वलय सिद्धांत: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 7: Line 7:
क्रमविनिमेय वलय गैर क्रमविनिमेय वाले की तुलना में बहुत उत्तम समझे जाते हैं। [[बीजगणितीय ज्यामिति]] और [[बीजगणितीय संख्या सिद्धांत]], जो क्रमविनिमेय वलयों के कई प्राकृतिक उदाहरण प्रदान करते हैं, ने क्रमविनिमेय वलय सिद्धांत के विकास को बहुत प्रेरित किया है, जो अब [[क्रमविनिमेय बीजगणित]] के नाम से आधुनिक गणित का प्रमुख क्षेत्र है। क्योंकि ये तीन क्षेत्र (बीजगणितीय ज्यामिति, बीजगणितीय संख्या सिद्धांत और क्रमविनिमेय बीजगणित) इतने घनिष्ठ रूप से जुड़े हुए हैं कि सामान्यतः यह तय करना कठिन और अर्थहीन होता है कि कोई विशेष परिणाम किस क्षेत्र से संबंधित है। उदाहरण के लिए, हिल्बर्ट का नलस्टेलेंसज़ प्रमेय है जो बीजगणितीय ज्यामिति के लिए मौलिक है, और इसे क्रमविनिमेय बीजगणित के संदर्भ में कहा और सिद्ध किया गया है। इसी प्रकार, फ़र्मेट की अंतिम प्रमेय को प्राथमिक [[अंकगणित]] के संदर्भ में कहा गया है, जो क्रमविनिमेय बीजगणित का भाग है, किन्तु इसके प्रमाण में बीजगणितीय संख्या सिद्धांत और बीजगणितीय ज्यामिति दोनों के आन्तरिक परिणाम सम्मिलित हैं।
क्रमविनिमेय वलय गैर क्रमविनिमेय वाले की तुलना में बहुत उत्तम समझे जाते हैं। [[बीजगणितीय ज्यामिति]] और [[बीजगणितीय संख्या सिद्धांत]], जो क्रमविनिमेय वलयों के कई प्राकृतिक उदाहरण प्रदान करते हैं, ने क्रमविनिमेय वलय सिद्धांत के विकास को बहुत प्रेरित किया है, जो अब [[क्रमविनिमेय बीजगणित]] के नाम से आधुनिक गणित का प्रमुख क्षेत्र है। क्योंकि ये तीन क्षेत्र (बीजगणितीय ज्यामिति, बीजगणितीय संख्या सिद्धांत और क्रमविनिमेय बीजगणित) इतने घनिष्ठ रूप से जुड़े हुए हैं कि सामान्यतः यह तय करना कठिन और अर्थहीन होता है कि कोई विशेष परिणाम किस क्षेत्र से संबंधित है। उदाहरण के लिए, हिल्बर्ट का नलस्टेलेंसज़ प्रमेय है जो बीजगणितीय ज्यामिति के लिए मौलिक है, और इसे क्रमविनिमेय बीजगणित के संदर्भ में कहा और सिद्ध किया गया है। इसी प्रकार, फ़र्मेट की अंतिम प्रमेय को प्राथमिक [[अंकगणित]] के संदर्भ में कहा गया है, जो क्रमविनिमेय बीजगणित का भाग है, किन्तु इसके प्रमाण में बीजगणितीय संख्या सिद्धांत और बीजगणितीय ज्यामिति दोनों के आन्तरिक परिणाम सम्मिलित हैं।


गैर-अनुवर्ती वलय अनुमान में अधिक भिन्न होते हैं, क्योंकि अधिक असामान्य व्यवहार उत्पन्न हो सकता है। चूँकि सिद्धांत अपने आप में विकसित हुआ है, नवीनतम प्रवृत्ति ने ज्यामितीय प्रचलन में गैर-अनुक्रमिक वलयों के कुछ वर्गों के सिद्धांत का निर्माण करके क्रमविनिमेय विकास को समानांतर करने का अनुरोध किया है जैसे कि वे (अस्तित्वहीन) 'गैर-अनुक्रमिक रिक्त स्थान पर फलन के वलय थे। यह प्रवृत्ति 1980 के दशक में गैर-अनुक्रमिक ज्यामिति के विकास और [[क्वांटम समूह|क्वांटम समूहों]] की खोज के साथ प्रारंभ हुई। इसने गैर-अनुविन्यस्त वलयों विशेषकर गैर-अनुविनिमेय [[नोथेरियन रिंग|नोथेरियन]] वलयों की बेहतर समझ उत्पन्न की है।{{sfnp|Goodearl| Warfield|1989}}
गैर-अनुवर्ती वलय अनुमान में अधिक भिन्न होते हैं, क्योंकि अधिक असामान्य व्यवहार उत्पन्न हो सकता है। चूँकि सिद्धांत अपने आप में विकसित हुआ है, नवीनतम प्रवृत्ति ने ज्यामितीय प्रचलन में गैर-अनुक्रमिक वलयों के कुछ वर्गों के सिद्धांत का निर्माण करके क्रमविनिमेय विकास को समानांतर करने का अनुरोध किया है जैसे कि वे (अस्तित्वहीन) 'गैर-अनुक्रमिक रिक्त स्थान पर फलन के वलय थे। यह प्रवृत्ति 1980 के दशक में गैर-अनुक्रमिक ज्यामिति के विकास और [[क्वांटम समूह|क्वांटम समूहों]] की खोज के साथ प्रारंभ हुई। इसने गैर-अनुविन्यस्त वलयों विशेषकर गैर-अनुविनिमेय [[नोथेरियन रिंग|नोथेरियन]] वलयों की उत्तम समझ उत्पन्न की है।{{sfnp|Goodearl| Warfield|1989}}


