access=registration}}</ref>)।Axiomatic सिस्टम#समुच्चय सिद्धांत के स्वयंसिद्धता जो कि unelements को आमंत्रित करते हैं, में Kripke -Platek Set सिद्धांत शामिल हैं, जो कि Mendelson द्वारा वर्णित वॉन न्यूमैन -बर्नेज़ -गोडेल समुच्चय सिद्धांत के साथ और वॉन न्यूमैन -बर्नेज़ -गोडेल समुच्चय सिद्धांत के साथ शामिल हैं।<ref name="Mendelson">{{cite book|last=Mendelson|first=Elliott|title=Introduction to Mathematical Logic|year=1997|publisher=Chapman & Hall|location=London|isbn=978-0412808302|pages=297–304|url=https://books.google.com/books?id=ZO1p4QGspoYC&pg=PT309|edition=4th|access-date=17 September 2012}}</ref> प्रकार के सिद्धांत में, टाइप 0 की एक वस्तु को एक उरेलमेंट कहा जा सकता है;इसलिए नाम परमाणु। | ||
एनएफयू का उत्पादन करने के लिए सिस्टम [[नई नींव]] (एनएफ) में यूरेलमेंट जोड़ने के आश्चर्यजनक परिणाम हैं।विशेष रूप से, जेन्सेन ने साबित किया<ref name="Jensen">{{cite journal|last=Jensen|first=Ronald Björn|author-link=Ronald Jensen|title=On the Consistency of a Slight (?) Modification of Quine's 'New Foundations' |journal=Synthese |date=December 1968 |volume=19 |issue=1/2 |pages=250–264 |jstor=20114640 |publisher=Springer |issn=0039-7857|doi=10.1007/bf00568059 |s2cid=46960777}}</ref> मीनो अंकगणित के सापेक्ष एनएफयू की स्थिरता;इस बीच, किसी भी चीज़ के सापेक्ष एनएफ की स्थिरता एक खुली समस्या बनी हुई है, जो कि होम्स के ZF के सापेक्ष इसकी स्थिरता के प्रमाण के लंबित सत्यापन है।इसके अलावा, एनएफयू अनंत के स्वयंसिद्ध और पसंद के स्वयंसिद्ध के साथ संवर्धित होने पर [[समानता]] बनी रहती है।इस बीच, पसंद के स्वयंसिद्ध की उपेक्षा, उत्सुकता से, एक एनएफ प्रमेय है।होम्स (1998) इन तथ्यों को इस बात के प्रमाण के रूप में लेता है कि एनएफयू एनएफ की तुलना में गणित के लिए एक अधिक सफल आधार है।होम्स आगे तर्क देते हैं कि | एनएफयू का उत्पादन करने के लिए सिस्टम [[नई नींव]] (एनएफ) में यूरेलमेंट जोड़ने के आश्चर्यजनक परिणाम हैं।विशेष रूप से, जेन्सेन ने साबित किया<ref name="Jensen">{{cite journal|last=Jensen|first=Ronald Björn|author-link=Ronald Jensen|title=On the Consistency of a Slight (?) Modification of Quine's 'New Foundations' |journal=Synthese |date=December 1968 |volume=19 |issue=1/2 |pages=250–264 |jstor=20114640 |publisher=Springer |issn=0039-7857|doi=10.1007/bf00568059 |s2cid=46960777}}</ref> मीनो अंकगणित के सापेक्ष एनएफयू की स्थिरता;इस बीच, किसी भी चीज़ के सापेक्ष एनएफ की स्थिरता एक खुली समस्या बनी हुई है, जो कि होम्स के ZF के सापेक्ष इसकी स्थिरता के प्रमाण के लंबित सत्यापन है।इसके अलावा, एनएफयू अनंत के स्वयंसिद्ध और पसंद के स्वयंसिद्ध के साथ संवर्धित होने पर [[समानता]] बनी रहती है।