अलेक्जेंडर टोपोलॉजी: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[टोपोलॉजी|सांस्थिति(टोपोलॉजी)]] में, अलेक्जेंड्रोव सांस्थिति [[टोपोलॉजिकल स्पेस|संस्थानिक स्थान]] है जिसमें विवृत समुच्चय के किसी भी संतति का प्रतिच्छेदन (समुच्चय सिद्धांत) विवृत(खुला) है। यह सांस्थिति का स्वयंसिद्ध है कि विवृत समुच्चयों | [[टोपोलॉजी|सांस्थिति(टोपोलॉजी)]] में, अलेक्जेंड्रोव सांस्थिति [[टोपोलॉजिकल स्पेस|संस्थानिक स्थान]] है जिसमें विवृत समुच्चय के किसी भी संतति का प्रतिच्छेदन (समुच्चय सिद्धांत) विवृत(खुला) है। यह सांस्थिति का स्वयंसिद्ध है कि विवृत समुच्चयों के किसी भी 'परिमित' संतति का प्रतिच्छेदन विवृत है; अलेक्जेंड्रोव सांस्थिति में परिमित प्रतिबंध हटा दिया गया है। | ||
अलेक्जेंड्रोव सांस्थिति के साथ समुच्चय को अलेक्जेंड्रोव-असतत स्थान या अंतिम रूप से उत्पन्न स्थान के रूप में जाना जाता है। | अलेक्जेंड्रोव सांस्थिति के साथ समुच्चय को अलेक्जेंड्रोव-असतत स्थान या अंतिम रूप से उत्पन्न स्थान के रूप में जाना जाता है। | ||
अलेक्जेंड्रोव सांस्थिति विशिष्ट रूप से उनकी विशेषज्ञता की सीमाओं से निर्धारित होती है। वास्तव में, समुच्चय ''X'' पर किसी भी अग्रिम आदेश | अलेक्जेंड्रोव सांस्थिति विशिष्ट रूप से उनकी विशेषज्ञता की सीमाओं से निर्धारित होती है। वास्तव में, समुच्चय ''X'' पर किसी भी अग्रिम आदेश ≤ को देखते हुए, ''X'' पर अद्वितीय अलेक्जेंड्रोव सांस्थिति है, जिसके लिए विशेषज्ञता [[पूर्व आदेश]] ≤ है। [[खुला सेट|विवृत]] समुच्चय ≤ के संबंध में सिर्फ [[ऊपरी सेट|ऊपरी]] समुच्चय हैं। इस प्रकार, ''X'' पर अलेक्जेंड्रोव सांस्थिति ''X'' पर पूर्व-आदेशों के साथ एक-से-एक पत्राचार में हैं। | ||
अलेक्जेंड्रोव-असतत रिक्त स्थान को परिमित रूप से उत्पन्न स्थान भी कहा जाता है क्योंकि उनकी सांस्थिति विशिष्ट रूप से [[सुसंगत टोपोलॉजी|सुसंगत सांस्थिति]] है जो सभी [[परिमित सामयिक स्थान]] संतति है। अलेक्जेंड्रोव-असतत स्थान इस प्रकार परिमित स्थलीय रिक्त स्थान के सामान्यीकरण के रूप में देखे जा सकते हैं। | अलेक्जेंड्रोव-असतत रिक्त स्थान को परिमित रूप से उत्पन्न स्थान भी कहा जाता है क्योंकि उनकी सांस्थिति विशिष्ट रूप से [[सुसंगत टोपोलॉजी|सुसंगत सांस्थिति]] है जो सभी [[परिमित सामयिक स्थान]] संतति है। अलेक्जेंड्रोव-असतत स्थान इस प्रकार परिमित स्थलीय रिक्त स्थान के सामान्यीकरण के रूप में देखे जा सकते हैं। | ||
इस तथ्य के कारण कि [[छवि (गणित)|छवि]] | इस तथ्य के कारण कि [[छवि (गणित)|छवि]] इच्छानुसार [[संघ (गणित)|संघ]] और प्रतिच्छेदनों के साथ यात्रा करती है, एलेक्जेंड्रोव-असतत स्थान होने की संपत्ति [[भागफल स्थान (टोपोलॉजी)|भागफल स्थान]] के अनुसार संरक्षित है। | ||
अलेक्जेंड्रोव-असतत रिक्त स्थान का नाम रूसी टोपोलॉजिस्ट पी एस [[अलेक्जेंड्रोव अंतरिक्ष|अलेक्जेंड्रोव स्थान]] नाम पर रखा गया है। उन्हें रूसी गणितज्ञ [[अलेक्जेंडर डेनिलोविच अलेक्जेंड्रोव]] द्वारा प्रस्तुत किए गए अधिक ज्यामितीय एलेक्जेंड्रोव रिक्त स्थान के साथ भ्रमित नहीं होना चाहिए। | अलेक्जेंड्रोव-असतत रिक्त स्थान का नाम रूसी टोपोलॉजिस्ट पी एस [[अलेक्जेंड्रोव अंतरिक्ष|अलेक्जेंड्रोव स्थान]] नाम पर रखा गया है। उन्हें रूसी गणितज्ञ [[अलेक्जेंडर डेनिलोविच अलेक्जेंड्रोव]] द्वारा प्रस्तुत किए गए अधिक ज्यामितीय एलेक्जेंड्रोव रिक्त स्थान के साथ भ्रमित नहीं होना चाहिए। | ||
Line 16: | Line 16: | ||
* '''विवृत और संवृत समुच्चय लक्षण वर्णन:''' | * '''विवृत और संवृत समुच्चय लक्षण वर्णन:''' | ||
** विवृत समुच्चय- 'X'' में विवृत समुच्चयों | ** विवृत समुच्चय- 'X'' में विवृत समुच्चयों का इच्छानुसार प्रतिच्छेदन विवृत है।'' | ||
** संवृत समुच्चय- 'X'' में संवृत समुच्चयों | ** संवृत समुच्चय- 'X'' में संवृत समुच्चयों का इच्छानुसार संघ संवृत है।'' | ||
*'''प्रतिवेश के लक्षण:''' | *'''प्रतिवेश के लक्षण:''' | ||
** सबसे छोटा प्रतिवेश- ''X'' के प्रत्येक बिंदु का छोटा [[पड़ोस (टोपोलॉजी)|प्रतिवेश]] है। | ** सबसे छोटा प्रतिवेश- ''X'' के प्रत्येक बिंदु का छोटा [[पड़ोस (टोपोलॉजी)|प्रतिवेश]] है। | ||
Line 25: | Line 25: | ||
** [[बंद करने वाला ऑपरेटर|समापन संचालिका]]- 'X' का समापन संचालिका सबसमुच्चय के इच्छानुसार संघों पर वितरण करता है। | ** [[बंद करने वाला ऑपरेटर|समापन संचालिका]]- 'X' का समापन संचालिका सबसमुच्चय के इच्छानुसार संघों पर वितरण करता है। | ||
* '''अग्रिम आदेश लक्षण वर्णन''': | * '''अग्रिम आदेश लक्षण वर्णन''': | ||