वलय और मूलभूत अवधारणाओं और उनके गुणों की परिभाषा के लिए, वलय (गणित) देखें। वलय सिद्धांत में प्रयुक्त शब्दों की परिभाषाएं [[रिंग थ्योरी की शब्दावली|वलय सिद्धांत की शब्दावली]] में पाई जा सकती हैं।
वलय और मूलभूत अवधारणाओं और उनके गुणों की परिभाषा के लिए, वलय (गणित) देखें। वलय सिद्धांत में प्रयुक्त शब्दों की परिभाषाएं [[रिंग थ्योरी की शब्दावली|वलय सिद्धांत की शब्दावली]] में पाई जा सकती हैं।
Line 22: Line 22:
अधिक त्रुटिहीन रूप से क्रमविनिमेय वलय के वलय का वर्णक्रम इसके प्रमुख आदर्शों का स्थान है जो [[जरिस्की टोपोलॉजी]] से सुसज्जित है, और वलयों के [[शीफ (गणित)]] के साथ संवर्धित है। ये वस्तुएं एफ़िन योजनाएं हैं (एफ़ाइन प्रकारों का सामान्यीकरण), और सामान्य योजना तब साथ ग्लूइंग (विशुद्ध रूप से बीजगणितीय विधियों द्वारा) प्राप्त की जाती है, ऐसी कई एफ़िन योजनाएं, [[एटलस (टोपोलॉजी)]] का [[चार्ट (टोपोलॉजी)]] को एक साथ ग्लूइंग करके [[कई गुना]] बनाने के तरीके के अनुरूप होती हैं।
अधिक त्रुटिहीन रूप से क्रमविनिमेय वलय के वलय का वर्णक्रम इसके प्रमुख आदर्शों का स्थान है जो [[जरिस्की टोपोलॉजी]] से सुसज्जित है, और वलयों के [[शीफ (गणित)]] के साथ संवर्धित है। ये वस्तुएं एफ़िन योजनाएं हैं (एफ़ाइन प्रकारों का सामान्यीकरण), और सामान्य योजना तब साथ ग्लूइंग (विशुद्ध रूप से बीजगणितीय विधियों द्वारा) प्राप्त की जाती है, ऐसी कई एफ़िन योजनाएं, [[एटलस (टोपोलॉजी)]] का [[चार्ट (टोपोलॉजी)]] को एक साथ ग्लूइंग करके [[कई गुना]] बनाने के तरीके के अनुरूप होती हैं।


== नॉनक्रमविनिमेय वलयों ==
== गैरक्रमविनिमेय वलयों ==
{{Main|गैर विनिमेय वलय|गैर विनिमेय बीजगणितीय ज्यामिति|गैर विनिमेय बीजगणितीय}}
{{Main|गैर विनिमेय वलय|गैर विनिमेय बीजगणितीय ज्यामिति|गैर विनिमेय बीजगणितीय}}


अक्रमानुक्रमिक वलय कई प्रकार से आव्यूह (गणित) के वलयों से मिलते जुलते हैं। बीजगणितीय ज्यामिति के मॉडल के बाद, नवीनतम में गैर-अनुक्रमिक ज्यामिति को गैर-अनुक्रमिक वलयों के आधार पर परिभाषित करने का प्रयास किया गया है।
अक्रमानुक्रमिक वलय कई प्रकार से आव्यूह (गणित) के वलयों से मिलते जुलते हैं। बीजगणितीय ज्यामिति के मॉडल के बाद, नवीनतम में गैर-अनुक्रमिक ज्यामिति को गैर-अनुक्रमिक वलयों के आधार पर परिभाषित करने का प्रयास किया गया है।


गैर-अनुवर्ती वलय और [[साहचर्य बीजगणित]] (अंगूठियां जो सदिश स्थान भी हैं) का अधिकांश अनुखंड के उनके [[श्रेणी सिद्धांत]] के माध्यम से अध्ययन किया जाता है। वलय पर [[मॉड्यूल (गणित)|अनुखंड (गणित)]] एबेलियन [[समूह (गणित)]] है जो वलय [[एंडोमोर्फिज्म]] की वलय के रूप में कार्य करता है, जिस प्रकार से [[क्षेत्र (गणित)]] के समान होता है (अभिन्न डोमेन जिसमें प्रत्येक गैर-शून्य तत्व उलटा होता है) वेक्टर रिक्त स्थान पर कार्य करें। गैर-अनुक्रमिक वलय के उदाहरण वर्ग [[मैट्रिक्स (गणित)]] के वलय या अधिक सामान्यतः एबेलियन समूहों या अनुखंड के एंडोमोर्फिज्म के वलय और [[मोनॉइड रिंग|मोनॉइड]] वलयों द्वारा दिए जाते हैं।
गैर-अनुवर्ती वलय और [[साहचर्य बीजगणित]] (अंगूठियां जो सदिश स्थान भी हैं) का अधिकांश अनुखंड के उनके [[श्रेणी सिद्धांत]] के माध्यम से अध्ययन किया जाता है। वलय पर [[मॉड्यूल (गणित)|अनुखंड (गणित)]] एबेलियन [[समूह (गणित)]] है जो वलय [[एंडोमोर्फिज्म]] की वलय के रूप में कार्य करता है, जिस प्रकार से [[क्षेत्र (गणित)]] के समान होता है (अभिन्न डोमेन जिसमें प्रत्येक गैर-शून्य तत्व उलटा होता है) वेक्टर रिक्त स्थान पर कार्य करें। गैर-अनुक्रमिक वलय के उदाहरण वर्ग [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] के वलय या अधिक सामान्यतः एबेलियन समूहों या अनुखंड के एंडोमोर्फिज्म के वलय और [[मोनॉइड रिंग|मोनॉइड]] वलयों द्वारा दिए जाते हैं।


=== प्रतिनिधित्व सिद्धांत ===
=== प्रतिनिधित्व सिद्धांत ===
{{main|Representation theory}}
{{main|Representation theory}}
[[प्रतिनिधित्व सिद्धांत]] गणित की शाखा है जो गैर-क्रमविनिमेय वलयों पर भारी पड़ता है। यह वेक्टर रिक्त स्थान के [[रैखिक परिवर्तन]]ों के रूप में उनके [[तत्व (सेट सिद्धांत)]] का प्रतिनिधित्व करके [[सार बीजगणित]] बीजगणितीय संरचनाओं का अध्ययन करता है, और अध्ययन करता है
[[प्रतिनिधित्व सिद्धांत]] गणित की शाखा है जो गैर-क्रमविनिमेय वलयों पर भारी पड़ता है। यह वेक्टर रिक्त स्थान के [[रैखिक परिवर्तन]]ों के रूप में उनके [[तत्व (सेट सिद्धांत)]] का प्रतिनिधित्व करके [[सार बीजगणित]] बीजगणितीय संरचनाओं का अध्ययन करता है, और अध्ययन करता है
इन अमूर्त बीजगणितीय संरचनाओं पर अनुखंड (गणित)। संक्षेप में, प्रतिनिधित्व अमूर्त बीजगणितीय वस्तु को मैट्रिक्स (गणित) और [[मैट्रिक्स जोड़]] और [[मैट्रिक्स गुणन]] के संदर्भ में बीजगणितीय संचालन द्वारा अपने तत्वों का वर्णन करके अधिक ठोस बनाता है, जो गैर-क्रमविनिमेय है। इस प्रकार के विवरण के लिए उत्तरदायी बीजगणितीय वस्तुओं में समूह (गणित), सहयोगी बीजगणित और [[झूठ बीजगणित]] सम्मिलित हैं। इनमें से सबसे प्रमुख (और ऐतिहासिक रूप से पहला) [[समूह प्रतिनिधित्व]] है, जिसमें समूह के तत्वों को उलटा मैट्रिक्स द्वारा इस प्रकार से दर्शाया जाता है कि समूह संचालन मैट्रिक्स गुणन है।
 