इस बीच, पसंद के स्वयंसिद्ध की उपेक्षा, उत्सुकता से, एक एनएफ प्रमेय है।होम्स (1998) इन तथ्यों को इस बात के प्रमाण के रूप में लेता है कि एनएफयू एनएफ की तुलना में गणित के लिए एक अधिक सफल आधार है।होम्स आगे तर्क देते हैं कि समुच्चय सिद्धांत बिना किसी आग्रह के अधिक स्वाभाविक है, क्योंकि हम किसी भी सिद्धांत या भौतिक [[ब्रह्मांड]] की वस्तुओं के रूप में ले सकते हैं।<ref name="Holmes">Holmes, Randall, 1998. ''[https://randall-holmes.github.io/head.pdf Elementary Set Theory with a Universal Set]''. Academia-Bruylant.</ref> फाइनिटिस्ट समुच्चय सिद्धांत में, यूरेलमेंट्स को लक्ष्य घटना के सबसे कम स्तर के घटकों, जैसे कि भौतिक वस्तु के परमाणु घटक या किसी संगठन के सदस्यों के लिए मैप किया जाता है। | ||
== क्वीन परमाणु<!--'Quine atom' and 'Reflexive set' redirect here--> == | == क्वीन परमाणु<!--'Quine atom' and 'Reflexive set' redirect here--> == | ||
एक विशेष प्रकार के | एक विशेष प्रकार के समुच्चय के रूप में, समुच्चय के अलावा एक प्रकार की वस्तु के बजाय, उन पर विचार करना एक वैकल्पिक दृष्टिकोण है।परमाणु परमाणु<!--boldface per WP:R#PLA--> ।<ref name="Forster2003">{{cite book|author=Thomas Forster|title=Logic, Induction and Sets|url=https://books.google.com/books?id=mVeTuaRwWssC&pg=PA199|year=2003|publisher=Cambridge University Press|isbn=978-0-521-53361-4|page=199}}</ref> | ||
क्वीन परमाणु | क्वीन परमाणु समुच्चय सिद्धांत की प्रणालियों में मौजूद नहीं हो सकते हैं जिसमें [[नियमितता का स्वयंसिद्ध]] शामिल है, लेकिन वे गैर-अच्छी तरह से स्थापित समुच्चय सिद्धांत में मौजूद हो सकते हैं।नियमितता के स्वयंसिद्ध के साथ ZF समुच्चय सिद्धांत यह साबित नहीं कर सकता है कि कोई भी गैर-कुश्ती समुच्चय मौजूद है (जब तक कि यह असंगत नहीं है, जिस स्थिति में यह [[विस्फोट का सिद्धांत]] होगा), लेकिन यह क्वीन परमाणुओं के अस्तित्व के साथ संगत है।Aczel के एंटी-फाउंडेशन Axiom का अर्थ है कि एक अद्वितीय क्वीन परमाणु है।अन्य गैर-अच्छी तरह से स्थापित सिद्धांत कई अलग-अलग क्वीन परमाणुओं को स्वीकार कर सकते हैं;स्पेक्ट्रम के विपरीत छोर पर बोफा के सुपरनॉवर्सिटी के स्वयंसिद्ध निहित हैं, जिसका अर्थ है कि अलग -अलग क्वीन परमाणु एक [[उचित वर्ग]] बनाते हैं।<ref name="Aczel1988p57"/> | ||
क्वीन परमाणु क्वीन की नई नींव में भी दिखाई देते हैं, जो इस तरह के एक से अधिक | क्वीन परमाणु क्वीन की नई नींव में भी दिखाई देते हैं, जो इस तरह के एक से अधिक समुच्चय की अनुमति देता है।<ref>{{citation | first1= Jon |last1= Barwise | first2 = Lawrence S. |last2 = Moss |title= Vicious circles. On the mathematics of non-wellfounded phenomena| series = CSLI Lecture Notes |volume = 60 |publisher = CSLI Publications | year= 1996| isbn= 1575860090 |page=306}}.</ref> | ||