** विशेषीकरण अग्रिम आदेश - ''T,'' ''X'' के विशेषीकरण अग्रिम आदेश | ** विशेषीकरण अग्रिम आदेश - ''T,'' ''X'' के विशेषीकरण अग्रिम आदेश के अनुरूप श्रेष्ठ [[बेहतरीन टोपोलॉजी|सांस्थिति]] है अर्थात अग्रिम आदेश देने वाली श्रेष्ठ सांस्थिति ≤ संतोषजनक ''x'' ≤ ''y'' यदि और केवल यदि ''x'' ''X'' में {''y''} के संवृत होने में है। | ||
** विवृत उप समुच्चय- | ** विवृत उप समुच्चय- अग्रिम आदेश ≤ ऐसा है कि 'X' के विवृत समुच्चय ठीक वही हैं जो ऊपरी समुच्चय हैं अर्थात यदि 'x' समुच्चय में है और ''x'' ≤ ''y'' तो ''y'' समुच्चय में है। (यह अग्रिम आदेश स्पष्ट रूप से विशेषीकरण अग्रिम आदेश होगा।) | ||
** संवृत समुच्चय- अग्रिम आदेश | ** संवृत समुच्चय- अग्रिम आदेश ≤ ऐसा है कि 'X' के संवृत समुच्चय ठीक वही हैं जो नीचे की ओर संवृत हैं अर्थात यदि ''x'' समुच्चय में है और ''y'' ≤ ''x'' तो ''y'' समुच्चय में है। (यह अग्रिम आदेश स्पष्ट रूप से विशेषीकरण अग्रिम आदेश होगा।) | ||
** खिन्न संवृत- | ** खिन्न संवृत- बिंदु ''x'' ''X'' के उपसमुच्चय ''S'' के संवृत होने में निहित है यदि और केवल यदि ''S'' में बिंदु ''y'' है जैसे कि ''x'' ' ≤ ''y'' जहां ≤ विशेषीकरण अग्रिम आदेश है अर्थात ''x'' {''y''} के समापन में है। | ||
*'''परिमित पीढ़ी और श्रेणी सिद्धांत लक्षण वर्णन:''' | *'''परिमित पीढ़ी और श्रेणी सिद्धांत लक्षण वर्णन:''' | ||
** परिमित समापन- बिंदु ''x'' ''X'' के उपसमुच्चय ''S'' के संवृत होने के अंदर स्थित है यदि और केवल यदि ''S'' का परिमित उपसमुच्चय ''F'' है जैसे कि ''x '' ''F के संवृत होने में निहित है। (यह परिमित उपसमुच्चय सदैव सिंगलटन अर्थात एकाकी वस्तु के रूप में चुना जा सकता है।)'' | ** परिमित समापन- बिंदु ''x'' ''X'' के उपसमुच्चय ''S'' के संवृत होने के अंदर स्थित है यदि और केवल यदि ''S'' का परिमित उपसमुच्चय ''F'' है जैसे कि ''x'' ''F के संवृत होने में निहित है। (यह परिमित उपसमुच्चय सदैव सिंगलटन अर्थात एकाकी वस्तु के रूप में चुना जा सकता है।)'' | ||
** परिमित उपस्थान- ''T'' , ''X'' के परिमित उपस्थानों के साथ सुसंगत सांस्थिति है। | ** परिमित उपस्थान- ''T'' , ''X'' के परिमित उपस्थानों के साथ सुसंगत सांस्थिति है। | ||
** परिमित समावेशन मानचित्र- समावेशन मानचित्र ''f''<sub>''i''</sub> : ''X''<sub>''i''</sub> → ''X'' के परिमित उपस्थानों का ''X'' [[अंतिम सिंक]] बनाता है। | ** परिमित समावेशन मानचित्र- समावेशन मानचित्र ''f''<sub>''i''</sub> : ''X''<sub>''i''</sub> → ''X'' के परिमित उपस्थानों का ''X'' [[अंतिम सिंक]] बनाता है। | ||
Line 37: | Line 37: | ||
उपरोक्त समकक्ष लक्षणों को संतुष्ट करने वाले संस्थानिक रिक्त स्थान को सूक्ष्म रूप से उत्पन्न स्थान या अलेक्जेंड्रोव-असतत स्थान कहा जाता है और उनकी सांस्थिति '''T''<nowiki/>' को अलेक्जेंड्रोव सांस्थिति कहा जाता है। | उपरोक्त समकक्ष लक्षणों को संतुष्ट करने वाले संस्थानिक रिक्त स्थान को सूक्ष्म रूप से उत्पन्न स्थान या अलेक्जेंड्रोव-असतत स्थान कहा जाता है और उनकी सांस्थिति '''T''<nowiki/>' को अलेक्जेंड्रोव सांस्थिति कहा जाता है। | ||
== पूर्ववर्ती समुच्चयों | == पूर्ववर्ती समुच्चयों के साथ समानता == | ||
=== पूर्वनिर्धारित समुच्चय === | <nowiki>=== पूर्वनिर्धारित समुच्चय पर एलेक्जेंड्रोव सांस्थिति===</nowiki> | ||
पूर्वनिर्धारित समुच्चय <math> \mathbf{X} = \langle X, \le\rangle</math> | पूर्वनिर्धारित समुच्चय <math> \mathbf{X} = \langle X, \le\rangle</math> दिया है , हम अलेक्जेंड्रोव सांस्थिति को ऊपरी समुच्चय X पर होने के लिए विवृत समुच्चयों को <math>\tau</math> चुनकर परिभाषित कर सकते हैं : | ||
:<math>\tau = \{\, G \subseteq X : \forall x,y\in X\ \ (x\in G\ \land\ x\le y)\ \rightarrow\ y \in G\,\}</math> | :<math>\tau = \{\, G \subseteq X : \forall x,y\in X\ \ (x\in G\ \land\ x\le y)\ \rightarrow\ y \in G\,\}</math> | ||
Line 54: | Line 54: | ||
<nowiki>=== संस्थानिक स्थान पर विशेषीकरण अग्रिम आदेश ===</nowiki> | <nowiki>=== संस्थानिक स्थान पर विशेषीकरण अग्रिम आदेश ===</nowiki> | ||
संस्थानिक स्थान ''X'' = <''X'', ''T''> को देखते हुए ''X'' पर विशेषीकरण अग्रिम आदेश | संस्थानिक स्थान ''X'' = <''X'', ''T''> को देखते हुए ''X'' पर विशेषीकरण अग्रिम आदेश द्वारा परिभाषित किया गया है: | ||
: ''x'' ≤ ''y'' यदि और केवल यदि ''x'' {''y''} के संवृत होने में है। | : ''x'' ≤ ''y'' यदि और केवल यदि ''x'' {''y''} के संवृत होने में है। | ||
Line 62: | Line 62: | ||
=== अग्रिम आदेश और अलेक्जेंड्रोव सांस्थितिज के बीच समानता === | === अग्रिम आदेश और अलेक्जेंड्रोव सांस्थितिज के बीच समानता === | ||