इन अमूर्त बीजगणितीय संरचनाओं पर अनुखंड (गणित)। संक्षेप में, प्रतिनिधित्व अमूर्त बीजगणितीय वस्तु को आव्यूह (गणित) और [[मैट्रिक्स जोड़|आव्यूह जोड़]] और [[मैट्रिक्स गुणन|आव्यूह गुणन]] के संदर्भ में बीजगणितीय संचालन द्वारा अपने तत्वों का वर्णन करके अधिक ठोस बनाता है, जो गैर-क्रमविनिमेय है। इस प्रकार के विवरण के लिए उत्तरदायी बीजगणितीय वस्तुओं में समूह (गणित), सहयोगी बीजगणित और [[झूठ बीजगणित]] सम्मिलित हैं। इनमें से सबसे प्रमुख (और ऐतिहासिक रूप से पहला) [[समूह प्रतिनिधित्व]] है, जिसमें समूह के तत्वों को व्युत्क्रम आव्यूह द्वारा इस प्रकार से दर्शाया जाता है कि समूह संचालन आव्यूह गुणन है।


== कुछ प्रासंगिक प्रमेय ==
== कुछ प्रासंगिक प्रमेय ==
आम
सामान्य
*समरूपता प्रमेय#वलय
*वलय के लिए समरूपता प्रमेय
* नाकायमा की लेम्मा
* नाकायमा की लेम्मा


संरचना प्रमेय
संरचना प्रमेय
* आर्टिन-वेडरबर्न प्रमेय अर्धसरल वलय की संरचना निर्धारित करता है
* आर्टिन-वेडरबर्न प्रमेय अर्धसरल वलय की संरचना निर्धारित करता है
*[[जैकबसन घनत्व प्रमेय]] आदिम वलय की संरचना निर्धारित करता है
*[[जैकबसन घनत्व प्रमेय]] प्राथमिक वलय की संरचना निर्धारित करता है
*गोल्डी का प्रमेय [[सेमीप्राइम आदर्श]] [[गोल्डी रिंग|गोल्डी वलय]] की संरचना निर्धारित करता है
*गोल्डी का प्रमेय [[सेमीप्राइम आदर्श]] [[गोल्डी रिंग|गोल्डी वलय]] की संरचना निर्धारित करता है
* ज़ारिस्की-सैमुअल प्रमेय क्रमविनिमेय प्रधान आदर्श वलय की संरचना निर्धारित करता है
* ज़ारिस्की-सैमुअल प्रमेय क्रमविनिमेय प्रधान आदर्श वलय की संरचना निर्धारित करता है
Line 50: Line 51:


अन्य
अन्य
*स्कोलेम-नोथेर प्रमेय साधारण वलयों के [[automorphism]] की विशेषता बताता है
*स्कोलेम-नोथेर प्रमेय साधारण वलयों के [[automorphism|स्वसमाकृतिकता]] की विशेषता बताता है


== अंगूठियों की संरचनाएं और अपरिवर्तनीय ==
== अंगूठियों की संरचनाएं और अपरिवर्तनीय ==


=== क्रमविनिमेय वलय का आयाम ===
=== क्रमविनिमेय वलय का आयाम ===
{{main|Dimension theory (algebra)}}
{{main|आयाम सिद्धांत (बीजगणित)}}
इस खंड में, R क्रमविनिमेय वलय को दर्शाता है। R का [[क्रुल आयाम]] प्रधान आदर्शों की सभी श्रृंखलाओं की लंबाई n का सर्वोच्च है <math>\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n</math>. यह पता चला है कि बहुपद वलय <math>k[t_1, \cdots, t_n]</math> क्षेत्र पर k का आयाम n है। आयाम सिद्धांत के मौलिक प्रमेय में कहा गया है कि निम्नलिखित संख्याएं नोथेरियन स्थानीय वलय के लिए मेल खाती हैं <math>(R, \mathfrak{m})</math>:<ref>{{harvnb|Matsumura|1989|loc=Theorem 13.4}}</ref>
इस खंड में, R क्रमविनिमेय वलय को दर्शाता है। R का [[क्रुल आयाम]] प्रधान आदर्शों की सभी श्रृंखलाओं की लंबाई n का सर्वोच्च है <math>\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n</math>. यह पता चला है कि बहुपद वलय <math>k[t_1, \cdots, t_n]</math> क्षेत्र पर k का आयाम n है। आयाम सिद्धांत के मौलिक प्रमेय में कहा गया है कि निम्नलिखित संख्याएं नोथेरियन स्थानीय वलय <math>(R, \mathfrak{m})</math> के लिए मेल खाती हैं:<ref>{{harvnb|Matsumura|1989|loc=Theorem 13.4}}</ref>
* आर का क्रुल आयाम।
* R का क्रुल आयाम।
* जनरेटर की न्यूनतम संख्या <math>\mathfrak{m}</math>-प्राथमिक आदर्श।
* जनरेटर की न्यूनतम संख्या <math>\mathfrak{m}</math>-प्राथमिक आदर्श।
* ग्रेडेड वलय का आयाम <math>\textstyle \operatorname{gr}_{\mathfrak{m}}(R) = \bigoplus_{k \ge 0} \mathfrak{m}^k/{\mathfrak{m}^{k+1}}</math> (समतुल्य रूप से, 1 प्लस इसके [[हिल्बर्ट बहुपद]] की डिग्री)।
* ग्रेडेड वलय का आयाम <math>\textstyle \operatorname{gr}_{\mathfrak{m}}(R) = \bigoplus_{k \ge 0} \mathfrak{m}^k/{\mathfrak{m}^{k+1}}</math> (समतुल्य रूप से, 1 प्लस इसके [[हिल्बर्ट बहुपद]] की मात्रा)।