क्वीन परमाणु एकमात्र | क्वीन परमाणु एकमात्र समुच्चय हैं जिन्हें रिफ्लेक्सिव समुच्चय कहा जाता है<!--boldface per WP:R#PLA--> पीटर Aczel द्वारा,<ref name="Aczel1988p57">{{citation|last= Aczel|first= Peter|title= Non-well-founded sets|series= CSLI Lecture Notes|volume= 14|publisher= Stanford University, Center for the Study of Language and Information|year= 1988|page= [https://archive.org/details/nonwellfoundedse0000acze/page/57 57]|isbn= 0-937073-22-9|url= https://archive.org/details/nonwellfoundedse0000acze/page/57|mr= 0940014|access-date= 2016-10-17}}.</ref> हालांकि अन्य लेखक, उदा।जॉन बारवाइज और लॉरेंस मॉस, संपत्ति x & nbsp; & & nbsp; x के साथ समुच्चय के बड़े वर्ग को निरूपित करने के लिए बाद के शब्द का उपयोग करें।<ref>{{citation | first1= Jon |last1= Barwise | first2 = Lawrence S. |last2 = Moss |title= Vicious circles. On the mathematics of non-wellfounded phenomena| series = CSLI Lecture Notes |volume = 60 |publisher = CSLI Publications | year= 1996| isbn= 1575860090 |page=57}}.</ref> | ||
Revision as of 16:03, 17 February 2023
समुच्चय सिद्धान्त में, गणित की एक शाखा, उरेलमेंट एक ऐसी वस्तु है तत्व हो सकता है गणित एक समुच्चय परमाणु या व्यक्ति के रूप में भी जाना जाता है।
सिद्धांत
प्रथम-क्रम सिद्धांत में उरेलमेंट के अभ्यास के कई अलग-अलग अनिवार्य समकक्ष नियम हैं।
एक नियम यह है कि पहले क्रम के सिद्धांत में दो प्रकार,के समुच्चय और यूरेलेमेंट के साथ काम किया जाए, जिसमें ए ई बी केवल परिभाषित हो जब b एक समुच्चय हो, B के साथ जब एक समुच्चय हो ।इस विषय में, यदि यू एक उरेलमेंट है, तो यह कहने के लिए कोई उद्देश्य है की यह , यद्यपि पूरी तरह से वैध है।
एक और नियम यह है कि एक संरचना (गणितीय तर्क) में काम करना है#कई-शोर्टेड संरचनाएं | एक-बदबूदार सिद्धांत जिसमें समुच्चय और उरेलमेंटs को अलग करने के लिए उपयोग किया जाता है।चूंकि गैर-खाली समुच्चय में सदस्य होते हैं जबकि उरेलमेंटs नहीं करते हैं, Unary संबंध केवल खाली समुच्चय को उरेलमेंटs से अलग करने के लिए आवश्यक है।ध्यान दें कि इस मामले में, एक्सटेंशनलिटी के स्वयंसिद्ध को केवल उन वस्तुओं पर लागू करने के लिए तैयार किया जाना चाहिए जो उरेलमेंटs नहीं हैं।
यह स्थिति समुच्चय और वर्ग (समुच्चय सिद्धांत) के सिद्धांतों के उपचार के अनुरूप है।वास्तव में, उरेलमेंटs कुछ अर्थों में उचित वर्गों के लिए दोहरे हैं: उरेलमेंटs में सदस्य नहीं हो सकते हैं जबकि उचित वर्ग सदस्य नहीं हो सकते।अलग -अलग तरीके से, उरेलमेंटs न्यूनतम तत्व ऑब्जेक्ट हैं, जबकि उचित वर्ग सदस्यता संबंध द्वारा अधिकतम वस्तुएं हैं (जो, निश्चित रूप से, एक आदेश संबंध नहीं है, इसलिए इस सादृश्य को शाब्दिक रूप से नहीं लिया जाना है)।
