निर्वचन (तर्क): Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{Other uses| | {{Other uses| | ||
व्याख्या (बहुविकल्पी)}} | व्याख्या (बहुविकल्पी)}} | ||
व्याख्या [[औपचारिक भाषा]] के [[प्रतीक (औपचारिक)]] के अर्थ का अभिहस्तांकन है। गणित, [[तर्क]]शास्त्र और [[सैद्धांतिक कंप्यूटर विज्ञान]] में उपयोग की जाने वाली अनेक औपचारिक भाषाओं को केवल वाक्य-विन्यास के रूप में परिभाषित किया जाता है,और जब तक उन्हें कुछ व्याख्या नहीं दी जाती है, तब तक उनका | व्याख्या [[औपचारिक भाषा]] के [[प्रतीक (औपचारिक)]] के अर्थ का अभिहस्तांकन है। गणित, [[तर्क]]शास्त्र और [[सैद्धांतिक कंप्यूटर विज्ञान]] में उपयोग की जाने वाली अनेक औपचारिक भाषाओं को केवल वाक्य-विन्यास के रूप में परिभाषित किया जाता है,और जब तक उन्हें कुछ व्याख्या नहीं दी जाती है, तब तक उनका अन्य अर्थ नहीं होता है। औपचारिक भाषाओं की व्याख्याओं के सामान्य अध्ययन को [[औपचारिक शब्दार्थ (तर्क)]] कहा जाता है। | ||
सबसे अधिक अध्ययन किए जाने वाले औपचारिक लॉजिक्स [[मक तर्क|प्रस्तावात्मक तर्क]], [[विधेय तर्क]] और उनके मोडल तर्क एनालॉग हैं, और इनके लिए व्याख्या प्रस्तुत करने की मानक विधि हैं। इन संदर्भों में व्याख्या ऐसा कार्य (गणित) है जो किसी वस्तु भाषा के प्रतीकों और प्रतीकों के तार का [[विस्तार (विधेय तर्क)]] प्रदान करता है। उदाहरण के लिए, व्याख्या फलन ''T'' ("लंबा" के लिए) विधेय ले सकता है और इसे विस्तार {''a''} ("अब्राहम लिंकन" के लिए) निर्दिष्ट कर सकता है। ध्यान दें कि हमारी सभी व्याख्या अन्य -तार्किक स्थिरांक ''T'' के लिए {a} का विस्तार प्रदान करती है, और इस बारे में | सबसे अधिक अध्ययन किए जाने वाले औपचारिक लॉजिक्स [[मक तर्क|प्रस्तावात्मक तर्क]], [[विधेय तर्क]] और उनके मोडल तर्क एनालॉग हैं, और इनके लिए व्याख्या प्रस्तुत करने की मानक विधि हैं। इन संदर्भों में व्याख्या ऐसा कार्य (गणित) है जो किसी वस्तु भाषा के प्रतीकों और प्रतीकों के तार का [[विस्तार (विधेय तर्क)]] प्रदान करता है। उदाहरण के लिए, व्याख्या फलन ''T'' ("लंबा" के लिए) विधेय ले सकता है और इसे विस्तार {''a''} ("अब्राहम लिंकन" के लिए) निर्दिष्ट कर सकता है। ध्यान दें कि हमारी सभी व्याख्या अन्य -तार्किक स्थिरांक ''T'' के लिए {a} का विस्तार प्रदान करती है, और इस बारे में अन्य प्रमाणित नहीं करती है कि क्या ''T'' लंबा है और 'a' अब्राहम लिंकन के लिए है . न ही तार्किक व्याख्या में 'और', 'या' और 'नहीं' जैसे तार्किक संयोजकों के बारे में कुछ कहना है। चूँकि ''हम'' इन प्रतीकों को कुछ चीजों या अवधारणाओं के लिए खड़े होने के लिए ले सकते हैं, यह व्याख्या फलन द्वारा निर्धारित नहीं किया जाता है। | ||
व्याख्या प्रायः (लेकिन सदैव नहीं) भाषा में [[वाक्य (गणितीय तर्क)]] के [[सत्य मूल्य|सत्य]] मानों को निर्धारित करने की विधि प्रदान करती है। यदि दी गई व्याख्या किसी वाक्य या [[सिद्धांत (गणितीय तर्क)]] के लिए सही मान प्रदान करती है, तो व्याख्या को उस वाक्य या सिद्धांत का [[मॉडल (मॉडल सिद्धांत)]] कहा जाता है। | व्याख्या प्रायः (लेकिन सदैव नहीं) भाषा में [[वाक्य (गणितीय तर्क)]] के [[सत्य मूल्य|सत्य]] मानों को निर्धारित करने की विधि प्रदान करती है। यदि दी गई व्याख्या किसी वाक्य या [[सिद्धांत (गणितीय तर्क)]] के लिए सही मान प्रदान करती है, तो व्याख्या को उस वाक्य या सिद्धांत का [[मॉडल (मॉडल सिद्धांत)]] कहा जाता है। | ||
Line 79: | Line 79: | ||
प्रस्तावपरक तर्क के विपरीत, जहाँ प्रस्तावात्मक चर के अलग समुच्चय की पसंद के अतिरिक्त हर भाषा समान है, वहाँ अनेक भिन्न-भिन्न प्रथम-क्रम की भाषाएँ हैं। प्रत्येक प्रथम-क्रम की भाषा को [[हस्ताक्षर (गणितीय तर्क)]] द्वारा परिभाषित किया गया है। हस्ताक्षर में अन्य -तार्किक प्रतीकों का समुच्चय होता है और इन प्रतीकों में से प्रत्येक की निरंतर प्रतीक, फलन प्रतीक या [[विधेय प्रतीक]] के रूप में पहचान होती है। फलन और विधेय प्रतीकों के स्थिति में, [[प्राकृतिक संख्या]] भी निर्दिष्ट की जाती है। औपचारिक भाषा के लिए वर्णमाला में तार्किक स्थिरांक, समानता संबंध प्रतीक =, हस्ताक्षर से सभी प्रतीक, और चर के रूप में ज्ञात प्रतीकों का अतिरिक्त अनंत समुच्चय होता है। | प्रस्तावपरक तर्क के विपरीत, जहाँ प्रस्तावात्मक चर के अलग समुच्चय की पसंद के अतिरिक्त हर भाषा समान है, वहाँ अनेक भिन्न-भिन्न प्रथम-क्रम की भाषाएँ हैं। प्रत्येक प्रथम-क्रम की भाषा को [[हस्ताक्षर (गणितीय तर्क)]] द्वारा परिभाषित किया गया है। हस्ताक्षर में अन्य -तार्किक प्रतीकों का समुच्चय होता है और इन प्रतीकों में से प्रत्येक की निरंतर प्रतीक, फलन प्रतीक या [[विधेय प्रतीक]] के रूप में पहचान होती है। फलन और विधेय प्रतीकों के स्थिति में, [[प्राकृतिक संख्या]] भी निर्दिष्ट की जाती है। औपचारिक भाषा के लिए वर्णमाला में तार्किक स्थिरांक, समानता संबंध प्रतीक =, हस्ताक्षर से सभी प्रतीक, और चर के रूप में ज्ञात प्रतीकों का अतिरिक्त अनंत समुच्चय होता है। | ||
उदाहरण के लिए, रिंग (गणित) की भाषा में, स्थिर प्रतीक 0 और 1 हैं, दो बाइनरी फलन प्रतीक + और ·, और | उदाहरण के लिए, रिंग (गणित) की भाषा में, स्थिर प्रतीक 0 और 1 हैं, दो बाइनरी फलन प्रतीक + और ·, और अन्य बाइनरी संबंध प्रतीक नहीं हैं। (यहाँ समानता संबंध को तार्किक स्थिरांक के रूप में लिया गया है।) | ||
फिर से, हम पूर्वक्रम की भाषा L को परिभाषित कर सकते हैं, जिसमें भिन्न-भिन्न प्रतीक a, b, और c सम्मिलित हैं; विधेय प्रतीक एफ, जी, एच, आई और जे; चर x, y, z; | फिर से, हम पूर्वक्रम की भाषा L को परिभाषित कर सकते हैं, जिसमें भिन्न-भिन्न प्रतीक a, b, और c सम्मिलित हैं; विधेय प्रतीक एफ, जी, एच, आई और जे; चर x, y, z; अन्य कार्य पत्र नहीं; अन्य भावात्मक प्रतीक नहीं। | ||
=== पूर्व क्रम के तर्क के लिए औपचारिक भाषाएं === | === पूर्व क्रम के तर्क के लिए औपचारिक भाषाएं === | ||
Line 97: | Line 97: | ||