क्रमविनिमेय वलय R को [[कैटेनरी रिंग|कैटेनरी वलय]] कहा जाता है यदि प्रधान आदर्शों के प्रत्येक जोड़े के लिए <math>\mathfrak{p} \subset \mathfrak{p}'</math>, प्रधान आदर्शों की परिमित श्रृंखला मौजूद है <math>\mathfrak{p} = \mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_n = \mathfrak{p}'</math> यह इस अर्थ में अधिकतम है कि श्रृंखला में दो आदर्शों के बीच अतिरिक्त प्रधान आदर्श सम्मिलित करना असंभव है, और ऐसी सभी अधिकतम श्रृंखलाएँ <math>\mathfrak{p}</math> और  <math>\mathfrak{p}'</math> समान लंबाई हो। व्यावहारिक रूप से अनुप्रयोगों में दिखाई देने वाले सभी नोथेरियन वलय कैटेनरी हैं। रैटलिफ ने सिद्ध किया कि नोएथेरियन लोकल अभिन्न डोमेन आर कैटेनरी है यदि और केवल यदि हर प्रमुख आदर्श के लिए <math>\mathfrak{p}</math>,
क्रमविनिमेय वलय R को [[कैटेनरी रिंग|कैटेनरी वलय]] कहा जाता है यदि प्रधान आदर्शों के प्रत्येक जोड़े के लिए <math>\mathfrak{p} \subset \mathfrak{p}'</math>, प्रधान आदर्शों की परिमित श्रृंखला उपस्थित है <math>\mathfrak{p} = \mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_n = \mathfrak{p}'</math> यह इस अर्थ में अधिकतम है कि श्रृंखला में दो आदर्शों के बीच अतिरिक्त प्रधान आदर्श सम्मिलित करना असंभव है, और ऐसी सभी अधिकतम श्रृंखलाएँ <math>\mathfrak{p}</math> और  <math>\mathfrak{p}'</math> समान लंबाई हो। व्यावहारिक रूप से अनुप्रयोगों में दिखाई देने वाले सभी नोथेरियन वलय कैटेनरी हैं। रैटलिफ ने सिद्ध किया कि नोएथेरियन लोकल अभिन्न डोमेन आर कैटेनरी है यदि और केवल यदि हर प्रमुख आदर्श <math>\mathfrak{p}</math> के लिए,
:<math>\operatorname{dim}R = \operatorname{ht}\mathfrak{p} + \operatorname{dim}R/\mathfrak{p}</math>
:<math>\operatorname{dim}R = \operatorname{ht}\mathfrak{p} + \operatorname{dim}R/\mathfrak{p}</math>
कहाँ <math>\operatorname{ht}\mathfrak{p}</math> की ऊँचाई (वलय सिद्धांत) है <math>\mathfrak{p}</math>.<ref>{{harvnb|Matsumura|1989|loc=Theorem 31.4}}</ref>
जहाँ <math>\operatorname{ht}\mathfrak{p}</math> की <math>\mathfrak{p}</math> ऊँचाई (वलय सिद्धांत) है.<ref>{{harvnb|Matsumura|1989|loc=Theorem 31.4}}</ref>
यदि R अभिन्न डोमेन है जो अंतिम रूप से उत्पन्न k-बीजगणित है, तो इसका आयाम k के ऊपर इसके अंशों के क्षेत्र की [[श्रेष्ठता की डिग्री]] है। यदि S क्रमविनिमेय वलय R का [[अभिन्न विस्तार]] है, तो S और R का आयाम समान है।
 
यदि R अभिन्न डोमेन है जो अंतिम रूप से उत्पन्न k-बीजगणित है, तो इसका आयाम k के ऊपर इसके अंशों के क्षेत्र की [[श्रेष्ठता की डिग्री|श्रेष्ठता की मात्रा]] है। यदि S क्रमविनिमेय वलय R का [[अभिन्न विस्तार]] है, तो S और R का आयाम समान है।


बारीकी से संबंधित अवधारणाएं गहराई (वलय सिद्धांत) और [[वैश्विक आयाम]] की हैं। सामान्य तौर पर, यदि R नोथेरियन स्थानीय वलय है, तो R की गहराई R के आयाम से कम या उसके बराबर है। जब समानता होती है, तो R को कोहेन-मैकाले वलय कहा जाता है। नियमित स्थानीय वलय कोहेन-मैकाले वलय का उदाहरण है। यह Serre का प्रमेय है कि R नियमित स्थानीय वलय है यदि और केवल यदि इसका परिमित वैश्विक आयाम है और उस स्थिति में वैश्विक आयाम R का क्रुल आयाम है। इसका महत्व यह है कि वैश्विक आयाम समरूप बीजगणित धारणा है .
बारीकी से संबंधित अवधारणाएं गहराई (वलय सिद्धांत) और [[वैश्विक आयाम]] की हैं। सामान्य तौर पर, यदि R नोथेरियन स्थानीय वलय है, तो R की गहराई R के आयाम से कम या उसके बराबर है। जब समानता होती है, तो R को कोहेन-मैकाले वलय कहा जाता है। नियमित स्थानीय वलय कोहेन-मैकाले वलय का उदाहरण है। यह सेर्रे का प्रमेय है कि R नियमित स्थानीय वलय है यदि और केवल यदि इसका परिमित वैश्विक आयाम है और उस स्थिति में वैश्विक आयाम R का क्रुल आयाम है। इसका महत्व यह है कि वैश्विक आयाम समरूप बीजगणित धारणा है .


===मोरिता तुल्यता===
===मोरिता तुल्यता===
{{main|Morita equivalence}}
{{main|मोरिता तुल्यता}}
दो वलय R, S को मोरिटा समतुल्य कहा जाता है यदि R पर बाएँ अनुखंड की श्रेणी S के ऊपर बाएँ अनुखंड की श्रेणी के बराबर है। वास्तव में, दो क्रमविनिमेय वलय जो मोरिटा समतुल्य हैं, आइसोमॉर्फिक होना चाहिए, इसलिए धारणा नहीं जोड़ती है क्रमविनिमेय वलयों के श्रेणी सिद्धांत में कुछ भी नया। चूँकि, क्रमविनिमेय वलय मोरिटा नॉनक्रमविनिमेय वलयों के बराबर हो सकते हैं, इसलिए मोरिटा समानता आइसोमोर्फिज्म की तुलना में मोटे हैं। बीजगणितीय टोपोलॉजी और कार्यात्मक विश्लेषण में मोरिटा तुल्यता विशेष रूप से महत्वपूर्ण है।
 