पूर्व | पूर्व आदेशित प्रत्येक समुच्चय के लिए ''X'' = <''X'', ≤> हमारे पास सदैव ''W''(''T''(''X'')) = ''X'' होता है, अर्थात ''X'' का अग्रिम आदेश संस्थानिक स्थान ''T''(''X'') से विशेषीकरण अग्रिम आदेश के रूप में प्राप्त किया गया है। | ||
इसके अतिरिक्त प्रत्येक '' अलेक्जेंड्रोव-असतत स्थान '' '' X '' के लिए, हमारे पास '' T '' (''W''( '' X '')) = '' X '' है, अर्थात एलेक्जेंड्रोव सांस्थिति ''X'' को विशेषीकरण अग्रिम आदेश | इसके अतिरिक्त प्रत्येक ''अलेक्जेंड्रोव-असतत स्थान'' ''X'' के लिए, हमारे पास ''T'' (''W''( ''X '')) = ''X'' है, अर्थात एलेक्जेंड्रोव सांस्थिति ''X'' को विशेषीकरण अग्रिम आदेश द्वारा प्रेरित सांस्थिति के रूप में पुनर्प्राप्त किया गया है। | ||
यद्यपि सामान्य रूप से संस्थानिक स्थान के लिए हमारे पास ''T''(''W''(''X'')) = ''X'' नहीं है। किंतु ''T''(''W''(''X'')) ''X'' की तुलना में मासिक | यद्यपि सामान्य रूप से संस्थानिक स्थान के लिए हमारे पास ''T''(''W''(''X'')) = ''X'' नहीं है। किंतु ''T''(''W''(''X'')) ''X'' की तुलना में मासिक सांस्थिति वाला समुच्चय ''X'' होगा (अर्थात इसमें अधिक विवृत समुच्चय होंगे) . | ||
''T''(''W''(''X'')) की सांस्थिति स्थान के मूल सांस्थिति के समान विशेषीकरण अग्रिम आदेश | ''T''(''W''(''X'')) की सांस्थिति स्थान के मूल सांस्थिति के समान विशेषीकरण अग्रिम आदेश को प्रेरित करती है और वास्तव में उस गुण के साथ 'X' पर श्रेष्ठ सांस्थिति है । | ||
=== एकरसता और निरंतरता के बीच समानता === | === एकरसता और निरंतरता के बीच समानता === | ||
Line 76: | Line 76: | ||
:f : 'X'→'Y' | :f : 'X'→'Y' | ||
दो पूर्वनिर्धारित समुच्चयों | दो पूर्वनिर्धारित समुच्चयों के बीच (अर्थात प्रकार्य) | ||
: f : X→Y | : f : X→Y | ||
अंतर्निहित समुच्चयों | अंतर्निहित समुच्चयों के बीच जैसे कि x ≤ y 'X' में f(x) ≤ f(y) 'Y' में), माना, | ||
:'T'(f) : 'T'('X')→'T'('Y') | :'T'(f) : 'T'('X')→'T'('Y') | ||
उसी मानचित्र के रूप में हो जिसे f संबंधित अलेक्जेंड्रोव रिक्त स्थान के बीच मानचित्र के रूप में माना जाता है। फिर '''''T'''''(''f'') | उसी मानचित्र के रूप में हो जिसे f संबंधित अलेक्जेंड्रोव रिक्त स्थान के बीच मानचित्र के रूप में माना जाता है। फिर '''''T'''''(''f'') सतत मानचित्र है। | ||
इसके विपरीत सतत मानचित्र दिया: | इसके विपरीत सतत मानचित्र दिया: | ||
Line 94: | Line 94: | ||
:'W'(g) : 'W'('X')→'W'('Y') | :'W'(g) : 'W'('X')→'W'('Y') | ||
वही मानचित्र हो जैसा f को संबंधित पूर्वनिर्धारित समुच्चयों | वही मानचित्र हो जैसा f को संबंधित पूर्वनिर्धारित समुच्चयों के बीच मानचित्र के रूप में माना जाता है। फिर '''''W'''''(''g'') मोनोटोन(समस्वर या एकरूप) प्रकार्य है। | ||
इस प्रकार दो पूर्ववर्ती समुच्चयों | इस प्रकार दो पूर्ववर्ती समुच्चयों के बीच मानचित्र एकरूप है यदि और केवल यदि यह संबंधित अलेक्जेंड्रोव-असतत रिक्त स्थान के बीच निरंतर मानचित्र है। इसके विपरीत दो अलेक्जेंड्रोव-असतत रिक्त स्थान के बीच मानचित्र निरंतर है यदि और केवल यदि यह संबंधित पूर्ववर्ती समुच्चयों के बीच एकरूप प्रकार्य है। | ||
चूंकि ध्यान दें कि एलेक्जेंड्रोव सांस्थिति के अतिरिक्त अन्य सांस्थिति के स्थितियों में, हमारे पास दो संस्थानिक रिक्त स्थान के बीच मानचित्र हो सकता है जो निरंतर नहीं है, किंतु फिर भी संबंधित पूर्ववर्ती समुच्चयों | चूंकि ध्यान दें कि एलेक्जेंड्रोव सांस्थिति के अतिरिक्त अन्य सांस्थिति के स्थितियों में, हमारे पास दो संस्थानिक रिक्त स्थान के बीच मानचित्र हो सकता है जो निरंतर नहीं है, किंतु फिर भी संबंधित पूर्ववर्ती समुच्चयों के बीच एकरूप प्रकार्य है। (इसे देखने के लिए गैर-अलेक्जेंड्रोव-असतत स्थान 'X' पर विचार करें और पहचान प्रकार्य i : 'X'→'T'('W'('X')) पर विचार करें।) | ||
=== तुल्यता का श्रेणी सैद्धांतिक विवरण === | === तुल्यता का श्रेणी सैद्धांतिक विवरण === | ||
मान लीजिए समुच्चय, समुच्चयों की श्रेणी और मानचित्र | मान लीजिए समुच्चय, समुच्चयों की श्रेणी और मानचित्र को निरूपित करता है। Top को संस्थानिक स्थान और [[निरंतरता (टोपोलॉजी)|निरंतरता]] की श्रेणी को निरूपित करते हैं; और Pro को अग्रिम आदेश और एकरूप प्रकार्यों की श्रेणी को निरूपित करने दें। तब; | ||
:''T'' : | :''T'' : Pro→Top ,और | ||
:''W'' : | :''W'' : Top→Pro | ||
समुच्चय पर [[मैं ठोस काम कर रहा हूं|ठोस कारक]] हैं जो क्रमशः आसन्न फ़ंक्टर हैं। | समुच्चय पर [[मैं ठोस काम कर रहा हूं|ठोस कारक]] हैं जो क्रमशः आसन्न फ़ंक्टर हैं। | ||
