सत्य मूल्य: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 55: Line 55:


== बीजगणितीय शब्दार्थ ==
== बीजगणितीय शब्दार्थ ==
{{main|Algebraic logic}}
{{main|बीजगणितीय तर्क}}
सभी तार्किक प्रणालियाँ इस अर्थ में सत्य-मूल्यवान नहीं हैं कि तार्किक संयोजकों की व्याख्या सत्य कार्यों के रूप में की जा सकती है। उदाहरण के लिए, अंतर्ज्ञानवादी तर्क में सत्य मूल्यों का एक पूरा सेट नहीं होता है क्योंकि इसके शब्दार्थ, ब्रोवर-हेटिंग-कोल्मोगोरोव व्याख्या, [[सबूत सिद्धांत]] की शर्तों के संदर्भ में निर्दिष्ट है, न कि सीधे सूत्रों के जरूरी सत्य के संदर्भ में।


लेकिन यहां तक ​​कि गैर-सत्य-मूल्यवान तर्क भी मूल्यों को तार्किक सूत्रों के साथ जोड़ सकते हैं, जैसा कि [[बीजगणितीय शब्दार्थ (गणितीय तर्क)]] में किया जाता है।<!-- if this becomes a dab page linking to [[Algebraic logic]], just remove the link -->. क्लासिकल प्रोपोज़िशनल कैलकुलस के [[बूलियन बीजगणित (संरचना)]] सिमेंटिक्स की तुलना में इंट्यूशनिस्टिक लॉजिक का बीजगणितीय शब्दार्थ हेयटिंग बीजगणित के संदर्भ में दिया गया है।
सभी तार्किक प्रणालियाँ इस अर्थ में सत्य-मूल्यवान नहीं हैं कि तार्किक संयोजकों की व्याख्या सत्य कार्यों के रूप में की जा सकती है। उदाहरण के लिए, अंतर्ज्ञानवादी तर्क में सत्य मूल्यों का पूरा सेट नहीं होता है चूंकि इसके शब्दार्थ, ब्रोवर-हेटिंग-कोल्मोगोरोव व्याख्या, [[Index.php?title=ससूत्रों के|सूत्रों के]] आवश्यक सत्य के संदर्भ में प्रत्यक्ष रूप से नहीं, बल्कि प्रवीणता शर्तों के संदर्भ में निर्दिष्ट है।
 
परंतुयहां तक ​​कि गैर-सत्य-मूल्यांकन तर्क भी मूल्यों को तार्किक सूत्रों के साथ जोड़ सकते हैं, जैसा कि [[बीजगणितीय शब्दार्थ (गणितीय तर्क)]] में किया जाता है।<!-- if this becomes a dab page linking to [[Algebraic logic]], just remove the link -->. क्लासिकल साध्यात्मक कलन के [[बूलियन बीजगणित (संरचना)]] सिमेंटिक्स की तुलना में अंतर्ज्ञान तर्क का बीजगणितीय शब्दार्थ हेयटिंग बीजगणित के संदर्भ में दिया गया है।
<!-- This also has an analogy to vector spaces instead of scalars. But is it encyclopedic enough? -->
<!-- This also has an analogy to vector spaces instead of scalars. But is it encyclopedic enough? -->


Line 74: Line 75:
* सत्य की डिग्री
* सत्य की डिग्री
* मिथ्या दुविधा
* मिथ्या दुविधा
* {{slink|History of logic|Algebraic period}}
* {{slink|
तर्क का इतिहास|बीजीय काल}}
* [[विरोधाभास]]
* [[विरोधाभास]]
* [[सत्य का शब्दार्थ सिद्धांत]]
* [[सत्य का शब्दार्थ सिद्धांत]]

Revision as of 14:34, 22 February 2023

तर्क और गणित में, एक सत्य मूल्य, जिसे कभी-कभी तार्किक मूल्य कहा जाता है, एक ऐसा मूल्य है जो सत्य के प्रति प्रस्ताव के संबंध को दर्शाता है, जिसमें शास्त्रीय तर्क में केवल दो संभावित मान ("सत्य" या "असत्य) होते हैं।[1][2]

कम्प्यूटिंग

कुछ प्रोग्रामिंग भाषाओं में, किसी भी अभिव्यक्ति (कंप्यूटर विज्ञान) का मूल्यांकन उस संदर्भ में किया जा सकता है जो बूलियन डेटा प्रकार की अपेक्षा करता है। सामान्यतः (चूंकि यह प्रोग्रामिंग लैंग्वेज के अनुसार भिन्न होता है) संख्या शून्य, खाली स्ट्रिंग, खाली सूचियाँ, और नल पॉइंटर मूल्यांकन, और सामग्री के साथ तार (जैसे "एबीसी"), अन्य संख्याएँ, और वस्तुएँ सत्य का मूल्यांकन करती हैं। कभी-कभी अभिव्यक्तियों के इन वर्गों को सत्य और असत्य कहा जाता है।

शास्त्रीय तर्क

··
ट्रू तार्किक संयोजन
¬
··
फॉल्स तार्किक विच्छेदन
नकारात्मक आदान-प्रदान
असत्य के साथ सत्य और
वियोग के साथ संयोजन।