दो वलय R, S को मोरिटा समतुल्य कहा जाता है यदि R पर बाएँ अनुखंड की श्रेणी S के ऊपर बाएँ अनुखंड की श्रेणी के बराबर है। वास्तविक में, दो क्रमविनिमेय वलय जो मोरिटा समतुल्य हैं, तुल्यकारी होना चाहिए, इसलिए धारणा नहीं जोड़ती है क्रमविनिमेय वलयों के श्रेणी सिद्धांत में कुछ भी नया। चूँकि, क्रमविनिमेय वलय मोरिटा गैरक्रमविनिमेय वलयों के बराबर हो सकते हैं, इसलिए मोरिटा समानता आइसोमोर्फिज्म की तुलना में मोटे हैं। बीजगणितीय टोपोलॉजी और कार्यात्मक विश्लेषण में मोरिटा तुल्यता विशेष रूप से महत्वपूर्ण है।
 
'''वलय और पिकार्ड समूह पर पूरी प्रकार से उत्पन्न प्रोजेक्टिव अनुखंड'''


=== वलय और पिकार्ड समूह === पर पूरी प्रकार से उत्पन्न प्रोजेक्टिव अनुखंड
मान लीजिए कि R क्रमविनिमेय वलय है और <math>\mathbf{P}(R)</math> आर पर सूक्ष्म रूप से उत्पन्न [[प्रक्षेपी मॉड्यूल|प्रक्षेपी अनुखंड]] के आइसोमोर्फिज्म वर्गों का सेट; चलो भी <math>\mathbf{P}_n(R)</math> उपसमुच्चय जिसमें स्थिर रैंक n वाले उपसमुच्चय होते हैं। (अनुखंड एम का रैंक निरंतर कार्य <math>\operatorname{Spec}R \to \mathbb{Z}, \, \mathfrak{p} \mapsto \dim M \otimes_R k(\mathfrak{p})</math> है.<ref>{{harvnb|Weibel|2013|loc=Ch I, Definition 2.2.3}}</ref> <math>\mathbf{P}_1(R)</math> सामान्यतः Pic(R) द्वारा निरूपित किया जाता है। यह एबेलियन समूह है जिसे आर का [[पिकार्ड समूह]] कहा जाता है।<ref>{{harvnb|Weibel|2013|loc=Definition preceding Proposition 3.2 in Ch I}}</ref> यदि R, R के अंशों F के क्षेत्र के साथ अभिन्न डोमेन है, तो समूहों का त्रुटिहीन क्रम है:<ref>{{harvnb|Weibel|2013|loc=Ch I, Proposition 3.5}}</ref>
मान लीजिए कि R क्रमविनिमेय वलय है और <math>\mathbf{P}(R)</math> आर पर सूक्ष्म रूप से उत्पन्न [[प्रक्षेपी मॉड्यूल|प्रक्षेपी अनुखंड]] के आइसोमोर्फिज्म वर्गों का सेट; चलो भी <math>\mathbf{P}_n(R)</math> उपसमुच्चय जिसमें स्थिर रैंक n वाले उपसमुच्चय होते हैं। (अनुखंड एम का रैंक निरंतर कार्य है <math>\operatorname{Spec}R \to \mathbb{Z}, \, \mathfrak{p} \mapsto \dim M \otimes_R k(\mathfrak{p})</math>.<ref>{{harvnb|Weibel|2013|loc=Ch I, Definition 2.2.3}}</ref>) <math>\mathbf{P}_1(R)</math> सामान्यतः Pic(R) द्वारा निरूपित किया जाता है। यह एबेलियन समूह है जिसे आर का [[पिकार्ड समूह]] कहा जाता है।<ref>{{harvnb|Weibel|2013|loc=Definition preceding Proposition 3.2 in Ch I}}</ref> यदि R, R के अंशों F के क्षेत्र के साथ अभिन्न डोमेन है, तो समूहों का त्रुटिहीन क्रम है:<ref>{{harvnb|Weibel|2013|loc=Ch I, Proposition 3.5}}</ref>
:<math>1 \to R^* \to F^* \overset{f \mapsto fR}\to \operatorname{Cart}(R) \to \operatorname{Pic}(R) \to 1</math>
:<math>1 \to R^* \to F^* \overset{f \mapsto fR}\to \operatorname{Cart}(R) \to \operatorname{Pic}(R) \to 1</math>
कहाँ <math>\operatorname{Cart}(R)</math> R के भिन्नात्मक आदर्शों का समुच्चय है। यदि R नियमित वलय डोमेन है (अर्थात, किसी भी प्रमुख आदर्श पर नियमित), तो Pic(R) वास्तव में R का वि[[भाजक वर्ग समूह]] है।<ref>{{harvnb|Weibel|2013|loc=Ch I, Corollary 3.8.1}}</ref>
जहाँ <math>\operatorname{Cart}(R)</math> R के भिन्नात्मक आदर्शों का समुच्चय है। यदि R नियमित वलय डोमेन है (अर्थात, किसी भी प्रमुख आदर्श पर नियमित), तो Pic(R) वास्तविक में R का [[भाजक वर्ग समूह|विभाजक वर्ग समूह]] है।<ref>{{harvnb|Weibel|2013|loc=Ch I, Corollary 3.8.1}}</ref>
उदाहरण के लिए, यदि R प्रमुख आदर्श डोमेन है, तो Pic(R) गायब हो जाता है। बीजगणितीय संख्या सिद्धांत में, R को पूर्णांकों का वलय माना जाएगा, जो Dedekind है और इस प्रकार नियमित है। यह इस प्रकार है कि Pic(R) परिमित समूह ([[वर्ग संख्या की परिमितता]]) है जो PID होने से पूर्णांकों के वलय के विचलन को मापता है।<!-- discuss coordinate ring -->
 
कोई समूह को पूरा करने पर भी विचार कर सकता है <math>\mathbf{P}(R)</math>; इसका परिणाम क्रमविनिमेय वलय K होता है<sub>0</sub>(आर)ध्यान दें कि के<sub>0</sub>(आर) = के<sub>0</sub>(एस) यदि दो क्रमविनिमेय वलयोंर, एस मोरिटा समकक्ष हैं।
उदाहरण के लिए, यदि R प्रमुख आदर्श डोमेन है, तो Pic(R) लुप्त हो जाता है। बीजगणितीय संख्या सिद्धांत में, R को पूर्णांकों का वलय माना जाएगा, जो Dedekind है और इस प्रकार नियमित है। यह इस प्रकार है कि Pic(R) परिमित समूह ([[वर्ग संख्या की परिमितता]]) है जो PID होने से पूर्णांकों के वलय के विचलन को मापता है।
 