इस जानकारी को ले जाने वाली वस्तु को [[संरचना (गणितीय तर्क)]] के रूप में जाना जाता है ({{not a typo|of}} हस्ताक्षर σ), या σ-संरचना, या L-संरचना (भाषा L की), या मॉडल के रूप में। | इस जानकारी को ले जाने वाली वस्तु को [[संरचना (गणितीय तर्क)]] के रूप में जाना जाता है ({{not a typo|of}} हस्ताक्षर σ), या σ-संरचना, या L-संरचना (भाषा L की), या मॉडल के रूप में। | ||
व्याख्या में निर्दिष्ट जानकारी किसी भी परमाणु सूत्र को सत्य मान देने के लिए पर्याप्त जानकारी प्रदान करती है, इसके प्रत्येक [[मुक्त चर]] के बाद, यदि | व्याख्या में निर्दिष्ट जानकारी किसी भी परमाणु सूत्र को सत्य मान देने के लिए पर्याप्त जानकारी प्रदान करती है, इसके प्रत्येक [[मुक्त चर]] के बाद, यदि अन्य हो, डोमेन के तत्व द्वारा प्रतिस्थापित किया गया है। मनमाना वाक्य का सत्य मूल्य तब [[टी-स्कीमा]] का उपयोग करके आगमनात्मक रूप से परिभाषित किया जाता है, जो कि अल्फ्रेड टार्स्की द्वारा विकसित प्रथम-क्रम शब्दार्थ की परिभाषा है। जैसा कि ऊपर चर्चा की गई है, टी-स्कीमा सत्य तालिकाओं का उपयोग करके तार्किक संयोजकों की व्याख्या करती है। इस प्रकार, उदाहरण के लिए, {{nowrap|φ ∧ ψ}} संतुष्ट है अगर और केवल अगर φ और ψ दोनों संतुष्ट हैं। | ||
यह इस मुद्दे को छोड़ देता है कि प्रपत्र के सूत्रों की व्याख्या कैसे की जाए {{nowrap|∀ ''x'' φ(''x'')}} और {{nowrap|∃ ''x'' φ(''x'')}}. प्रवचन का डोमेन इन क्वांटिफायर के लिए क्वांटिफायर (तर्क)#रेंज ऑफ क्वांटिफिकेशन बनाता है। विचार यह है कि वाक्य {{nowrap|∀ ''x'' φ(''x'')}} व्याख्या के अनुसार सही है जब φ(x) का प्रत्येक प्रतिस्थापन उदाहरण, जहां x को डोमेन के कुछ तत्व द्वारा प्रतिस्थापित किया जाता है, संतुष्ट हो जाता है। सूत्र {{nowrap|∃ ''x'' φ(''x'')}} संतुष्ट है अगर डोमेन का अल्प से अल्प तत्व डी ऐसा है कि φ (डी) संतुष्ट है। | यह इस मुद्दे को छोड़ देता है कि प्रपत्र के सूत्रों की व्याख्या कैसे की जाए {{nowrap|∀ ''x'' φ(''x'')}} और {{nowrap|∃ ''x'' φ(''x'')}}. प्रवचन का डोमेन इन क्वांटिफायर के लिए क्वांटिफायर (तर्क)#रेंज ऑफ क्वांटिफिकेशन बनाता है। विचार यह है कि वाक्य {{nowrap|∀ ''x'' φ(''x'')}} व्याख्या के अनुसार सही है जब φ(x) का प्रत्येक प्रतिस्थापन उदाहरण, जहां x को डोमेन के कुछ तत्व द्वारा प्रतिस्थापित किया जाता है, संतुष्ट हो जाता है। सूत्र {{nowrap|∃ ''x'' φ(''x'')}} संतुष्ट है अगर डोमेन का अल्प से अल्प तत्व डी ऐसा है कि φ (डी) संतुष्ट है। | ||
Line 140: | Line 140: | ||
खाली डोमेन वाली किसी भी संरचना में विफल रहता है। इस प्रकार खाली संरचनाओं की अनुमति होने पर प्रथम-क्रम तर्क का प्रमाण सिद्धांत अधिक जटिल हो जाता है। चूँकि, उन्हें अनुमति देने में लाभ नगण्य है, क्योंकि लोगों द्वारा अध्ययन किए जाने वाले सिद्धांतों की इच्छित व्याख्या और रोचकव्याख्या दोनों में अन्य-खाली डोमेन हैं।<ref>{{Citation | last1=Hailperin | first1=Theodore | title=Quantification theory and empty individual-domains |mr=0057820 | year=1953 | journal=[[The Journal of Symbolic Logic]] | volume=18 | pages=197–200 | doi=10.2307/2267402 | issue=3 | publisher=[[Association for Symbolic Logic]] | jstor=2267402| s2cid=40988137 }}</ref><ref>{{Citation | last1=Quine | first1=W. V. |author1link = Willard Quine| title=Quantification and the empty domain |mr=0064715 | year=1954 | journal=The Journal of Symbolic Logic | volume=19 | pages=177–179 | doi=10.2307/2268615 | issue=3 | publisher=Association for Symbolic Logic | jstor=2268615| s2cid=27053902 }}</ref> | खाली डोमेन वाली किसी भी संरचना में विफल रहता है। इस प्रकार खाली संरचनाओं की अनुमति होने पर प्रथम-क्रम तर्क का प्रमाण सिद्धांत अधिक जटिल हो जाता है। चूँकि, उन्हें अनुमति देने में लाभ नगण्य है, क्योंकि लोगों द्वारा अध्ययन किए जाने वाले सिद्धांतों की इच्छित व्याख्या और रोचकव्याख्या दोनों में अन्य-खाली डोमेन हैं।<ref>{{Citation | last1=Hailperin | first1=Theodore | title=Quantification theory and empty individual-domains |mr=0057820 | year=1953 | journal=[[The Journal of Symbolic Logic]] | volume=18 | pages=197–200 | doi=10.2307/2267402 | issue=3 | publisher=[[Association for Symbolic Logic]] | jstor=2267402| s2cid=40988137 }}</ref><ref>{{Citation | last1=Quine | first1=W. V. |author1link = Willard Quine| title=Quantification and the empty domain |mr=0064715 | year=1954 | journal=The Journal of Symbolic Logic | volume=19 | pages=177–179 | doi=10.2307/2268615 | issue=3 | publisher=Association for Symbolic Logic | jstor=2268615| s2cid=27053902 }}</ref> | ||
खाली संबंध प्रथम-क्रम की व्याख्याओं के लिए | खाली संबंध प्रथम-क्रम की व्याख्याओं के लिए अन्य समस्या पैदा नहीं करते हैं, क्योंकि प्रक्रिया में इसके दायरे को बढ़ाते हुए, तार्किक संबंध में संबंध प्रतीक को पार करने की अन्य समान धारणा नहीं है। इस प्रकार यह संबंध प्रतीकों के लिए स्वीकार्य रूप से गलत होने के रूप में व्याख्या करने के लिए स्वीकार्य है। चूँकि, फलन प्रतीक की व्याख्या सदैवप्रतीक को उत्तम प्रकार से परिभाषित और कुल फलन प्रदान करनी चाहिए। | ||
=== समानता की व्याख्या === | === समानता की व्याख्या === | ||
Line 176: | Line 176: | ||