शास्त्रीय तर्क में, इसके इच्छित शब्दार्थ के साथ, सत्य मान सत्य हैं (1 या सच ⊤ द्वारा चिह्नित), और मिथ्या (तर्क) या असत्य (0 या मिथ्या ⊥ द्वारा चिह्नित) होते हैं; अर्थात् शास्त्रीय तर्कशास्त्र एक द्वि-मूल्यवान तर्कशास्त्र है। दो मानों के इस सेट को बूलियन डोमेन भी कहा जाता है। तार्किक संयोजकों के संगत शब्दार्थ सत्य कार्य हैं, जिनके मूल्य सत्य तालिकाओं के रूप में व्यक्त किए जाते हैं। तार्किक द्विप्रतिबंध समानता (गणित) द्विआधारी संबंध बन जाता है, और निषेध एक आक्षेप बन जाता है जो सत्य और असत्य की अनुमति देता है। संयोजन और संयोजन दोहरी (गणित) हैं जो डी मॉर्गन के कानूनों द्वारा व्यक्त किया गया है:

¬(pq) ⇔ ¬p ∨ ¬q
¬(pq) ⇔ ¬p ∧ ¬q

बूलियन डोमेन में प्रस्तावक परिवर्तनशील बन जाते हैं। प्रोपोज़िशनल वेरिएबल्स के लिए वैल्यू असाइन करने को मूल्य निर्धारण कहा जाता है।


अंतर्ज्ञानवादी और रचनात्मक तर्क

अंतर्ज्ञानवादी तर्क में, और अधिक सामान्यतः, रचनात्मक गणित में, व्याख्यानों को एक सत्य मान दिया जाता है, यदि उन्हें एक रचनात्मक प्रमाण दिया जा सकता है। यह स्वयंसिद्धों के एक सेट से प्रारंभ होता है, और एक कथन सत्य है यदि कोई उन स्वयंसिद्धों से कथन का प्रमाण बना सकता है। यह विवरण ग़लत है अगर कोई इससे विरोधाभास निकाल सकता है। इससे उन कथनों की संभावना खुल जाती है जिन्हें अभी तक सत्य मान नहीं दिया गया है। अंतर्ज्ञानवादी तर्क में अप्रमाणित विवरणों को मध्यवर्ती सत्य मान नहीं दिया जाता है (जैसा कि कभी-कभी गलती से बल दिया जाता है)। वास्तव में, कोई यह सिद्ध कर सकता है कि उनके पास कोई तीसरा सत्य मूल्य नहीं है, जिसका परिणाम 1928 में ग्लिवेंको से मिलता है। [3] इसके अतिरिक्त, कथन केवल तब तक अज्ञात सत्य मान के बने रहते हैं, जब तक कि वे या तो सिद्ध या अप्रमाणित नहीं हो जाते।

अंतर्ज्ञानवादी तर्क की व्याख्या करने के विभिन्न नियम हैं, जिसमें ब्रोवर-हेटिंग-कोल्मोगोरोव व्याख्या सम्मलित है। Inट्यूशनवादी तर्क § अर्थ विज्ञान.

बहु-मूल्यवान तर्क

बहु-मूल्यवान तर्कशास्त्र (जैसे अस्पष्ट तर्क और प्रासंगिकता तर्क) दो से अधिक सत्य मानों की अनुमति देते हैं, जिनमें संभवतः कुछ आंतरिक संरचना होती है। उदाहरण के लिए, इकाई अंतराल पर [0,1] ऐसी संरचना कुल क्रम है; इसे सत्य की विभिन्न कोटि के अस्तित्व के रूप में व्यक्त किया जा सकता है।

बीजगणितीय शब्दार्थ

सभी तार्किक प्रणालियाँ इस अर्थ में सत्य-मूल्यवान नहीं हैं कि तार्किक संयोजकों की व्याख्या सत्य कार्यों के रूप में की जा सकती है। उदाहरण के लिए, अंतर्ज्ञानवादी तर्क में सत्य मूल्यों का पूरा सेट नहीं होता है चूंकि इसके शब्दार्थ, ब्रोवर-हेटिंग-कोल्मोगोरोव व्याख्या, सूत्रों के आवश्यक सत्य के संदर्भ में प्रत्यक्ष रूप से नहीं, बल्कि प्रवीणता शर्तों के संदर्भ में निर्दिष्ट है।

परंतुयहां तक ​​कि गैर-सत्य-मूल्यांकन तर्क भी मूल्यों को तार्किक सूत्रों के साथ जोड़ सकते हैं, जैसा कि बीजगणितीय शब्दार्थ (गणितीय तर्क) में किया जाता है।. क्लासिकल साध्यात्मक कलन के बूलियन बीजगणित (संरचना) सिमेंटिक्स की तुलना में अंतर्ज्ञान तर्क का बीजगणितीय शब्दार्थ हेयटिंग बीजगणित के संदर्भ में दिया गया है।


अन्य सिद्धांतों में

अंतर्ज्ञानवादी प्रकार सिद्धांत सत्य मूल्यों के स्थान पर प्रकार सिद्धांत का उपयोग करता है।

टोपोस सिद्धांत एक विशेष अर्थ में सत्य मूल्यों का उपयोग करता है: टोपोस के सत्य मूल्य सबऑब्जेक्ट क्लासिफायरियर के वैश्विक तत्व हैं। इस अर्थ में सत्य मूल्यों के होने से कोई तार्किक सत्य मूल्यांकनात्मक नहीं हो जाता।

यह भी देखें

संदर्भ

  1. Shramko, Yaroslav; Wansing, Heinrich. "Truth Values". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy.
  2. "Truth value". Lexico UK English Dictionary. Oxford University Press. n.d.
  3. Proof that intuitionistic logic has no third truth value, Glivenko 1928


बाहरी संबंध