कोई समूह <math>\mathbf{P}(R)</math> को पूरा करने पर भी विचार कर सकता है; इसका परिणाम क्रमविनिमेय वलय K<sub>0</sub>(R) होता है। ध्यान दें कि K<sub>0</sub>(R) = K<sub>0</sub>(S) यदि दो क्रमविनिमेय वलयोंर, एस मोरिटा समकक्ष हैं।
 
{{See also|बीजगणितीय के-सिद्धांत}}


{{See also|Algebraic K-theory}}




=== गैर-अनुवर्ती वलय की संरचना ===
=== गैर-अनुवर्ती वलय की संरचना ===
{{main|Noncommutative ring}}
{{main| गैर विनिमेय वलय}}
क्रमविनिमेय वलय की तुलना में अक्रमानुक्रमिक वलय की संरचना अधिक जटिल होती है। उदाहरण के लिए, सरल वलय वलय मौजूद हैं जिनमें कोई गैर-तुच्छ उचित (दो तरफा) आदर्श नहीं होते हैं, फिर भी गैर-तुच्छ उचित बाएं या दाएं आदर्श होते हैं। क्रमविनिमेय वलयों के लिए विभिन्न इनवेरिएंट मौजूद हैं, चूँकि नॉनक्रमविनिमेय वलयों के इनवेरिएंट्स को खोजना कठिन है। उदाहरण के रूप में, [[एक अंगूठी का नील-कट्टरपंथी|वलय का नील-कट्टरपंथी]], सभी शून्य-शक्तिशाली तत्वों का सेट, अनिवार्य रूप से आदर्श नहीं है, जब तक कि वलय क्रमविनिमेय न हो। विशेष रूप से, सभी की वलय में सभी निलपोटेंट तत्वों का सेट {{nowrap|''n'' × ''n''}} डिवीजन वलय पर मेट्रिसेस कभी भी आदर्श नहीं बनाते हैं, चाहे डिवीजन वलय को चुना गया हो। चूँकि, गैर-अनुक्रमिक वलयों के लिए परिभाषित निराडिकल के अनुरूप हैं, जो क्रमविनिमेयिटी ग्रहण करने पर नीलरेडिकल के साथ मेल खाते हैं।
 
क्रमविनिमेय वलय की तुलना में अक्रमानुक्रमिक वलय की संरचना अधिक जटिल होती है। उदाहरण के लिए, ऐसे सरल वलय वलय उपस्थित हैं जिनमें कोई गैर-तुच्छ उचित (दो तरफा) आदर्श नहीं होते हैं, फिर भी गैर-तुच्छ उचित बाएं या दाएं आदर्श होते हैं। क्रमविनिमेय वलयों के लिए विभिन्न अचर उपस्थित हैं, चूँकि गैरक्रमविनिमेय वलयों के इनवेरिएंट्स को खोजना कठिन है। उदाहरण के रूप में, [[एक अंगूठी का नील-कट्टरपंथी|वलय का नील-कट्टरपंथी]], सभी शून्य-शक्तिशाली तत्वों का सेट, अनिवार्य रूप से आदर्श नहीं है, जब तक कि वलय क्रमविनिमेय न होता हैं। विशेष रूप से, सभी की वलय में सभी निलपोटेंट तत्वों का सेट {{nowrap|''n'' × ''n''}} डिवीजन वलय पर मेट्रिसेस कभी भी आदर्श नहीं बनाते हैं, चाहे डिवीजन वलय को चुना गया हो। चूँकि, गैर-अनुक्रमिक वलयों के लिए परिभाषित निराडिकल के अनुरूप हैं, जो क्रमविनिमेयिटी ग्रहण करने पर नीलरेडिकल के साथ मेल खाते हैं।


वलय के [[जैकबसन कट्टरपंथी]] की अवधारणा; अर्थात्, वलय के ऊपर [[सरल मॉड्यूल|सरल अनुखंड]] राइट (लेफ्ट) अनुखंड के ऑल राइट (लेफ्ट) एनीहिलेटर (वलय सिद्धांत) का इंटरसेक्शन उदाहरण है। तथ्य यह है कि जैकबसन रेडिकल को वलय में सभी अधिकतम दाएं (बाएं) आदर्शों के प्रतिच्छेदन के रूप में देखा जा सकता है, यह दर्शाता है कि वलय की आंतरिक संरचना इसके अनुखंड द्वारा कैसे परिलक्षित होती है। यह भी तथ्य है कि वलय में सभी अधिकतम दाएं आदर्शों का प्रतिच्छेदन, सभी वलयों के संदर्भ में, वलय में सभी अधिकतम बाएं आदर्शों के प्रतिच्छेदन के समान है; चाहे वलय क्रमविनिमेय हो।
वलय के [[जैकबसन कट्टरपंथी]] की अवधारणा; अर्थात्, वलय के ऊपर [[सरल मॉड्यूल|सरल अनुखंड]] राइट (लेफ्ट) अनुखंड के ऑल राइट (लेफ्ट) एनीहिलेटर (वलय सिद्धांत) का इंटरसेक्शन उदाहरण है। तथ्य यह है कि जैकबसन रेडिकल को वलय में सभी अधिकतम दाएं (बाएं) आदर्शों के प्रतिच्छेदन के रूप में देखा जा सकता है, यह दर्शाता है कि वलय की आंतरिक संरचना इसके अनुखंड द्वारा कैसे परिलक्षित होती है। यह भी तथ्य है कि वलय में सभी अधिकतम दाएं आदर्शों का प्रतिच्छेदन, सभी वलयों के संदर्भ में, वलय में सभी अधिकतम बाएं आदर्शों के प्रतिच्छेदन के समान है; चाहे वलय क्रमविनिमेय हो।