बता दें कि Alx ने | बता दें कि Alx ने Top की पूरी उपश्रेणी को निरूपित किया है जिसमें एलेक्जेंड्रोव-असतत स्थान सम्मिलित हैं। फिर प्रतिबंध; | ||
:''T'' : Pro→Alx और | :''T'' : Pro→Alx और | ||
Line 116: | Line 116: | ||
समुच्चय पर व्युत्क्रम ठोस कारक हैं। | समुच्चय पर व्युत्क्रम ठोस कारक हैं। | ||
वास्तव में Alx | वास्तव में Alx बायको-परावर्तक ''T''◦''W'' के साथ Top की बाइको-रिफ्लेक्टिव उपश्रेणी: Top→Alx है । इसका कारण यह है [[टोपोलॉजिकल स्पेस की श्रेणी|संस्थानिक स्थान की श्रेणी]] 'X', आइडेंटिटी मैप(पहचान मानचित्र) दिया गया है; | ||
:''i'' : ''T''(''W''(''X''))→''X'' | :''i'' : ''T''(''W''(''X''))→''X'' | ||
Line 131: | Line 131: | ||
=== मोडल फ्रेम से मोडल बीजगणित के निर्माण से संबंध === | === मोडल फ्रेम से मोडल बीजगणित के निर्माण से संबंध === | ||
पूर्व आदेशित | पूर्व आदेशित '''किए गए''' समुच्चय ''X'' को देखते हुए, ''T''(''X'') के आंतरिक संचालिका और समापन संचालिका द्वारा दिए गए हैं: | ||
:Int(''S'') = { ''x'' ∈ X : सभी के लिए ''y'' ∈ X, ''x'' ≤ ''y'' का अर्थ है ''y'' ∈ S}, और | :Int(''S'') = { ''x'' ∈ X : सभी के लिए ''y'' ∈ X, ''x'' ≤ ''y'' का अर्थ है ''y'' ∈ S}, और | ||
Line 146: | Line 146: | ||
दो अलेक्जेंड्रोव-असतत रिक्त स्थान का उत्पाद अलेक्जेंड्रोव-असतत है।{{sfn|Arenas|1999|loc=Theorem 2.2}} | दो अलेक्जेंड्रोव-असतत रिक्त स्थान का उत्पाद अलेक्जेंड्रोव-असतत है।{{sfn|Arenas|1999|loc=Theorem 2.2}} | ||
प्रत्येक अलेक्जेंड्रोव सांस्थिति स्थानीय रूप से इस अर्थ में सघन है कि प्रत्येक बिंदु के पास सघन प्रतिवेश का [[स्थानीय आधार]] है, क्योंकि बिंदु का सबसे छोटा प्रतिवेश सदैव सघन होता है।<ref>{{cite arXiv |last1=Speer |first1=Timothy |title=A Short Study of Alexandroff Spaces |eprint=0708.2136 |class=math.GN |date=16 August 2007}}Theorem 5</ref> वास्तव में, यदि <math>U</math> बिंदु <math>x</math> का सबसे छोटा (विवृत) प्रतिवेश है , तो | प्रत्येक अलेक्जेंड्रोव सांस्थिति स्थानीय रूप से इस अर्थ में सघन है कि प्रत्येक बिंदु के पास सघन प्रतिवेश का [[स्थानीय आधार]] है, क्योंकि बिंदु का सबसे छोटा प्रतिवेश सदैव सघन होता है।<ref>{{cite arXiv |last1=Speer |first1=Timothy |title=A Short Study of Alexandroff Spaces |eprint=0708.2136 |class=math.GN |date=16 August 2007}}Theorem 5</ref> वास्तव में, यदि <math>U</math> बिंदु <math>x</math> का सबसे छोटा (विवृत) प्रतिवेश है , तो <math>U</math> उप-स्थान सांस्थिति के साथ <math>U</math> के किसी भी खुले आवरण में <math>U</math>.में सम्मिलित <math>x</math> प्रतिवेश है ,तथा ऐसा प्रतिवेश <math>U</math> आवश्यक रूप से बराबर है तो विवृत आवरण <math>\{U\}</math> परिमित उपकवर के रूप में स्वीकार करता है। | ||
प्रत्येक अलेक्जेंड्रोव सांस्थिति स्थानीय रूप से पथ से जुड़ा हुआ है।<ref>{{cite web |title=Are minimal neighborhoods in an Alexandrov topology path-connected? |url=https://math.stackexchange.com/questions/2965227 |website=Mathematics Stack Exchange}}</ref>{{sfn|Arenas|1999|loc=Theorem 2.8}} | प्रत्येक अलेक्जेंड्रोव सांस्थिति स्थानीय रूप से पथ से जुड़ा हुआ है।<ref>{{cite web |title=Are minimal neighborhoods in an Alexandrov topology path-connected? |url=https://math.stackexchange.com/questions/2965227 |website=Mathematics Stack Exchange}}</ref>{{sfn|Arenas|1999|loc=Theorem 2.8}} | ||
Line 158: | Line 158: | ||
1980 के दशक में [[श्रेणीबद्ध टोपोलॉजी|श्रेणीबद्ध सांस्थिति]] की उन्नति के साथ, अलेक्जेंड्रोव रिक्त स्थान को फिर से खोजा गया जब सामान्य रूप से उत्पन्न वस्तु की अवधारणा को [[सामान्य टोपोलॉजी|सामान्य सांस्थिति]] पर प्रयुक्त किया गया था और उनके लिए अंतिम रूप से उत्पन्न स्थान नाम को अपनाया गया था। अलेक्जेंड्रोव रिक्त स्थान भी उसी समय के आसपास [[कंप्यूटर विज्ञान]] में [[सांकेतिक शब्दार्थ]] और [[डोमेन सिद्धांत]] से उत्पन्न सांस्थिति के संदर्भ में फिर से खोजे गए थे। | 1980 के दशक में [[श्रेणीबद्ध टोपोलॉजी|श्रेणीबद्ध सांस्थिति]] की उन्नति के साथ, अलेक्जेंड्रोव रिक्त स्थान को फिर से खोजा गया जब सामान्य रूप से उत्पन्न वस्तु की अवधारणा को [[सामान्य टोपोलॉजी|सामान्य सांस्थिति]] पर प्रयुक्त किया गया था और उनके लिए अंतिम रूप से उत्पन्न स्थान नाम को अपनाया गया था। अलेक्जेंड्रोव रिक्त स्थान भी उसी समय के आसपास [[कंप्यूटर विज्ञान]] में [[सांकेतिक शब्दार्थ]] और [[डोमेन सिद्धांत]] से उत्पन्न सांस्थिति के संदर्भ में फिर से खोजे गए थे। | ||