इच्छित व्याख्या को मानक मॉडल (1960 में [[अब्राहम रॉबिन्सन]] द्वारा प्रस्तुत किया गया शब्द है) कहा जाता है।<ref>{{cite book|editor=Anthonie Meijers|title=Philosophy of technology and engineering sciences|year=2009|publisher=Elsevier|isbn=978-0-444-51667-1|series=Handbook of the Philosophy of Science|volume=9|author=Roland Müller|chapter=The Notion of a Model}}</ref> पीआनो अंकगणित के संदर्भ में, इसमें उनके सामान्य अंकगणितीय संक्रियाओं के साथ प्राकृतिक संख्याएँ सम्मिलित हैं। सभी मॉडल जो अभी दिए गए मॉडल के लिए [[समरूप]] हैं, उन्हें मानक भी कहा जाता है; ये सभी मॉडल पीआनो सिद्धांतों को संतुष्ट करते हैं। पियानो अभिगृहीतों के (प्रथम-क्रम संस्करण) अन्य-मानक मॉडल भी हैं, जिनमें ऐसे तत्व सम्मिलित हैं जो किसी भी प्राकृतिक संख्या से संबंधित नहीं हैं। | इच्छित व्याख्या को मानक मॉडल (1960 में [[अब्राहम रॉबिन्सन]] द्वारा प्रस्तुत किया गया शब्द है) कहा जाता है।<ref>{{cite book|editor=Anthonie Meijers|title=Philosophy of technology and engineering sciences|year=2009|publisher=Elsevier|isbn=978-0-444-51667-1|series=Handbook of the Philosophy of Science|volume=9|author=Roland Müller|chapter=The Notion of a Model}}</ref> पीआनो अंकगणित के संदर्भ में, इसमें उनके सामान्य अंकगणितीय संक्रियाओं के साथ प्राकृतिक संख्याएँ सम्मिलित हैं। सभी मॉडल जो अभी दिए गए मॉडल के लिए [[समरूप]] हैं, उन्हें मानक भी कहा जाता है; ये सभी मॉडल पीआनो सिद्धांतों को संतुष्ट करते हैं। पियानो अभिगृहीतों के (प्रथम-क्रम संस्करण) अन्य-मानक मॉडल भी हैं, जिनमें ऐसे तत्व सम्मिलित हैं जो किसी भी प्राकृतिक संख्या से संबंधित नहीं हैं। | ||
जबकि इच्छित व्याख्या का सख्ती से औपचारिक [[कटौती प्रणाली]] में | जबकि इच्छित व्याख्या का सख्ती से औपचारिक [[कटौती प्रणाली|वाक्य-विन्यास नियमों]] में अन्य स्पष्ट संकेत नहीं हो सकता है, यह स्वाभाविक रूप से [[औपचारिक व्याकरण]] की पसंद और वाक्य-विन्यास प्रणाली के [[परिवर्तन नियम]]ों को प्रभावित करता है। उदाहरण के लिए, [[आदिम धारणा]] को अवधारणाओं की अभिव्यक्ति को प्रतिरूपित करने की अनुमति देनी चाहिए; [[वाक्यात्मक सूत्र]] चुने जाते हैं ताकि इच्छित व्याख्या में उनके समकक्ष [[अर्थ (भाषाविज्ञान)]] [[घोषणात्मक वाक्य]] हों; [[स्वयंसिद्ध]] को व्याख्या में सत्य वाक्य (गणितीय तर्क) के रूप में सामने आने की आवश्यकता है; [[अनुमान के नियम]] ऐसे होने चाहिए कि, यदि वाक्य <math>\mathcal{I}_j</math> वाक्य से सीधे [[औपचारिक प्रमाण]] है <math>\mathcal{I}_i</math>, तब <math>\mathcal{I}_i \to \mathcal{I}_j</math> के साथ सही वाक्य निकला {{imp}} अर्थ [[सामग्री सशर्त]], सदैव की तरह। ये आवश्यकताएं सुनिश्चित करती हैं कि सभी औपचारिक प्रमाण वाक्य भी सही निकले।<ref>{{cite book|author=Rudolf Carnap|author-link=Rudolf Carnap|title=Introduction to Symbolic Logic and its Applications |url=https://archive.org/details/introductiontosy00carn |url-access=registration |publisher=Dover publications| location=New York |date=1958 |isbn=9780486604534}}</ref> | ||
अधिकांश औपचारिक प्रणालियों में उनकी अपेक्षा से अधिक मॉडल होते हैं (अन्य -मानक मॉडल का अस्तित्व उदाहरण है)। जब हम [[अनुभवजन्य विज्ञान]]ों में 'मॉडल' के बारे में बात करते हैं, तो हमारा मतलब है, अगर हम चाहते हैं कि वास्तविकता हमारे विज्ञान का मॉडल हो, तो इच्छित मॉडल के बारे में बात करें। अनुभवजन्य विज्ञान में मॉडल इच्छित तथ्यात्मक-सच्ची वर्णनात्मक व्याख्या है (या अन्य संदर्भों में: अन्य -इच्छित मनमाना व्याख्या इस तरह के इच्छित तथ्यात्मक-सही वर्णनात्मक व्याख्या को स्पष्ट करने के लिए उपयोग की जाती है।) सभी मॉडल ऐसी व्याख्याएं हैं जिनमें प्रवचन का ही डोमेन है। इच्छित के रूप में, लेकिन [[गैर-तार्किक स्थिरांक|अन्य-तार्किक स्थिरांक]] के लिए अन्य मान अभिहस्तांकन।<ref>{{cite book|editor=[[Hans Freudenthal]] |title=The Concept and the Role of the Model in Mathematics and Natural and Social Sciences (Colloquium proceedings)|publisher=Springer |isbn= 978-94-010-3669-6 |date=Jan 1960}}</ref>{{page needed|reason=Every chapter is written by a different author.|date=September 2015}} | अधिकांश औपचारिक प्रणालियों में उनकी अपेक्षा से अधिक मॉडल होते हैं (अन्य -मानक मॉडल का अस्तित्व उदाहरण है)। जब हम [[अनुभवजन्य विज्ञान]]ों में 'मॉडल' के बारे में बात करते हैं, तो हमारा मतलब है, अगर हम चाहते हैं कि वास्तविकता हमारे विज्ञान का मॉडल हो, तो इच्छित मॉडल के बारे में बात करें। अनुभवजन्य विज्ञान में मॉडल इच्छित तथ्यात्मक-सच्ची वर्णनात्मक व्याख्या है (या अन्य संदर्भों में: अन्य -इच्छित मनमाना व्याख्या इस तरह के इच्छित तथ्यात्मक-सही वर्णनात्मक व्याख्या को स्पष्ट करने के लिए उपयोग की जाती है।) सभी मॉडल ऐसी व्याख्याएं हैं जिनमें प्रवचन का ही डोमेन है। इच्छित के रूप में, लेकिन [[गैर-तार्किक स्थिरांक|अन्य-तार्किक स्थिरांक]] के लिए अन्य मान अभिहस्तांकन।<ref>{{cite book|editor=[[Hans Freudenthal]] |title=The Concept and the Role of the Model in Mathematics and Natural and Social Sciences (Colloquium proceedings)|publisher=Springer |isbn= 978-94-010-3669-6 |date=Jan 1960}}</ref>{{page needed|reason=Every chapter is written by a different author.|date=September 2015}} | ||
=== उदाहरण === | === उदाहरण === | ||
Line 182: | Line 182: | ||
साधारण औपचारिक प्रणाली दी गई है (हम इसे कहेंगे <math>\mathcal{FS'}</math>) जिसके अक्षर α में केवल तीन चिन्ह होते हैं <math>\{ \blacksquare, \bigstar, \blacklozenge \}</math> और सूत्रों के लिए इसका गठन नियम है: | साधारण औपचारिक प्रणाली दी गई है (हम इसे कहेंगे <math>\mathcal{FS'}</math>) जिसके अक्षर α में केवल तीन चिन्ह होते हैं <math>\{ \blacksquare, \bigstar, \blacklozenge \}</math> और सूत्रों के लिए इसका गठन नियम है: | ||
'प्रतीकों का | 'प्रतीकों का अन्य तार <math>\mathcal{FS'}</math> जो अल्प से अल्प 6 प्रतीक लंबा है, और जो असीम रूप से लंबा नहीं है, का सूत्र है <math>\mathcal{FS'}</math>. और कुछ का सूत्र नहीं है <math>\mathcal{FS'}</math>.' | ||
की एकल स्वयंसिद्ध स्कीमा <math>\mathcal{FS'}</math> है: | की एकल स्वयंसिद्ध स्कीमा <math>\mathcal{FS'}</math> है: |
Revision as of 12:38, 23 February 2023
व्याख्या औपचारिक भाषा के प्रतीक (औपचारिक) के अर्थ का अभिहस्तांकन है। गणित, तर्कशास्त्र और सैद्धांतिक कंप्यूटर विज्ञान में उपयोग की जाने वाली अनेक औपचारिक भाषाओं को केवल वाक्य-विन्यास के रूप में परिभाषित किया जाता है,और जब तक उन्हें कुछ व्याख्या नहीं दी जाती है, तब तक उनका अन्य अर्थ नहीं होता है। औपचारिक भाषाओं की व्याख्याओं के सामान्य अध्ययन को औपचारिक शब्दार्थ (तर्क) कहा जाता है।