गणित में अपनी सर्वव्यापकता के कारण गैर-अनुक्रमिक वलय अनुसंधान का सक्रिय क्षेत्र हैं। उदाहरण के लिए, एन-बाय-एन मैट्रिक्स (गणित) की वलय [[ज्यामिति]], भौतिकी और गणित के कई हिस्सों में प्राकृतिक होने के अतिरिक्त गैर-अनुक्रमिक है। अधिक सामान्यतः, एबेलियन समूहों के [[एंडोमोर्फिज्म रिंग|एंडोमोर्फिज्म]] वलयों शायद ही कभी कम्यूटिव होते हैं, सबसे सरल उदाहरण [[क्लेन चार-समूह]] की एंडोमोर्फिज्म वलय है।
गणित में अपनी सर्वव्यापकता के कारण गैर-अनुक्रमिक वलय अनुसंधान का सक्रिय क्षेत्र हैं। उदाहरण के लिए, एन-बाय-एन आव्यूह (गणित) की वलय [[ज्यामिति]], भौतिकी और गणित के कई हिस्सों में प्राकृतिक होने के अतिरिक्त गैर-अनुक्रमिक है। अधिक सामान्यतः, एबेलियन समूहों के [[एंडोमोर्फिज्म रिंग|एंडोमोर्फिज्म]] वलयों संभवतः ही कभी कम्यूटिव होते हैं, सबसे सरल उदाहरण [[क्लेन चार-समूह]] की एंडोमोर्फिज्म वलय है।


सबसे प्रसिद्ध कड़ाई से गैर-अनुवर्ती वलय में से चतुष्कोण है।
सबसे प्रसिद्ध कड़ाई से गैर-अनुवर्ती वलय में से चतुष्कोण है।
Line 95: Line 103:


=== संख्या क्षेत्र के पूर्णांकों की वलय ===
=== संख्या क्षेत्र के पूर्णांकों की वलय ===
{{main|Ring of integers}}
{{main|पूर्णांकों का वलय}}




Line 102: Line 110:


=== आक्रमणकारियों की वलय ===
=== आक्रमणकारियों की वलय ===
मौलिक [[अपरिवर्तनीय सिद्धांत]] में मूलभूत (और शायद सबसे मौलिक) प्रश्न बहुपद वलय में बहुपदों को खोजना और उनका अध्ययन करना है <math>k[V]</math> जो V पर परिमित समूह (या अधिक सामान्यतः रिडक्टिव) G की कार्रवाई के अनुसार अपरिवर्तनीय हैं। मुख्य उदाहरण [[सममित कार्यों की अंगूठी|सममित कार्यों की वलय]] है: [[सममित बहुपद]] बहुपद हैं जो चर के क्रमपरिवर्तन के अनुसार अपरिवर्तनीय हैं। सममित बहुपदों का मूलभूत प्रमेय बताता है कि यह वलय है <math>R[\sigma_1, \ldots, \sigma_n]</math> कहाँ <math>\sigma_i</math> प्राथमिक सममित बहुपद हैं।
मौलिक [[अपरिवर्तनीय सिद्धांत]] में मूलभूत (और संभवतः सबसे मौलिक) प्रश्न बहुपद वलय <math>k[V]</math> में बहुपदों को खोजना और उनका अध्ययन करना है  जो V पर परिमित समूह (या अधिक सामान्यतः रिडक्टिव) G की कार्रवाई के अनुसार अपरिवर्तनीय हैं। मुख्य उदाहरण [[सममित कार्यों की अंगूठी|सममित कार्यों की वलय]] है: [[सममित बहुपद]] बहुपद हैं जो चर के क्रमपरिवर्तन के अनुसार अपरिवर्तनीय हैं। सममित बहुपदों का मूलभूत प्रमेय बताता है कि यह वलय है <math>R[\sigma_1, \ldots, \sigma_n]</math> जहाँ <math>\sigma_i</math> प्राथमिक सममित बहुपद हैं।


== इतिहास ==
== इतिहास ==
क्रमविनिमेय वलय सिद्धांत बीजगणितीय संख्या सिद्धांत, बीजगणितीय ज्यामिति और अपरिवर्तनीय सिद्धांत में उत्पन्न हुआ। इन विषयों के विकास के केंद्र बीजगणितीय संख्या क्षेत्रों और बीजगणितीय कार्य क्षेत्रों में पूर्णांकों के वलय और दो या दो से अधिक चरों में बहुपदों के वलय थे। अअनुक्रमणीय वलय सिद्धांत जटिल संख्याओं को विभिन्न [[हाइपरकॉम्प्लेक्स संख्या]] प्रणालियों में विस्तारित करने के प्रयासों के साथ प्रारंभ हुआ। क्रमविनिमेय और नॉनक्रमविनिमेय वलयों के सिद्धांतों की उत्पत्ति 19वीं शताब्दी की प्रारंभ में हुई थी, चूँकि उनकी परिपक्वता 20वीं शताब्दी के तीसरे दशक में ही प्राप्त हुई थी।
क्रमविनिमेय वलय सिद्धांत बीजगणितीय संख्या सिद्धांत, बीजगणितीय ज्यामिति और अपरिवर्तनीय सिद्धांत में उत्पन्न हुआ। इन विषयों के विकास के केंद्र बीजगणितीय संख्या क्षेत्रों और बीजगणितीय कार्य क्षेत्रों में पूर्णांकों के वलय और दो या दो से अधिक चरों में बहुपदों के वलय थे। अअनुक्रमणीय वलय सिद्धांत जटिल संख्याओं को विभिन्न [[हाइपरकॉम्प्लेक्स संख्या]] प्रणालियों में विस्तारित करने के प्रयासों के साथ प्रारंभ हुआ। क्रमविनिमेय और गैरक्रमविनिमेय वलयों के सिद्धांतों की उत्पत्ति 19वीं शताब्दी की प्रारंभ में हुई थी, चूँकि उनकी परिपक्वता 20वीं शताब्दी के तीसरे दशक में ही प्राप्त हुई थी।


अधिक त्रुटिहीन रूप से, [[विलियम रोवन हैमिल्टन]] ने चतुष्कोणों और द्विभाजकों को सामने रखा; [[जेम्स कॉकल (वकील)]] ने [[tessarine]] और [[bi[[quaternion]]]] प्रस्तुत किए; और [[विलियम किंग्डन क्लिफोर्ड]] [[विभाजन-द्विभाजित]] के उत्साही थे, जिसे उन्होंने बीजगणितीय मोटर्स कहा था। विषय विशेष [[गणितीय संरचना]] प्रकारों में विभाजित होने से पहले इन गैर-अनुसूचित बीजगणित, और गैर-सहयोगी झूठ बीजगणित का [[सार्वभौमिक बीजगणित]] के अन्दर अध्ययन किया गया था। पुनर्संगठन का संकेत अनुखंड के प्रत्यक्ष योग # बीजीय संरचना का वर्णन करने के लिए बीजगणित के प्रत्यक्ष योग का उपयोग था।
अधिक त्रुटिहीन रूप से, [[विलियम रोवन हैमिल्टन]] ने चतुष्कोणों और द्विभाजकों को; [[जेम्स कॉकल (वकील)]] ने [[tessarine|टेसरीन]] और [[quaternion|कोक्वाटरनियन]] ने प्रस्तुत किए; और [[विलियम किंग्डन क्लिफोर्ड]] [[विभाजन-द्विभाजित]] के उत्साही थे, जिसे उन्होंने बीजगणितीय मोटर्स कहा था। विषय विशेष [[गणितीय संरचना]] प्रकारों में विभाजित होने से पहले इन गैर-अनुसूचित बीजगणित, और गैर-सहयोगी झूठ बीजगणित का [[सार्वभौमिक बीजगणित]] के अन्दर अध्ययन किया गया था। पुनर्संगठन का संकेत अनुखंड के प्रत्यक्ष योग # बीजीय संरचना का वर्णन करने के लिए बीजगणित के प्रत्यक्ष योग का उपयोग था।