1966 में माइकल सी. मैककॉर्ड और ए.के. स्टीनर प्रत्येक ने स्वतंत्र रूप से [[आंशिक रूप से आदेशित सेट|आंशिक रूप से आदेशित]] समुच्चय और रिक्त स्थान के बीच समानता का अवलोकन कियाजो कि एलेक्जेंड्रोव द्वारा प्रस्तुत किए गए रिक्त स्थान के सटीक रूप से | 1966 में माइकल सी. मैककॉर्ड और ए.के. स्टीनर प्रत्येक ने स्वतंत्र रूप से [[आंशिक रूप से आदेशित सेट|आंशिक रूप से आदेशित]] समुच्चय और रिक्त स्थान के बीच समानता का अवलोकन कियाजो कि एलेक्जेंड्रोव द्वारा प्रस्तुत किए गए रिक्त स्थान के सटीक रूप से T<sub>0</sub> संस्करण थे।<ref name="McC66">{{cite journal |last=McCord |first=M. C. |title=Singular homology and homotopy groups of finite topological spaces |journal=[[Duke Mathematical Journal]] |volume=33 |issue=3 |year=1966 |pages=465–474 |doi=10.1215/S0012-7094-66-03352-7 }}</ref><ref name="Ste66">{{cite journal |last=Steiner |first=A. K. |title=The Lattice of Topologies: Structure and Complementation |journal=[[Transactions of the American Mathematical Society]] |volume=122 |issue=2 |year=1966 |pages=379–398 |doi=10.2307/1994555 | issn=0002-9947 |jstor=1994555 |doi-access=free }}</ref> पी.टी. जॉनस्टोन ने ऐसे सांस्थिति को एलेक्जेंड्रोव सांस्थिति के रूप में संदर्भित किया।<ref name="Joh82">{{cite book |last=Johnstone |first=P. T. |title=Stone spaces |location=New York |publisher=Cambridge University Press |year=1986 |edition=1st paperback |isbn=978-0-521-33779-3 }}</ref> एफ.जी. एरेनास ने स्वतंत्र रूप से इन सांस्थिति के सामान्य संस्करण के लिए इस नाम का प्रस्ताव रखा।<ref name="Are99">{{cite journal |last=Arenas |first=F. G. |title=Alexandroff spaces |journal=Acta Math. Univ. Comenianae |volume=68 |issue=1 |year=1999 |pages=17–25 |url=https://www.emis.de/journals/AMUC/_vol-68/_no_1/_arenas/arenas.pdf}}</ref> मैककॉर्ड ने यह भी दिखाया कि आंशिक रूप से आदेश किए गए समुच्चय के [[आदेश जटिल|आदेश जटिल(ऑर्डर कॉम्प्लेक्स)]] के लिए ये रिक्त स्थान दुर्बल होमोटॉपी समकक्ष हैं। स्टीनर ने प्रदर्शित किया कि तुल्यता प्रतिपरिवर्ती जालक समरूपता है और जो [[पूर्ण जाली]] के साथ-साथ पूरकता को संरक्षित करता है। | ||
यह [[मॉडल तर्क]] के क्षेत्र में भी प्रसिद्ध परिणाम था कि परिमित संस्थानिक रिक्त स्थान और परिमित समुच्चय (मोडल लॉजिक | यह [[मॉडल तर्क]] के क्षेत्र में भी प्रसिद्ध परिणाम था कि परिमित संस्थानिक रिक्त स्थान और परिमित समुच्चय (मोडल लॉजिक S4 के लिए परिमित [[मोडल फ्रेम]]) के बीच समानता उपस्थित है। आंद्रेज ग्रेज़गोर्स्की (ए.ग्रेज़गोर्स्की) ने देखा कि यह 'पूरी तरह से वितरण स्थान' और पूर्व-आदेशों के रूप में संदर्भित के मध्य समानता तक विस्तारित है। सी. नटर्मन ने देखा कि ये स्थान एलेक्जेंड्रोव-असतत स्थान थे और परिणाम को एलेक्जेंड्रोव-असतत रिक्त स्थान की श्रेणी और (विवृत) निरंतर मानचित्रों की श्रेणी के बीच श्रेणी-सैद्धांतिक तुल्यता तक बढ़ाया, और पूर्व-आदेशों की श्रेणी और (बाध्य) एकरूप मानचित्र, पूर्व-आदेश लक्षण वर्णन के साथ-साथ आंतरिक और संवृत बीजगणितीय लक्षण वर्णन प्रदान करता है।<ref name="Nat91">{{cite book |last=Naturman |first=C. A. |title=Interior Algebras and Topology |publisher=Ph.D. thesis, University of Cape Town Department of Mathematics |year=1991 }}</ref> | ||
सामान्य सांस्थिति के दृष्टिकोण से इन स्थानों की व्यवस्थित जांच, जिसे अलेक्जेंड्रोव द्वारा मूल दस्तावेज | सामान्य सांस्थिति के दृष्टिकोण से इन स्थानों की व्यवस्थित जांच, जिसे अलेक्जेंड्रोव द्वारा मूल दस्तावेज के पश्चात से उपेक्षित किया गया था, एफ.जी. एरेनास द्वारा लिया गया था।<ref name="Are99" /> | ||
== यह भी देखें == | == यह भी देखें == | ||
* पी-स्थान, दुर्बल | * पी-स्थान, दुर्बल स्थिति को संतुष्ट करने वाला स्थान है जो खुले सेटों के गणनीय प्रतिच्छेदन विवृत हैं। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 08:34, 23 February 2023
सांस्थिति(टोपोलॉजी) में, अलेक्जेंड्रोव सांस्थिति संस्थानिक स्थान है जिसमें विवृत समुच्चय के किसी भी संतति का प्रतिच्छेदन (समुच्चय सिद्धांत) विवृत(खुला) है। यह सांस्थिति का स्वयंसिद्ध है कि विवृत समुच्चयों के किसी भी 'परिमित' संतति का प्रतिच्छेदन विवृत है; अलेक्जेंड्रोव सांस्थिति में परिमित प्रतिबंध हटा दिया गया है।