सबसे अधिक अध्ययन किए जाने वाले औपचारिक लॉजिक्स प्रस्तावात्मक तर्क, विधेय तर्क और उनके मोडल तर्क एनालॉग हैं, और इनके लिए व्याख्या प्रस्तुत करने की मानक विधि हैं। इन संदर्भों में व्याख्या ऐसा कार्य (गणित) है जो किसी वस्तु भाषा के प्रतीकों और प्रतीकों के तार का विस्तार (विधेय तर्क) प्रदान करता है। उदाहरण के लिए, व्याख्या फलन T ("लंबा" के लिए) विधेय ले सकता है और इसे विस्तार {a} ("अब्राहम लिंकन" के लिए) निर्दिष्ट कर सकता है। ध्यान दें कि हमारी सभी व्याख्या अन्य -तार्किक स्थिरांक T के लिए {a} का विस्तार प्रदान करती है, और इस बारे में अन्य प्रमाणित नहीं करती है कि क्या T लंबा है और 'a' अब्राहम लिंकन के लिए है . न ही तार्किक व्याख्या में 'और', 'या' और 'नहीं' जैसे तार्किक संयोजकों के बारे में कुछ कहना है। चूँकि हम इन प्रतीकों को कुछ चीजों या अवधारणाओं के लिए खड़े होने के लिए ले सकते हैं, यह व्याख्या फलन द्वारा निर्धारित नहीं किया जाता है।
व्याख्या प्रायः (लेकिन सदैव नहीं) भाषा में वाक्य (गणितीय तर्क) के सत्य मानों को निर्धारित करने की विधि प्रदान करती है। यदि दी गई व्याख्या किसी वाक्य या सिद्धांत (गणितीय तर्क) के लिए सही मान प्रदान करती है, तो व्याख्या को उस वाक्य या सिद्धांत का मॉडल (मॉडल सिद्धांत) कहा जाता है।
औपचारिक भाषाएँ
औपचारिक भाषा में संभवतः अक्षरों या प्रतीकों के निश्चित समुच्चय से निर्मित वाक्यों के अनंत समुच्चय (विभिन्न प्रकार के शब्द या उत्तम प्रकार से गठित सूत्र कहलाते हैं) होते हैं। जिस सूची से इन अक्षरों को लिया जाता है उसे वर्णमाला (कंप्यूटर विज्ञान) कहा जाता है, जिस पर भाषा परिभाषित होती है। प्रतीकों की तारों को पृथक करने के लिए जो औपचारिक भाषा में प्रतीकों की इच्छानुसार तारों से हैं, पूर्व को कभी-कभी उत्तम प्रकार से गठित सूत्र (wff) कहा जाता है। औपचारिक भाषा की आवश्यक विशेषता यह है कि इसके वाक्य-विन्यास को व्याख्या के संदर्भ के बिना परिभाषित किया जा सकता है। उदाहरण के लिए, हम यह निर्धारित कर सकते हैं कि (P या Q) यह जाने बिना भी उत्तम प्रकार से गठित सूत्र है कि यह सच है या गलत है।
उदाहरण
औपचारिक भाषा को से परिभाषित किया जा सकता है
वर्णमाला , और शब्द अंदर होने के साथ से प्रारंभ होता है प्रतीकों और से बना है।
की संभावित व्याख्या दशमलव अंक '1' को निर्दिष्ट कर सकता है और '0' से . तब की इस व्याख्या के अनुसार 101 को निरूपित करेगा .
तार्किक स्थिरांक
प्रस्तावपरक तर्क और विधेय तर्क की विशिष्ट स्थितियों में, मानी जाने वाली औपचारिक भाषाओं में अक्षर होते हैं जो दो समुच्चयों में विभाजित होते हैं: तार्किक प्रतीक (तार्किक स्थिरांक) और अन्य-तार्किक प्रतीक। इस शब्दावली के पीछे विचार यह है कि तार्किक प्रतीकों का अध्ययन की जा रही विषय वस्तु की परवाह किए बिना समान अर्थ होता है, जबकि अन्य-तार्किक प्रतीकों का अर्थ परीक्षण के क्षेत्र के आधार पर परिवर्तित हो जाता है।
मानक प्रकार की प्रत्येक व्याख्या द्वारा तार्किक स्थिरांकों को सदैव एक ही अर्थ दिया जाता है, जिससे कि अन्य-तार्किक प्रतीकों के अर्थ परिवर्तित हो जाते हैं। तार्किक स्थिरांक में क्वांटिफायर प्रतीक ∀ ("सभी") और ∃ ("कुछ"), तार्किक संयोजक के लिए प्रतीक ∧ ("और"), ∨ ("या"), ¬ ("नहीं"), कोष्ठक और अन्य समूहीकरण प्रतीक सम्मिलित हैं, और (अनेक उपचारों में) समानता प्रतीक = है।
सत्य-कार्यात्मक व्याख्याओं के सामान्य गुण
सामान्यतः पढ़ी जाने वाली अनेक व्याख्याएं प्रत्येक वाक्य को औपचारिक भाषा में सत्य मान के साथ जोड़ती हैं, या तो सही या गलत। इन व्याख्याओं को सत्य कार्यात्मक कहा जाता है;[dubious ] उनमें प्रस्तावात्मक और प्रथम-क्रम तर्क की सामान्य व्याख्याएं सम्मिलित हैं। किसी विशेष अभिहस्तांकन द्वारा सत्य किए गए वाक्यों को उस अभिहस्तांकन द्वारा संतोषजनक कहा जाता है।
शास्त्रीय तर्कशास्त्र में, किसी भी वाक्य को एक ही व्याख्या द्वारा सत्य और असत्य दोनों नहीं बनाया जा सकता है, चूँकि यह एलपी जैसे ग्लूट लॉजिक्स के लिए सही नहीं है।[1] शास्त्रीय तर्क में भी, यह संभव है कि एक ही वाक्य का सत्य मान भिन्न-भिन्न व्याख्याओं के अनुसार भिन्न-भिन्न हो सकता है। वाक्य सुसंगत है यदि यह अल्प से अल्प व्याख्या के अनुसार सत्य है; अन्यथा यह असंगत है। वाक्य φ को तार्किक रूप से वैध कहा जाता है यदि यह प्रत्येक व्याख्या से संतुष्ट होता है (यदि φ प्रत्येक व्याख्या से संतुष्ट होता है जो ψ को संतुष्ट करता है तो φ को ψ का तार्किक परिणाम कहा जाता है)।
तार्किक संयोजक
किसी भाषा के कुछ तार्किक प्रतीक (क्वांटिफायर के अतिरिक्त) सत्य-कार्यात्मक संयोजक जो सत्य कार्यों का प्रतिनिधित्व करते हैं - ऐसे कार्य जो सत्य मानों को तर्कों के रूप में लेते हैं और सत्य मानों को आउटपुट के रूप में लौटाते हैं (दूसरे शब्दों में, ये वाक्यों के सत्य मानों पर संचालन हैं)।
सत्य-कार्यात्मक संयोजक मिश्रित वाक्यों को सरल वाक्यों से निर्मित करने में सक्षम बनाते हैं। इस प्रकार, यौगिक वाक्य के सत्य मान को सरल वाक्यों के सत्य मानों के निश्चित सत्य फलन के रूप में परिभाषित किया जाता है। संयोजकों को सामान्यतः तार्किक स्थिरांक के रूप में लिया जाता है, जिसका अर्थ है कि संयोजकों का अर्थ सदैव समान होता है, सूत्र में अन्य प्रतीकों को दी गई व्याख्याओं से स्वतंत्र होता है।
इस प्रकार हम तर्कवाक्य तर्क में तार्किक संयोजकों को परिभाषित करते हैं:
- ¬Φ सच है यदि Φ गलत है।
- (Φ ∧ Ψ) सत्य है यदि Φ सत्य है और Ψ सत्य है।
- (Φ ∨ Ψ) सत्य है यदि Φ सत्य है या Ψ सत्य है (या दोनों सत्य हैं)।
- (Φ → Ψ) सत्य है यदि ¬Φ सत्य है या Ψ सत्य है (या दोनों सत्य हैं)।
- (Φ ↔ Ψ) सत्य है यदि (Φ → Ψ) सत्य है और (Ψ → Φ) सत्य है।
तो सभी वाक्य अक्षरों Φ और Ψ की दी गई व्याख्या के अनुसार (अर्थात्, प्रत्येक वाक्य अक्षर के लिए सत्य-मान निर्दिष्ट करने के पश्चात), हम उन सभी सूत्रों के सत्य-मानों को निर्धारित कर सकते हैं जो तार्किक संयोजकों के कार्य के रूप में घटक के रूप में हैं। निम्न तालिका दिखाती है कि इस प्रकार की चीज़ कैसी दिखती है। पूर्व के दो कॉलम चार संभावित व्याख्याओं द्वारा निर्धारित वाक्य अक्षरों के सत्य-मान दिखाते हैं। अन्य कॉलम इन वाक्य अक्षरों से निर्मित सूत्रों के सत्य-मानों को दिखाते हैं, सत्य-मानों को पुनरावर्ती रूप से निर्धारित किया जाता है।