समुच्चय सिद्धांत में उरेलमेंटs
1908 के Zermelo समुच्चय सिद्धांत में उरेलमेंटs शामिल थे, और इसलिए एक संस्करण है जिसे अब ZFA या ZFCA (यानी ZFA के साथ पसंद के स्वयंसिद्ध) कहा जाता है।[1] यह जल्द ही महसूस किया गया कि इस और बारीकी से संबंधित स्वयंसिद्ध समुच्चय सिद्धांत के संदर्भ में, मूत्रमार्गों की आवश्यकता नहीं थी क्योंकि वे आसानी से एक समुच्चय सिद्धांत में बिना उरेलमेंटs के मॉडलिंग किए जा सकते हैं।[2] इस प्रकार, कैनोनिकल स्वयंसिद्ध समुच्चय थ्योरी Zermelo -Fraenkel समुच्चय थ्योरी और ZFC के मानक एक्सपोज़िशन उरेलमेंटs का उल्लेख नहीं करते हैं (एक अपवाद के लिए, Suppes देखें[3])।Axiomatic सिस्टम#समुच्चय सिद्धांत के स्वयंसिद्धता जो कि unelements को आमंत्रित करते हैं, में Kripke -Platek Set सिद्धांत शामिल हैं, जो कि Mendelson द्वारा वर्णित वॉन न्यूमैन -बर्नेज़ -गोडेल समुच्चय सिद्धांत के साथ और वॉन न्यूमैन -बर्नेज़ -गोडेल समुच्चय सिद्धांत के साथ शामिल हैं।[4] प्रकार के सिद्धांत में, टाइप 0 की एक वस्तु को एक उरेलमेंट कहा जा सकता है;इसलिए नाम परमाणु।
एनएफयू का उत्पादन करने के लिए सिस्टम नई नींव (एनएफ) में यूरेलमेंट जोड़ने के आश्चर्यजनक परिणाम हैं।विशेष रूप से, जेन्सेन ने साबित किया[5] मीनो अंकगणित के सापेक्ष एनएफयू की स्थिरता;इस बीच, किसी भी चीज़ के सापेक्ष एनएफ की स्थिरता एक खुली समस्या बनी हुई है, जो कि होम्स के ZF के सापेक्ष इसकी स्थिरता के प्रमाण के लंबित सत्यापन है।इसके अलावा, एनएफयू अनंत के स्वयंसिद्ध और पसंद के स्वयंसिद्ध के साथ संवर्धित होने पर समानता बनी रहती है।इस बीच, पसंद के स्वयंसिद्ध की उपेक्षा, उत्सुकता से, एक एनएफ प्रमेय है।होम्स (1998) इन तथ्यों को इस बात के प्रमाण के रूप में लेता है कि एनएफयू एनएफ की तुलना में गणित के लिए एक अधिक सफल आधार है।होम्स आगे तर्क देते हैं कि समुच्चय सिद्धांत बिना किसी आग्रह के अधिक स्वाभाविक है, क्योंकि हम किसी भी सिद्धांत या भौतिक ब्रह्मांड की वस्तुओं के रूप में ले सकते हैं।[6] फाइनिटिस्ट समुच्चय सिद्धांत में, यूरेलमेंट्स को लक्ष्य घटना के सबसे कम स्तर के घटकों, जैसे कि भौतिक वस्तु के परमाणु घटक या किसी संगठन के सदस्यों के लिए मैप किया जाता है।
क्वीन परमाणु
एक विशेष प्रकार के समुच्चय के रूप में, समुच्चय के अलावा एक प्रकार की वस्तु के बजाय, उन पर विचार करना एक वैकल्पिक दृष्टिकोण है।परमाणु परमाणु ।[7] क्वीन परमाणु समुच्चय सिद्धांत की प्रणालियों में मौजूद नहीं हो सकते हैं जिसमें नियमितता का स्वयंसिद्ध शामिल है, लेकिन वे गैर-अच्छी तरह से स्थापित समुच्चय सिद्धांत में मौजूद हो सकते हैं।