अलेक्जेंड्रोव सांस्थिति के साथ समुच्चय को अलेक्जेंड्रोव-असतत स्थान या अंतिम रूप से उत्पन्न स्थान के रूप में जाना जाता है।
अलेक्जेंड्रोव सांस्थिति विशिष्ट रूप से उनकी विशेषज्ञता की सीमाओं से निर्धारित होती है। वास्तव में, समुच्चय X पर किसी भी अग्रिम आदेश ≤ को देखते हुए, X पर अद्वितीय अलेक्जेंड्रोव सांस्थिति है, जिसके लिए विशेषज्ञता पूर्व आदेश ≤ है। विवृत समुच्चय ≤ के संबंध में सिर्फ ऊपरी समुच्चय हैं। इस प्रकार, X पर अलेक्जेंड्रोव सांस्थिति X पर पूर्व-आदेशों के साथ एक-से-एक पत्राचार में हैं।
अलेक्जेंड्रोव-असतत रिक्त स्थान को परिमित रूप से उत्पन्न स्थान भी कहा जाता है क्योंकि उनकी सांस्थिति विशिष्ट रूप से सुसंगत सांस्थिति है जो सभी परिमित सामयिक स्थान संतति है। अलेक्जेंड्रोव-असतत स्थान इस प्रकार परिमित स्थलीय रिक्त स्थान के सामान्यीकरण के रूप में देखे जा सकते हैं।
इस तथ्य के कारण कि छवि इच्छानुसार संघ और प्रतिच्छेदनों के साथ यात्रा करती है, एलेक्जेंड्रोव-असतत स्थान होने की संपत्ति भागफल स्थान के अनुसार संरक्षित है।
अलेक्जेंड्रोव-असतत रिक्त स्थान का नाम रूसी टोपोलॉजिस्ट पी एस अलेक्जेंड्रोव स्थान नाम पर रखा गया है। उन्हें रूसी गणितज्ञ अलेक्जेंडर डेनिलोविच अलेक्जेंड्रोव द्वारा प्रस्तुत किए गए अधिक ज्यामितीय एलेक्जेंड्रोव रिक्त स्थान के साथ भ्रमित नहीं होना चाहिए।
एलेक्जेंड्रोव सांस्थितिज के लक्षण
अलेक्जेंड्रोव सांस्थिति में कई लक्षण हैं। मान लीजिए X = <X, T> संस्थानिक स्थान है। उसके पश्चात निम्न बराबर हैं:
- विवृत और संवृत समुच्चय लक्षण वर्णन:
- विवृत समुच्चय- 'X में विवृत समुच्चयों का इच्छानुसार प्रतिच्छेदन विवृत है।
- संवृत समुच्चय- 'X में संवृत समुच्चयों का इच्छानुसार संघ संवृत है।
- प्रतिवेश के लक्षण:
- सबसे छोटा प्रतिवेश- X के प्रत्येक बिंदु का छोटा प्रतिवेश है।
- प्रतिवेश निस्पंदन- इच्छानुसार प्रतिच्छेदनों के अनुसार 'X' में प्रत्येक बिंदु का प्रतिवेश निस्पंदन संवृत है।
- आंतरिक और संवृत बीजगणितीय लक्षण वर्णन:
- आंतरिक संचालिका- 'X' का आंतरिक संचालिका उपसमुच्चय के इच्छानुसार प्रतिच्छेदनों पर वितरित करता है।
- समापन संचालिका- 'X' का समापन संचालिका सबसमुच्चय के इच्छानुसार संघों पर वितरण करता है।
- अग्रिम आदेश लक्षण वर्णन:
- विशेषीकरण अग्रिम आदेश - T, X के विशेषीकरण अग्रिम आदेश के अनुरूप श्रेष्ठ सांस्थिति है अर्थात अग्रिम आदेश देने वाली श्रेष्ठ सांस्थिति ≤ संतोषजनक x ≤ y यदि और केवल यदि x X में {y} के संवृत होने में है।
- विवृत उप समुच्चय- अग्रिम आदेश ≤ ऐसा है कि 'X' के विवृत समुच्चय ठीक वही हैं जो ऊपरी समुच्चय हैं अर्थात यदि 'x' समुच्चय में है और x ≤ y तो y समुच्चय में है। (यह अग्रिम आदेश स्पष्ट रूप से विशेषीकरण अग्रिम आदेश होगा।)
- संवृत समुच्चय- अग्रिम आदेश ≤ ऐसा है कि 'X' के संवृत समुच्चय ठीक वही हैं जो नीचे की ओर संवृत हैं अर्थात यदि x समुच्चय में है और y ≤ x तो y समुच्चय में है। (यह अग्रिम आदेश स्पष्ट रूप से विशेषीकरण अग्रिम आदेश होगा।)
- खिन्न संवृत- बिंदु x X के उपसमुच्चय S के संवृत होने में निहित है यदि और केवल यदि S में बिंदु y है जैसे कि x ' ≤ y जहां ≤ विशेषीकरण अग्रिम आदेश है अर्थात x {y} के समापन में है।
- परिमित पीढ़ी और श्रेणी सिद्धांत लक्षण वर्णन:
- परिमित समापन- बिंदु x X के उपसमुच्चय S के संवृत होने के अंदर स्थित है यदि और केवल यदि S का परिमित उपसमुच्चय F है जैसे कि x F के संवृत होने में निहित है। (यह परिमित उपसमुच्चय सदैव सिंगलटन अर्थात एकाकी वस्तु के रूप में चुना जा सकता है।)
- परिमित उपस्थान- T , X के परिमित उपस्थानों के साथ सुसंगत सांस्थिति है।
- परिमित समावेशन मानचित्र- समावेशन मानचित्र fi : Xi → X के परिमित उपस्थानों का X अंतिम सिंक बनाता है।
- परिमित पीढ़ी- X परिमित रूप से उत्पन्न होता है अर्थात यह परिमित स्थानों के अंतिम हल में होता है। (इसका कारण है कि अंतिम सिंक fi है : Xi → X जहां प्रत्येक Xi परिमित सामयिक स्थान है।)
उपरोक्त समकक्ष लक्षणों को संतुष्ट करने वाले संस्थानिक रिक्त स्थान को सूक्ष्म रूप से उत्पन्न स्थान या अलेक्जेंड्रोव-असतत स्थान कहा जाता है और उनकी सांस्थिति 'T' को अलेक्जेंड्रोव सांस्थिति कहा जाता है।
पूर्ववर्ती समुच्चयों के साथ समानता
=== पूर्वनिर्धारित समुच्चय पर एलेक्जेंड्रोव सांस्थिति===
पूर्वनिर्धारित समुच्चय दिया है , हम अलेक्जेंड्रोव सांस्थिति को ऊपरी समुच्चय X पर होने के लिए विवृत समुच्चयों को चुनकर परिभाषित कर सकते हैं :
इस प्रकार हम सामयिक स्थान प्राप्त करते हैं
.