Interpretation | Φ | Ψ | ¬Φ | (Φ ∧ Ψ) | (Φ ∨ Ψ) | (Φ → Ψ) | (Φ ↔ Ψ) |
---|---|---|---|---|---|---|---|
#1 | T | T | F | T | T | T | T |
#2 | T | F | F | F | T | F | F |
#3 | F | T | T | F | T | T | F |
#4 | F | F | T | F | F | T | T |
अब यह देखना सरल हो गया है कि कौन-सी बात किसी सूत्र को तार्किक रूप से मान्य बनाती है। सूत्र F लें: (Φ ∨ ¬Φ)। यदि हमारा व्याख्या फलन Φ को सत्य बनाता है, तो ¬Φ को निषेधात्मक संयोजक द्वारा असत्य बना दिया जाता है। चूँकि उस व्याख्या के अनुसार F का असंबद्ध Φ सत्य है, F सत्य है। अब Φ की एकमात्र अन्य संभावित व्याख्या इसे झूठा बनाती है, और यदि ऐसा है, तो निषेध कार्य द्वारा ¬Φ को सही बना दिया जाता है। यह F को पुनः सही बना देगा, क्योंकि Fs में से, ¬Φ, इस व्याख्या के अनुसार सत्य होगा। चूँकि F के लिए ये दो व्याख्याएँ ही एकमात्र संभव तार्किक व्याख्याएँ हैं, और चूँकि F दोनों के लिए सत्य है, हम कहते हैं कि यह तार्किक रूप से मान्य या पुनरुत्पादित है।
सिद्धांत की व्याख्या
सिद्धांत की व्याख्या सिद्धांत और कुछ विषय वस्तु के मध्य का संबंध है जब सिद्धांत के कुछ प्रारंभिक कथनों और विषय वस्तु से संबंधित कुछ कथनों के मध्य अनेक-से-एक पत्राचार होता है। यदि सिद्धांत में प्रत्येक प्रारंभिक कथन का संगत है तो इसे पूर्ण व्याख्या कहा जाता है, अन्यथा इसे आंशिक व्याख्या कहा जाता है।[2]
प्रस्तावपरक तर्क के लिए व्याख्या
प्रस्तावपरक तर्क के लिए औपचारिक भाषा में प्रस्तावात्मक प्रतीकों (जिन्हें वाक्यात्मक प्रतीक, वाक्यात्मक चर, प्रस्तावपरक चर भी कहा जाता है) और तार्किक संयोजकों से निर्मित सूत्र होते हैं। प्रस्तावपरक तर्क के लिए औपचारिक भाषा में केवल अन्य-तार्किक प्रतीक ही प्रस्तावात्मक प्रतीक होते हैं, जिन्हें प्रायः बड़े अक्षरों द्वारा निरूपित किया जाता है। औपचारिक भाषा को त्रुटिहीन बनाने के लिए, प्रस्तावात्मक प्रतीकों का विशिष्ट समुच्चय निर्धारित किया जाना चाहिए।
इस सेटिंग में मानक प्रकार की व्याख्या ऐसा फलन है जो प्रत्येक प्रस्तावात्मक प्रतीक को सत्य मानों में से एक को सत्य और असत्य में मानचित्रित करता है। इस फलन को सत्य अभिहस्तांकन या मूल्यांकन फलन के रूप में जाना जाता है। अनेक प्रस्तुतियों में, यह शाब्दिक रूप से सत्य मान है जिसे निर्दिष्ट किया जाता है, लेकिन कुछ प्रस्तुतियाँ इसके अतिरिक्त सत्यनिष्ठों को निर्दिष्ट करती हैं।
n विशिष्ट प्रस्ताव चर वाली भाषा के लिए 2n विशिष्ट संभावित व्याख्याएं हैं। किसी विशेष चर a के लिए, उदाहरण के लिए, 21 = 2 संभावित व्याख्याएं हैं: 1) को 'T' या 2 अभिहस्तांकित किया गया है) a को 'F' अभिहस्तांकित किया गया है। जोड़ी a, b के लिए 22 = 4 संभावित व्याख्याएं हैं: 1) दोनों को T अभिहस्तांकित किया गया है, 2) दोनों को F अभिहस्तांकित किया गया है, 3) a को T अभिहस्तांकित किया गया है और b को F अभिहस्तांकित किया गया है, या 4) a को F अभिहस्तांकित किया गया है और b को T अभिहस्तांकित किया गया है।
प्रस्तावपरक प्रतीकों के समुच्चय के लिए किसी भी सत्य अभिहस्तांकन को देखते हुए, उन चरों से निर्मित सभी प्रस्तावनात्मक सूत्रों के लिए व्याख्या का अनूठा विस्तार है। ऊपर चर्चा किए गए तार्किक संयोजकों की सत्य-तालिका परिभाषाओं का उपयोग करते हुए, इस विस्तारित व्याख्या को आगमनात्मक रूप से परिभाषित किया गया है।
प्रथम क्रम तर्क
प्रस्तावपरक तर्क के विपरीत, जहाँ प्रस्तावात्मक चर के अलग समुच्चय की पसंद के अतिरिक्त हर भाषा समान है, वहाँ अनेक भिन्न-भिन्न प्रथम-क्रम की भाषाएँ हैं। प्रत्येक प्रथम-क्रम की भाषा को हस्ताक्षर (गणितीय तर्क) द्वारा परिभाषित किया गया है। हस्ताक्षर में अन्य -तार्किक प्रतीकों का समुच्चय होता है और इन प्रतीकों में से प्रत्येक की निरंतर प्रतीक, फलन प्रतीक या विधेय प्रतीक के रूप में पहचान होती है। फलन और विधेय प्रतीकों के स्थिति में, प्राकृतिक संख्या भी निर्दिष्ट की जाती है। औपचारिक भाषा के लिए वर्णमाला में तार्किक स्थिरांक, समानता संबंध प्रतीक =, हस्ताक्षर से सभी प्रतीक, और चर के रूप में ज्ञात प्रतीकों का अतिरिक्त अनंत समुच्चय होता है।
उदाहरण के लिए, रिंग (गणित) की भाषा में, स्थिर प्रतीक 0 और 1 हैं, दो बाइनरी फलन प्रतीक + और ·, और अन्य बाइनरी संबंध प्रतीक नहीं हैं। (यहाँ समानता संबंध को तार्किक स्थिरांक के रूप में लिया गया है।)
फिर से, हम पूर्वक्रम की भाषा L को परिभाषित कर सकते हैं, जिसमें भिन्न-भिन्न प्रतीक a, b, और c सम्मिलित हैं; विधेय प्रतीक एफ, जी, एच, आई और जे; चर x, y, z; अन्य कार्य पत्र नहीं; अन्य भावात्मक प्रतीक नहीं।
पूर्व क्रम के तर्क के लिए औपचारिक भाषाएं
हस्ताक्षर σ को देखते हुए, संबंधित औपचारिक भाषा को σ-सूत्रों के समुच्चय के रूप में जाना जाता है। प्रत्येक σ-सूत्र तार्किक संयोजकों के माध्यम से परमाणु सूत्रों से निर्मित होता है; परमाणु सूत्र विधेय प्रतीकों का उपयोग करते हुए शब्दों से निर्मित होते हैं। σ-सूत्रों के समुच्चय की औपचारिक परिभाषा दूसरी दिशा में आगे बढ़ती है: सबसे पहले, चर के साथ स्थिर और फलन प्रतीकों से शब्दों को इकट्ठा किया जाता है। फिर, शब्दों को हस्ताक्षर से विधेय प्रतीक (संबंध प्रतीक) या समानता के लिए विशेष विधेय प्रतीक = का उपयोग करके परमाणु सूत्र में जोड़ा जा सकता है (अनुभाग देखें #समानता की व्याख्या करना|नीचे समानता की व्याख्या करना)। अंत में, तार्किक संयोजकों और परिमाणकों का उपयोग करके भाषा के सूत्रों को परमाणु सूत्रों से इकट्ठा किया जाता है।
पूर्व क्रम की भाषा की व्याख्या
पूर्व क्रम की भाषा के सभी वाक्यों को अर्थ देने के लिए, निम्नलिखित जानकारी की आवश्यकता होती है।
- प्रवचन का डोमेन[3] D, सामान्यतः अन्य -खाली होना आवश्यक है (नीचे देखें)।
- प्रत्येक स्थिर प्रतीक के लिए, इसकी व्याख्या के रूप में डी का तत्व।
- प्रत्येक एन-एरी फलन प्रतीक के लिए, डी से डी तक एन-आरी फलन इसकी व्याख्या के रूप में (यानी, फलन डीn → D).