नियमितता के स्वयंसिद्ध के साथ ZF समुच्चय सिद्धांत यह साबित नहीं कर सकता है कि कोई भी गैर-कुश्ती समुच्चय मौजूद है (जब तक कि यह असंगत नहीं है, जिस स्थिति में यह विस्फोट का सिद्धांत होगा), लेकिन यह क्वीन परमाणुओं के अस्तित्व के साथ संगत है।Aczel के एंटी-फाउंडेशन Axiom का अर्थ है कि एक अद्वितीय क्वीन परमाणु है।अन्य गैर-अच्छी तरह से स्थापित सिद्धांत कई अलग-अलग क्वीन परमाणुओं को स्वीकार कर सकते हैं;स्पेक्ट्रम के विपरीत छोर पर बोफा के सुपरनॉवर्सिटी के स्वयंसिद्ध निहित हैं, जिसका अर्थ है कि अलग -अलग क्वीन परमाणु एक उचित वर्ग बनाते हैं।[8]
क्वीन परमाणु क्वीन की नई नींव में भी दिखाई देते हैं, जो इस तरह के एक से अधिक समुच्चय की अनुमति देता है।[9] क्वीन परमाणु एकमात्र समुच्चय हैं जिन्हें रिफ्लेक्सिव समुच्चय कहा जाता है पीटर Aczel द्वारा,[8] हालांकि अन्य लेखक, उदा।जॉन बारवाइज और लॉरेंस मॉस, संपत्ति x & nbsp; & & nbsp; x के साथ समुच्चय के बड़े वर्ग को निरूपित करने के लिए बाद के शब्द का उपयोग करें।[10]
संदर्भ
- ↑ Dexter Chua et al.: ZFA: Zermelo–Fraenkel set theory with atoms, on: ncatlab.org: nLab, revised on July 16, 2016.
- ↑ Jech, Thomas J. (1973). The Axiom of Choice. Mineola, New York: Dover Publ. p. 45. ISBN 0486466248.
- ↑ Suppes, Patrick (1972). Axiomatic Set Theory ([Éd. corr. et augm. du texte paru en 1960] ed.). New York: Dover Publ. ISBN 0486616304. Retrieved 17 September 2012.
- ↑ Mendelson, Elliott (1997). Introduction to Mathematical Logic (4th ed.). London: Chapman & Hall. pp. 297–304. ISBN 978-0412808302. Retrieved 17 September 2012.
- ↑ Jensen, Ronald Björn (December 1968). "On the Consistency of a Slight (?) Modification of Quine's 'New Foundations'". Synthese. Springer. 19 (1/2): 250–264. doi:10.1007/bf00568059. ISSN 0039-7857. JSTOR 20114640. S2CID 46960777.
- ↑ Holmes, Randall, 1998. Elementary Set Theory with a Universal Set. Academia-Bruylant.
- ↑ Thomas Forster (2003). Logic, Induction and Sets. Cambridge University Press. p. 199. ISBN 978-0-521-53361-4.
- ↑ 8.0 8.1 Aczel, Peter (1988), Non-well-founded sets, CSLI Lecture Notes, vol. 14, Stanford University, Center for the Study of Language and Information, p. 57, ISBN 0-937073-22-9, MR 0940014, retrieved 2016-10-17.
- ↑ Barwise, Jon; Moss, Lawrence S. (1996), Vicious circles. On the mathematics of non-wellfounded phenomena, CSLI Lecture Notes, vol. 60, CSLI Publications, p. 306, ISBN 1575860090.
- ↑ Barwise, Jon; Moss, Lawrence S. (1996), Vicious circles. On the mathematics of non-wellfounded phenomena, CSLI Lecture Notes, vol. 60, CSLI Publications, p. 57, ISBN 1575860090.