संबंधित संवृत समुच्चय निम्न समुच्चय हैं:
=== संस्थानिक स्थान पर विशेषीकरण अग्रिम आदेश ===
संस्थानिक स्थान X = <X, T> को देखते हुए X पर विशेषीकरण अग्रिम आदेश द्वारा परिभाषित किया गया है:
- x ≤ y यदि और केवल यदि x {y} के संवृत होने में है।
इस प्रकार हम पूर्वनिर्धारित समुच्चय W(X) = <X, ≤> प्राप्त करते हैं।
अग्रिम आदेश और अलेक्जेंड्रोव सांस्थितिज के बीच समानता
पूर्व आदेशित प्रत्येक समुच्चय के लिए X = <X, ≤> हमारे पास सदैव W(T(X)) = X होता है, अर्थात X का अग्रिम आदेश संस्थानिक स्थान T(X) से विशेषीकरण अग्रिम आदेश के रूप में प्राप्त किया गया है।
इसके अतिरिक्त प्रत्येक अलेक्जेंड्रोव-असतत स्थान X के लिए, हमारे पास T (W( X )) = X है, अर्थात एलेक्जेंड्रोव सांस्थिति X को विशेषीकरण अग्रिम आदेश द्वारा प्रेरित सांस्थिति के रूप में पुनर्प्राप्त किया गया है।
यद्यपि सामान्य रूप से संस्थानिक स्थान के लिए हमारे पास T(W(X)) = X नहीं है। किंतु T(W(X)) X की तुलना में मासिक सांस्थिति वाला समुच्चय X होगा (अर्थात इसमें अधिक विवृत समुच्चय होंगे) .
T(W(X)) की सांस्थिति स्थान के मूल सांस्थिति के समान विशेषीकरण अग्रिम आदेश को प्रेरित करती है और वास्तव में उस गुण के साथ 'X' पर श्रेष्ठ सांस्थिति है ।
एकरसता और निरंतरता के बीच समानता
एकरूप प्रकार्य दिया गया:
- f : 'X'→'Y'
दो पूर्वनिर्धारित समुच्चयों के बीच (अर्थात प्रकार्य)
- f : X→Y
अंतर्निहित समुच्चयों के बीच जैसे कि x ≤ y 'X' में f(x) ≤ f(y) 'Y' में), माना,
- 'T'(f) : 'T'('X')→'T'('Y')
उसी मानचित्र के रूप में हो जिसे f संबंधित अलेक्जेंड्रोव रिक्त स्थान के बीच मानचित्र के रूप में माना जाता है। फिर T(f) सतत मानचित्र है।
इसके विपरीत सतत मानचित्र दिया:
- g: 'X'→'Y'
दो संस्थानिक स्थान के बीच, माना,
- 'W'(g) : 'W'('X')→'W'('Y')
वही मानचित्र हो जैसा f को संबंधित पूर्वनिर्धारित समुच्चयों के बीच मानचित्र के रूप में माना जाता है। फिर W(g) मोनोटोन(समस्वर या एकरूप) प्रकार्य है।
इस प्रकार दो पूर्ववर्ती समुच्चयों के बीच मानचित्र एकरूप है यदि और केवल यदि यह संबंधित अलेक्जेंड्रोव-असतत रिक्त स्थान के बीच निरंतर मानचित्र है। इसके विपरीत दो अलेक्जेंड्रोव-असतत रिक्त स्थान के बीच मानचित्र निरंतर है यदि और केवल यदि यह संबंधित पूर्ववर्ती समुच्चयों के बीच एकरूप प्रकार्य है।
चूंकि ध्यान दें कि एलेक्जेंड्रोव सांस्थिति के अतिरिक्त अन्य सांस्थिति के स्थितियों में, हमारे पास दो संस्थानिक रिक्त स्थान के बीच मानचित्र हो सकता है जो निरंतर नहीं है, किंतु फिर भी संबंधित पूर्ववर्ती समुच्चयों के बीच एकरूप प्रकार्य है। (इसे देखने के लिए गैर-अलेक्जेंड्रोव-असतत स्थान 'X' पर विचार करें और पहचान प्रकार्य i : 'X'→'T'('W'('X')) पर विचार करें।)
तुल्यता का श्रेणी सैद्धांतिक विवरण
मान लीजिए समुच्चय, समुच्चयों की श्रेणी और मानचित्र को निरूपित करता है। Top को संस्थानिक स्थान और निरंतरता की श्रेणी को निरूपित करते हैं; और Pro को अग्रिम आदेश और एकरूप प्रकार्यों की श्रेणी को निरूपित करने दें। तब;
- T : Pro→Top ,और
- W : Top→Pro
समुच्चय पर ठोस कारक हैं जो क्रमशः आसन्न फ़ंक्टर हैं।
बता दें कि Alx ने Top की पूरी उपश्रेणी को निरूपित किया है जिसमें एलेक्जेंड्रोव-असतत स्थान सम्मिलित हैं। फिर प्रतिबंध;
- T : Pro→Alx और
- W : Alx→Pro
समुच्चय पर व्युत्क्रम ठोस कारक हैं।
वास्तव में Alx बायको-परावर्तक T◦W के साथ Top की बाइको-रिफ्लेक्टिव उपश्रेणी: Top→Alx है । इसका कारण यह है संस्थानिक स्थान की श्रेणी 'X', आइडेंटिटी मैप(पहचान मानचित्र) दिया गया है;
- i : T(W(X))→X
निरंतर है और प्रत्येक निरंतर मानचित्र के लिए
- f : Y→X
जहां Y एलेक्जेंड्रोव-असतत स्थान है, रचना
- i −1◦f : Y→T(W(X))
निरंतर है।
मोडल फ्रेम से मोडल बीजगणित के निर्माण से संबंध
पूर्व आदेशित किए गए समुच्चय X को देखते हुए, T(X) के आंतरिक संचालिका और समापन संचालिका द्वारा दिए गए हैं:
- Int(S) = { x ∈ X : सभी के लिए y ∈ X, x ≤ y का अर्थ है y ∈ S}, और
- Cl(S) = { x ∈ X : y ∈ S x ≤ y के साथ उपस्थित है }
सभी S ⊆ X. के लिए
आंतरिक संचालिका और समापन संचालिका को 'X' के सत्ता स्थापित बूलियन बीजगणित पर मोडल संचालिका मानते हुए, यह निर्माण कृपके शब्दार्थ से मॉडल बीजगणित के निर्माण का विशेष स्थिति अर्थात समुच्चय से के साथ एकल बाइनरी संबंध है । (पश्चात का निर्माण स्वयं संबंधपरक संरचना से जटिल बीजगणित के अधिक सामान्य निर्माण का विशेष स्थिति है, अर्थात उस पर परिभाषित संबंधों के साथ समुच्चय।) मोडल बीजगणित का वर्ग जो हम पूर्ववर्ती के स्थितियों में प्राप्त करते हैं। समुच्चय आंतरिक बीजगणित का वर्ग - संस्थानिक स्थान का बीजगणितीय सार है।
गुण
एलेक्जेंड्रोव-असतत स्थान का कोई भी उप-स्थान एलेक्जेंड्रोव-असतत है।[1]
दो अलेक्जेंड्रोव-असतत रिक्त स्थान का उत्पाद अलेक्जेंड्रोव-असतत है।[2]