- प्रत्येक n-ary विधेय प्रतीक के लिए, इसकी व्याख्या के रूप में D पर n-ary संबंध (अर्थात, D का उपसमुच्चय)एन).
इस जानकारी को ले जाने वाली वस्तु को संरचना (गणितीय तर्क) के रूप में जाना जाता है (of हस्ताक्षर σ), या σ-संरचना, या L-संरचना (भाषा L की), या मॉडल के रूप में।
व्याख्या में निर्दिष्ट जानकारी किसी भी परमाणु सूत्र को सत्य मान देने के लिए पर्याप्त जानकारी प्रदान करती है, इसके प्रत्येक मुक्त चर के बाद, यदि अन्य हो, डोमेन के तत्व द्वारा प्रतिस्थापित किया गया है। मनमाना वाक्य का सत्य मूल्य तब टी-स्कीमा का उपयोग करके आगमनात्मक रूप से परिभाषित किया जाता है, जो कि अल्फ्रेड टार्स्की द्वारा विकसित प्रथम-क्रम शब्दार्थ की परिभाषा है। जैसा कि ऊपर चर्चा की गई है, टी-स्कीमा सत्य तालिकाओं का उपयोग करके तार्किक संयोजकों की व्याख्या करती है। इस प्रकार, उदाहरण के लिए, φ ∧ ψ संतुष्ट है अगर और केवल अगर φ और ψ दोनों संतुष्ट हैं।
यह इस मुद्दे को छोड़ देता है कि प्रपत्र के सूत्रों की व्याख्या कैसे की जाए ∀ x φ(x) और ∃ x φ(x). प्रवचन का डोमेन इन क्वांटिफायर के लिए क्वांटिफायर (तर्क)#रेंज ऑफ क्वांटिफिकेशन बनाता है। विचार यह है कि वाक्य ∀ x φ(x) व्याख्या के अनुसार सही है जब φ(x) का प्रत्येक प्रतिस्थापन उदाहरण, जहां x को डोमेन के कुछ तत्व द्वारा प्रतिस्थापित किया जाता है, संतुष्ट हो जाता है। सूत्र ∃ x φ(x) संतुष्ट है अगर डोमेन का अल्प से अल्प तत्व डी ऐसा है कि φ (डी) संतुष्ट है।
कड़ाई से बोलते हुए, प्रतिस्थापन उदाहरण जैसे ऊपर वर्णित सूत्र φ(d) φ की मूल औपचारिक भाषा में सूत्र नहीं है, क्योंकि d डोमेन का तत्व है। इस तकनीकी समस्या से निपटने के दो तरीके हैं। सबसे पूर्वबड़ी भाषा को पास करना है जिसमें डोमेन के प्रत्येक तत्व को निरंतर प्रतीक द्वारा नामित किया जाता है। दूसरा व्याख्या में फलन जोड़ना है जो प्रत्येक चर को डोमेन के तत्व को निर्दिष्ट करता है। तब टी-स्कीमा मूल व्याख्या के भिन्नरूपों की मात्रा निर्धारित कर सकती है जिसमें प्रतिस्थापन उदाहरणों पर मात्रा निर्धारित करने केअतिरिक्त यह चर अभिहस्तांकनफलन बदल दिया गया है।
कुछ लेखक प्रथम-क्रम तर्क में प्रस्तावात्मक चर को भी स्वीकार करते हैं, जिसकी व्याख्या भी की जानी चाहिए। प्रस्तावपरक चर परमाणु सूत्र के रूप में अपने दम पर खड़ा हो सकता है। प्रस्तावक चर की व्याख्या सत्य और असत्य के दो सत्य मानों में से है।[4]
क्योंकि यहाँ वर्णित प्रथम-क्रम की व्याख्याएँ समुच्चय सिद्धांत में परिभाषित हैं, वे प्रत्येक विधेय प्रतीक को गुण के साथ संबद्ध नहीं करते हैं[5] (या संबंध), लेकिन उस संपत्ति (या संबंध) के विस्तार के साथ। दूसरे शब्दों में, ये प्रथम-क्रम की व्याख्याएँ विस्तृत परिभाषाएँ हैं[6] गहन परिभाषा नहीं।
पूर्व क्रम की व्याख्या का उदाहरण
व्याख्या का उदाहरण ऊपर वर्णित भाषा एल इस प्रकार है।
- डोमेन: शतरंज का सेट
- व्यक्तिगत स्थिरांक: a: सफेद राजा b: काली रानी c: सफेद राजा का मोहरा
- एफ (एक्स): एक्स टुकड़ा है
- जी (एक्स): एक्स मोहरा है
- एच (एक्स): एक्स काला है
- I(x): x सफेद है
- जे (एक्स, वाई): एक्स वाई पर कब्जा कर सकता है
व्याख्या में एल का:
- निम्नलिखित सही वाक्य हैं: F(a), G(c), H(b), I(a) J(b, c),
- निम्नलिखित झूठे वाक्य हैं: J(a, c), G(a).
अन्य -खाली डोमेन आवश्यकता
जैसा कि ऊपर कहा गया है, पूर्वक्रम की व्याख्या सामान्यतः प्रवचन के डोमेन के रूप में अन्य -खाली समुच्चय को निर्दिष्ट करने के लिए आवश्यक होती है। इस आवश्यकता का कारण यह गारंटी देना है कि समकक्ष जैसे
खाली संबंध प्रथम-क्रम की व्याख्याओं के लिए अन्य समस्या पैदा नहीं करते हैं, क्योंकि प्रक्रिया में इसके दायरे को बढ़ाते हुए, तार्किक संबंध में संबंध प्रतीक को पार करने की अन्य समान धारणा नहीं है। इस प्रकार यह संबंध प्रतीकों के लिए स्वीकार्य रूप से गलत होने के रूप में व्याख्या करने के लिए स्वीकार्य है। चूँकि, फलन प्रतीक की व्याख्या सदैवप्रतीक को उत्तम प्रकार से परिभाषित और कुल फलन प्रदान करनी चाहिए।
समानता की व्याख्या
समानता संबंध को प्रायःविशेष रूप से पूर्वक्रम के तर्क और अन्य विधेय तर्कों में माना जाता है। दो सामान्य दृष्टिकोण हैं।
पहला दृष्टिकोण समानता को किसी भी अन्य द्विआधारी संबंध से अलग नहीं मानना है। इस स्थिति में, यदि समानता प्रतीक हस्ताक्षर में सम्मिलित किया गया है, तो सामान्यतः स्वयंसिद्ध प्रणालियों में समानता के बारे में विभिन्न स्वयंसिद्धों को जोड़ना आवश्यक है (उदाहरण के लिए, प्रतिस्थापन स्वयंसिद्ध कह रहा है कि यदि a = b और R(a) धारण करता है तो R(b) ) भी रखता है)। समानता के लिए यह दृष्टिकोण उन हस्ताक्षरों का अध्ययन करते समय सबसे उपयोगी होता है जिनमें समानता संबंध सम्मिलित नहीं होता है, जैसे समुच्चय सिद्धांत के लिए हस्ताक्षर या दूसरे क्रम अंकगणित के लिए हस्ताक्षर जिसमें संख्याओं के लिए केवल समानता संबंध होता है, लेकिन समानता संबंध नहीं होता है संख्याओं का समूह।
दूसरा दृष्टिकोण समानता संबंध प्रतीक को तार्किक स्थिरांक के रूप में मानना है जिसे किसी भी व्याख्या में वास्तविक समानता संबंध द्वारा व्याख्या किया जाना चाहिए। व्याख्या जो समानता की इस तरह से व्याख्या करती है उसे सामान्य मॉडल के रूप में जाना जाता है, इसलिए यह दूसरा दृष्टिकोण केवल उन व्याख्याओं का अध्ययन करने के समान है जो सामान्य मॉडल होते हैं। इस दृष्टिकोण का लाभ यह है कि समानता से संबंधित स्वयंसिद्ध प्रत्येक सामान्य मॉडल द्वारा स्वचालित रूप से संतुष्ट होते हैं, और इसलिए समानता के साथ व्यवहार किए जाने पर उन्हें प्रथम-क्रम के सिद्धांतों में स्पष्ट रूप से सम्मिलित करने की आवश्यकता नहीं होती है। इस दूसरे दृष्टिकोण को कभी-कभी समानता के साथ प्रथम क्रम तर्क कहा जाता है, लेकिन अनेक लेखक बिना किसी टिप्पणी के प्रथम क्रम तर्क के सामान्य अध्ययन के लिए इसे अपनाते हैं।
प्रथम-क्रम तर्क के अध्ययन को सामान्य मॉडलों तक सीमित करने के कुछ अन्य कारण हैं। सबसे पहले, यह ज्ञात है कि किसी भी प्रथम-क्रम की व्याख्या जिसमें समानता की व्याख्या तुल्यता संबंध द्वारा की जाती है और समानता के लिए प्रतिस्थापन स्वयंसिद्धों को संतुष्ट करती है, मूल डोमेन के सबसमुच्चय पर प्राथमिक उपसंरचना व्याख्या में कटौती की जा सकती है। इस प्रकार अन्य-सामान्य मॉडलों के अध्ययन में थोड़ी अतिरिक्त सामान्यता है। दूसरा, यदि अन्य -सामान्य मॉडलों पर विचार किया जाता है, तो प्रत्येक सुसंगत सिद्धांत का अनंत मॉडल होता है; यह लोवेनहाइम-स्कोलेम प्रमेय जैसे परिणामों के बयानों को प्रभावित करता है, जो सामान्यतः इस धारणा के अनुसार कहा जाता है कि केवल सामान्य मॉडल पर विचार किया जाता है।
अनेक -क्रमबद्ध प्रथम-क्रम तर्क
पूर्वक्रम के तर्क का सामान्यीकरण से अधिक प्रकार के चर वाली भाषाओं पर विचार करता है। विचार यह है कि विभिन्न प्रकार के चर विभिन्न प्रकार की वस्तुओं का प्रतिनिधित्व करते हैं। प्रत्येक प्रकार के चर को परिमाणित किया जा सकता है; इस प्रकार अनेक प्रकार की भाषा के लिए व्याख्या में प्रत्येक प्रकार के चर के लिए अलग डोमेन होता है (प्रत्येक भिन्न-भिन्न प्रकार के चर का अनंत संग्रह होता है)। कार्यों और संबंध प्रतीकों, arities होने के अतिरिक्त, निर्दिष्ट हैं ताकि उनके प्रत्येक तर्क को निश्चित प्रकार से आना चाहिए।
बहु-वर्गीकृत तर्क का उदाहरण प्लानर यूक्लिडियन ज्यामिति के लिए है[clarification needed]. दो प्रकार के होते हैं; अंक और रेखाएँ। बिंदुओं के लिए समानता संबंध प्रतीक है, रेखाओं के लिए समानता संबंध प्रतीक है, और द्विआधारी घटना संबंध E है जो बिंदु चर और पंक्ति चर लेता है। इस भाषा की इच्छित व्याख्या में यूक्लिडियन विमान पर सभी बिंदुओं पर बिंदु चर सीमा होती है, विमान पर सभी रेखाओं पर रेखा चर सीमा होती है, और घटना संबंध E(p,l) धारण करता है यदि और केवल बिंदु p रेखा पर है एल
उच्च-क्रम विधेय तर्क
उच्च-क्रम तर्क के लिए औपचारिक भाषा प्रथम-क्रम तर्क के लिए औपचारिक भाषा के समान दिखती है। अंतर यह है कि अब अनेक भिन्न प्रकार के चर हैं। कुछ चर डोमेन के तत्वों के अनुरूप होते हैं, जैसा कि पूर्व क्रम के तर्क में होता है। अन्य चर उच्च प्रकार की वस्तुओं के अनुरूप हैं: डोमेन के उपसमुच्चय, डोमेन फलन, फलन जो डोमेन का उपसमुच्चय लेते हैं और डोमेन से डोमेन के उपसमुच्चय में फलन लौटाते हैं, आदि। इन सभी प्रकार के चर परिमाणित हो सकते हैं।
सामान्यतः उच्च-क्रम तर्क के लिए दो प्रकार की व्याख्याएँ नियोजित की जाती हैं। पूर्ण शब्दार्थ की आवश्यकता है कि, एक बार प्रवचन का डोमेन संतुष्ट हो जाने पर, उच्च-क्रम चर सही प्रकार के सभी संभावित तत्वों (डोमेन के सभी उपसमुच्चय, डोमेन से स्वयं के लिए सभी फलन, आदि) पर रेंज करते हैं। इस प्रकार पूर्ण व्याख्या का विनिर्देश प्रथम-क्रम व्याख्या के विनिर्देश के समान है। हेनकिन सिमेंटिक्स, जो अनिवार्य रूप से मल्टी-सॉर्टेड फर्स्ट-ऑर्डर सिमेंटिक्स हैं, को रेंज ओवर करने के लिए प्रत्येक प्रकार के उच्च-ऑर्डर वेरिएबल के लिए भिन्न डोमेन निर्दिष्ट करने के लिए व्याख्या की आवश्यकता होती है। इस प्रकार हेनकिन सिमेंटिक्स में व्याख्या में डोमेन D, D के सबसमुच्चय का संग्रह, D से D तक के कार्यों का संग्रह आदि सम्मिलित हैं। इन दो शब्दार्थों के मध्य संबंध उच्च क्रम तर्क में महत्वपूर्ण विषय है।
अन्य-शास्त्रीय व्याख्याएं
ऊपर वर्णित प्रस्तावात्मक तर्क और विधेय तर्क की व्याख्या ही एकमात्र संभावित व्याख्या नहीं है। विशेष रूप से, अन्य प्रकार की व्याख्याएं हैं जिनका उपयोग अन्य-शास्त्रीय तर्क (जैसे कि अंतर्ज्ञानवादी तर्क) के अध्ययन में और मोडल तर्कशास्त्र के अध्ययन में किया जाता है।
अन्य-शास्त्रीय तर्क का अध्ययन करने के लिए उपयोग की जाने वाली व्याख्याओं में टोपोलॉजिकल मॉडल, बूलियन-मूल्यवान मॉडल और क्रिपके मॉडल सम्मिलित हैं। मोडल तर्कशास्त्र का अध्ययन क्रिपके मॉडल का उपयोग करके भी किया जाता है।