प्रत्येक अलेक्जेंड्रोव सांस्थिति स्थानीय रूप से इस अर्थ में सघन है कि प्रत्येक बिंदु के पास सघन प्रतिवेश का स्थानीय आधार है, क्योंकि बिंदु का सबसे छोटा प्रतिवेश सदैव सघन होता है।[3] वास्तव में, यदि बिंदु का सबसे छोटा (विवृत) प्रतिवेश है , तो उप-स्थान सांस्थिति के साथ के किसी भी खुले आवरण में .में सम्मिलित प्रतिवेश है ,तथा ऐसा प्रतिवेश आवश्यक रूप से बराबर है तो विवृत आवरण परिमित उपकवर के रूप में स्वीकार करता है।
प्रत्येक अलेक्जेंड्रोव सांस्थिति स्थानीय रूप से पथ से जुड़ा हुआ है।[4][5]
इतिहास
अलेक्जेंड्रोव रिक्त स्थान पहली बार 1937 में पी.एस. अलेक्जेंड्रोव द्वारा असतत स्थानों के नाम से प्रस्तुत किए गए थे, जहां उन्होंने समुच्चय और प्रतिवेश के संदर्भ में लक्षण वर्णन प्रदान किया था।[6] असतत स्थान नाम पश्चात में संस्थानिक स्थान के लिए उपयोग किया जाने लगा, जिसमें प्रत्येक सबसमुच्चय विवृत है और मूल अवधारणा को संस्थानिक साहित्य में भुला दिया गया है। दूसरी ओर, एलेक्जेंड्रोव स्थान ने समापन संचालिका और उनके संबंधों पर ऑयस्टीन अयस्क के अग्रणी अध्ययन में प्रासंगिक भूमिका निभाई।
जाली सिद्धांत और सांस्थिति के साथ।[7]
1980 के दशक में श्रेणीबद्ध सांस्थिति की उन्नति के साथ, अलेक्जेंड्रोव रिक्त स्थान को फिर से खोजा गया जब सामान्य रूप से उत्पन्न वस्तु की अवधारणा को सामान्य सांस्थिति पर प्रयुक्त किया गया था और उनके लिए अंतिम रूप से उत्पन्न स्थान नाम को अपनाया गया था। अलेक्जेंड्रोव रिक्त स्थान भी उसी समय के आसपास कंप्यूटर विज्ञान में सांकेतिक शब्दार्थ और डोमेन सिद्धांत से उत्पन्न सांस्थिति के संदर्भ में फिर से खोजे गए थे।
1966 में माइकल सी. मैककॉर्ड और ए.के. स्टीनर प्रत्येक ने स्वतंत्र रूप से आंशिक रूप से आदेशित समुच्चय और रिक्त स्थान के बीच समानता का अवलोकन कियाजो कि एलेक्जेंड्रोव द्वारा प्रस्तुत किए गए रिक्त स्थान के सटीक रूप से T0 संस्करण थे।[8][9] पी.टी. जॉनस्टोन ने ऐसे सांस्थिति को एलेक्जेंड्रोव सांस्थिति के रूप में संदर्भित किया।[10] एफ.जी. एरेनास ने स्वतंत्र रूप से इन सांस्थिति के सामान्य संस्करण के लिए इस नाम का प्रस्ताव रखा।[11] मैककॉर्ड ने यह भी दिखाया कि आंशिक रूप से आदेश किए गए समुच्चय के आदेश जटिल(ऑर्डर कॉम्प्लेक्स) के लिए ये रिक्त स्थान दुर्बल होमोटॉपी समकक्ष हैं। स्टीनर ने प्रदर्शित किया कि तुल्यता प्रतिपरिवर्ती जालक समरूपता है और जो पूर्ण जाली के साथ-साथ पूरकता को संरक्षित करता है।
यह मॉडल तर्क के क्षेत्र में भी प्रसिद्ध परिणाम था कि परिमित संस्थानिक रिक्त स्थान और परिमित समुच्चय (मोडल लॉजिक S4 के लिए परिमित मोडल फ्रेम) के बीच समानता उपस्थित है। आंद्रेज ग्रेज़गोर्स्की (ए.ग्रेज़गोर्स्की) ने देखा कि यह 'पूरी तरह से वितरण स्थान' और पूर्व-आदेशों के रूप में संदर्भित के मध्य समानता तक विस्तारित है। सी. नटर्मन ने देखा कि ये स्थान एलेक्जेंड्रोव-असतत स्थान थे और परिणाम को एलेक्जेंड्रोव-असतत रिक्त स्थान की श्रेणी और (विवृत) निरंतर मानचित्रों की श्रेणी के बीच श्रेणी-सैद्धांतिक तुल्यता तक बढ़ाया, और पूर्व-आदेशों की श्रेणी और (बाध्य) एकरूप मानचित्र, पूर्व-आदेश लक्षण वर्णन के साथ-साथ आंतरिक और संवृत बीजगणितीय लक्षण वर्णन प्रदान करता है।[12]
सामान्य सांस्थिति के दृष्टिकोण से इन स्थानों की व्यवस्थित जांच, जिसे अलेक्जेंड्रोव द्वारा मूल दस्तावेज के पश्चात से उपेक्षित किया गया था, एफ.जी. एरेनास द्वारा लिया गया था।[11]
यह भी देखें
- पी-स्थान, दुर्बल स्थिति को संतुष्ट करने वाला स्थान है जो खुले सेटों के गणनीय प्रतिच्छेदन विवृत हैं।
संदर्भ
- ↑ Speer 2007, Theorem 7.
- ↑ Arenas 1999, Theorem 2.2.
- ↑ Speer, Timothy (16 August 2007). "A Short Study of Alexandroff Spaces". arXiv:0708.2136 [math.GN].Theorem 5
- ↑ "Are minimal neighborhoods in an Alexandrov topology path-connected?". Mathematics Stack Exchange.
- ↑ Arenas 1999, Theorem 2.8.
- ↑ Alexandroff, P. (1937). "Diskrete Räume". Mat. Sb. New Series (in Deutsch). 2: 501–518.
- ↑ O. Ore, Some studies on closure relations, Duke Math. J. 10 (1943), 761–785. See Marcel Erné, Closure, in Frédéric Mynard, Elliott Pearl (Editors), Beyond Topology, Contemporary mathematics vol. 486, American Mathematical Society, 2009, p.170ff
- ↑ McCord, M. C. (1966). "Singular homology and homotopy groups of finite topological spaces". Duke Mathematical Journal. 33 (3): 465–474. doi:10.1215/S0012-7094-66-03352-7.
- ↑ Steiner, A. K. (1966). "The Lattice of Topologies: Structure and Complementation". Transactions of the American Mathematical Society. 122 (2): 379–398. doi:10.2307/1994555. ISSN 0002-9947. JSTOR 1994555.
- ↑ Johnstone, P. T. (1986). Stone spaces (1st paperback ed.). New York: Cambridge University Press. ISBN 978-0-521-33779-3.
- ↑ 11.0 11.1 Arenas, F. G. (1999). "Alexandroff spaces" (PDF). Acta Math. Univ. Comenianae. 68 (1): 17–25.
- ↑ Naturman, C. A. (1991). Interior Algebras and Topology. Ph.D. thesis, University of Cape Town Department of Mathematics.