उद्देश्य व्याख्याएं
अनेक औपचारिक भाषाएँ विशेष व्याख्या से जुड़ी हैं जो उन्हें प्रेरित करने के लिए उपयोग की जाती हैं। उदाहरण के लिए, समुच्चय सिद्धांत के लिए पूर्व क्रम के हस्ताक्षर में केवल द्विआधारी संबंध सम्मिलित है, ∈, जिसका उद्देश्य समुच्चय सदस्यता का प्रतिनिधित्व करना है, और प्राकृतिक संख्याओं के पूर्व क्रम के सिद्धांत में प्रवचन का डोमेन प्राकृतिक संख्या का समुच्चय होना है।
इच्छित व्याख्या को मानक मॉडल (1960 में अब्राहम रॉबिन्सन द्वारा प्रस्तुत किया गया शब्द है) कहा जाता है।[9] पीआनो अंकगणित के संदर्भ में, इसमें उनके सामान्य अंकगणितीय संक्रियाओं के साथ प्राकृतिक संख्याएँ सम्मिलित हैं। सभी मॉडल जो अभी दिए गए मॉडल के लिए समरूप हैं, उन्हें मानक भी कहा जाता है; ये सभी मॉडल पीआनो सिद्धांतों को संतुष्ट करते हैं। पियानो अभिगृहीतों के (प्रथम-क्रम संस्करण) अन्य-मानक मॉडल भी हैं, जिनमें ऐसे तत्व सम्मिलित हैं जो किसी भी प्राकृतिक संख्या से संबंधित नहीं हैं।
जबकि इच्छित व्याख्या का सख्ती से औपचारिक वाक्य-विन्यास नियमों में अन्य स्पष्ट संकेत नहीं हो सकता है, यह स्वाभाविक रूप से औपचारिक व्याकरण की पसंद और वाक्य-विन्यास प्रणाली के परिवर्तन नियमों को प्रभावित करता है। उदाहरण के लिए, आदिम धारणा को अवधारणाओं की अभिव्यक्ति को प्रतिरूपित करने की अनुमति देनी चाहिए; वाक्यात्मक सूत्र चुने जाते हैं ताकि इच्छित व्याख्या में उनके समकक्ष अर्थ (भाषाविज्ञान) घोषणात्मक वाक्य हों; स्वयंसिद्ध को व्याख्या में सत्य वाक्य (गणितीय तर्क) के रूप में सामने आने की आवश्यकता है; अनुमान के नियम ऐसे होने चाहिए कि, यदि वाक्य वाक्य से सीधे औपचारिक प्रमाण है , तब के साथ सही वाक्य निकला अर्थ सामग्री सशर्त, सदैव की तरह। ये आवश्यकताएं सुनिश्चित करती हैं कि सभी औपचारिक प्रमाण वाक्य भी सही निकले।[10] अधिकांश औपचारिक प्रणालियों में उनकी अपेक्षा से अधिक मॉडल होते हैं (अन्य -मानक मॉडल का अस्तित्व उदाहरण है)। जब हम अनुभवजन्य विज्ञानों में 'मॉडल' के बारे में बात करते हैं, तो हमारा मतलब है, अगर हम चाहते हैं कि वास्तविकता हमारे विज्ञान का मॉडल हो, तो इच्छित मॉडल के बारे में बात करें। अनुभवजन्य विज्ञान में मॉडल इच्छित तथ्यात्मक-सच्ची वर्णनात्मक व्याख्या है (या अन्य संदर्भों में: अन्य -इच्छित मनमाना व्याख्या इस तरह के इच्छित तथ्यात्मक-सही वर्णनात्मक व्याख्या को स्पष्ट करने के लिए उपयोग की जाती है।) सभी मॉडल ऐसी व्याख्याएं हैं जिनमें प्रवचन का ही डोमेन है। इच्छित के रूप में, लेकिन अन्य-तार्किक स्थिरांक के लिए अन्य मान अभिहस्तांकन।[11][page needed]
उदाहरण
साधारण औपचारिक प्रणाली दी गई है (हम इसे कहेंगे ) जिसके अक्षर α में केवल तीन चिन्ह होते हैं और सूत्रों के लिए इसका गठन नियम है:
'प्रतीकों का अन्य तार जो अल्प से अल्प 6 प्रतीक लंबा है, और जो असीम रूप से लंबा नहीं है, का सूत्र है . और कुछ का सूत्र नहीं है .'
की एकल स्वयंसिद्ध स्कीमा है:
- (जहाँ परिमित स्ट्रिंग के लिए मेटासिंटैक्टिक चर "" s है)
औपचारिक प्रमाण का निर्माण निम्नानुसार किया जा सकता है:
इस उदाहरण में उत्पन्न प्रमेय की व्याख्या इस अर्थ में की जा सकती है कि "एक प्लस तीन चार के बराबर होता है।" भिन्न व्याख्या यह होगी कि इसे "चार घटा तीन बराबर एक" के रूप में पीछे की ओर पढ़ा जाए।[12][page needed]
व्याख्या की अन्य अवधारणाएँ
शब्द "व्याख्या" के अन्य उपयोग हैं जो सामान्यतः उपयोग किए जाते हैं, जो औपचारिक भाषाओं के अर्थों के अभिहस्तांकनको संदर्भित नहीं करते हैं।
मॉडल सिद्धांत में, संरचना A को संरचना B की व्याख्या करने के लिए कहा जाता है यदि A का निश्चित उपसमुच्चय D है, और D पर निश्चित संबंध और कार्य हैं, जैसे कि B डोमेन D और इन कार्यों और संबंधों के साथ संरचना के लिए समरूप है। कुछ सेटिंग्स में, यह डोमेन D नहीं है जिसका उपयोग किया जाता है, लेकिन D मॉडुलो A में परिभाषित समकक्ष संबंध है। अतिरिक्त जानकारी के लिए, व्याख्या (मॉडल सिद्धांत) देखें।
एक सिद्धांत T को दूसरे सिद्धांत S की व्याख्या करने के लिए कहा जाता है यदि T की परिभाषा T' द्वारा परिमित विस्तार है जैसे कि S, T' में समाहित है।
यह भी देखें
- संकल्पनात्मक निदर्श
- मुक्त चर और बाध्य चर और नाम बंधन
- हरब्रांड व्याख्या
- व्याख्या (मॉडल सिद्धांत)
- तार्किक व्यवस्था
- लोवेनहेम-स्कोलेम प्रमेय
- मोडल लॉजिक
- मॉडल सिद्धांत
- संतोषजनक
- सच
संदर्भ
- ↑ Priest, Graham, 2008. An Introduction to Non-Classical Logic: from If to Is, 2nd ed. Cambridge University Press.
- ↑ Haskell Curry (1963). Foundations of Mathematical Logic. Mcgraw Hill. Here: p.48
- ↑ Sometimes called the "universe of discourse"
- ↑ Mates, Benson (1972), Elementary Logic, Second Edition, New York: Oxford University Press, pp. 56, ISBN 0-19-501491-X
- ↑ The extension of a property (also called an attribute) is a set of individuals, so a property is a unary relation. E.g. The properties "yellow" and "prime" are unary relations.
- ↑ see also Extension (predicate logic)
- ↑ Hailperin, Theodore (1953), "Quantification theory and empty individual-domains", The Journal of Symbolic Logic, Association for Symbolic Logic, 18 (3): 197–200, doi:10.2307/2267402, JSTOR 2267402, MR 0057820, S2CID 40988137
- ↑ Quine, W. V. (1954), "Quantification and the empty domain", The Journal of Symbolic Logic, Association for Symbolic Logic, 19 (3): 177–179, doi:10.2307/2268615, JSTOR 2268615, MR 0064715, S2CID 27053902
- ↑ Roland Müller (2009). "The Notion of a Model". In Anthonie Meijers (ed.). Philosophy of technology and engineering sciences. Handbook of the Philosophy of Science. Vol. 9. Elsevier. ISBN 978-0-444-51667-1.
- ↑ Rudolf Carnap (1958). Introduction to Symbolic Logic and its Applications. New York: Dover publications. ISBN 9780486604534.
- ↑ Hans Freudenthal, ed. (Jan 1960). The Concept and the Role of the Model in Mathematics and Natural and Social Sciences (Colloquium proceedings). Springer. ISBN 978-94-010-3669-6.
- ↑ Geoffrey Hunter (1992). Metalogic: An Introduction to the Metatheory of Standard First Order Logic. University of California Press.