[[जोसेफ वेडरबर्न]] (1908) और [[एमिल आर्टिन]] (1928) द्वारा [[मैट्रिक्स रिंग|मैट्रिक्स वलय]] के साथ विभिन्न हाइपरकॉम्प्लेक्स नंबरों की पहचान की गई थी। वेडरबर्न की संरचना प्रमेयों को क्षेत्र पर परिमित-आयामी बीजगणित के लिए तैयार किया गया था चूँकि आर्टिन ने उन्हें आर्टिनियन वलयों के लिए सामान्यीकृत किया था।
[[जोसेफ वेडरबर्न]] (1908) और [[एमिल आर्टिन]] (1928) द्वारा [[मैट्रिक्स रिंग|आव्यूह वलय]] के साथ विभिन्न अतिमिश्र संख्याओं की पहचान की गई थी। वेडरबर्न की संरचना प्रमेयों को क्षेत्र पर परिमित-आयामी बीजगणित के लिए तैयार किया गया था चूँकि आर्टिन ने उन्हें आर्टिनियन वलयों के लिए सामान्यीकृत किया था।


1920 में, [[एमी नोथेर]] ने डब्ल्यू शमीडलर के सहयोग से [[आदर्श सिद्धांत]] के बारे में पेपर प्रकाशित किया जिसमें उन्होंने आदर्श (वलय सिद्धांत) को वलय (गणित) में परिभाषित किया। अगले वर्ष उसने (गणितीय) आदर्शों के संबंध में आरोही श्रृंखला स्थितियों का विश्लेषण करते हुए, वलयबेरेइचेन में आइडियलथोरी नामक ऐतिहासिक पत्र प्रकाशित किया। विख्यात बीजगणित [[इरविंग कपलान्स्की]] ने इस कार्य को क्रांतिकारी कहा;{{Sfn |Kimberling|1981|p=18}} प्रकाशन ने नोथेरियन वलय शब्द को जन्म दिया, और कई अन्य गणितीय वस्तुओं को नोएदरियन (बहुविकल्पी) कहा जाता है।{{Sfn |Kimberling|1981|p=18}}<ref>{{citation|last= Dick|first= Auguste|author-link=Auguste Dick|title= Emmy Noether: 1882–1935| publisher= [[Birkhäuser]] | year = 1981| isbn =3-7643-3019-8 | translator-first= H. I. | translator-last= Blocher}}, p. 44–45.</ref>
1920 में, [[एमी नोथेर]] ने डब्ल्यू शमीडलर के सहयोग से [[आदर्श सिद्धांत]] के बारे में पेपर प्रकाशित किया जिसमें उन्होंने आदर्श (वलय सिद्धांत) को वलय (गणित) में परिभाषित किया। अगले वर्ष उसने (गणितीय) आदर्शों के संबंध में आरोही श्रृंखला स्थितियों का विश्लेषण करते हुए, वलयबेरेइचेन में आइडियलथोरी नामक ऐतिहासिक पत्र प्रकाशित किया। विख्यात बीजगणित [[इरविंग कपलान्स्की]] ने इस कार्य को क्रांतिकारी कहा;{{Sfn |Kimberling|1981|p=18}} प्रकाशन ने नोथेरियन वलय शब्द को जन्म दिया, और कई अन्य गणितीय वस्तुओं को नोएदरियन (बहुविकल्पी) कहा जाता है।{{Sfn |Kimberling|1981|p=18}}<ref>{{citation|last= Dick|first= Auguste|author-link=Auguste Dick|title= Emmy Noether: 1882–1935| publisher= [[Birkhäuser]] | year = 1981| isbn =3-7643-3019-8 | translator-first= H. I. | translator-last= Blocher}}, p. 44–45.</ref>

Revision as of 09:34, 20 February 2023

बीजगणित में, वलय सिद्धांत वलयों (गणित) का अध्ययन है[1]बीजगणितीय संरचनाएं जिनमें जोड़ और गुणन परिभाषित हैं और पूर्णांकों के लिए परिभाषित उन संक्रियाओं के समान गुण हैं। वलय सिद्धांत वलयों की संरचना का अध्ययन करता है, बीजगणित का उनका प्रतिनिधित्व, या, अलग-अलग भाषा में, अनुखंड (वलय सिद्धांत), वलयों की विशेष कक्षाएं (समूह के वलय, विभाजन के वलय, सार्वभौमिक आवरण बीजगणित), साथ ही गुणों की सरणी जो सिद्धांत के अन्दर और इसके अनुप्रयोगों के लिए, जैसे समरूप बीजगणित और बहुपद पहचान वलय, दोनों के लिए अनुकूल सिद्ध हुआ।

क्रमविनिमेय वलय गैर क्रमविनिमेय वाले की तुलना में बहुत उत्तम समझे जाते हैं। बीजगणितीय ज्यामिति और बीजगणितीय संख्या सिद्धांत, जो क्रमविनिमेय वलयों के कई प्राकृतिक उदाहरण प्रदान करते हैं, ने क्रमविनिमेय वलय सिद्धांत के विकास को बहुत प्रेरित किया है, जो अब क्रमविनिमेय बीजगणित के नाम से आधुनिक गणित का प्रमुख क्षेत्र है। क्योंकि ये तीन क्षेत्र (बीजगणितीय ज्यामिति, बीजगणितीय संख्या सिद्धांत और क्रमविनिमेय बीजगणित) इतने घनिष्ठ रूप से जुड़े हुए हैं कि सामान्यतः यह तय करना कठिन और अर्थहीन होता है कि कोई विशेष परिणाम किस क्षेत्र से संबंधित है। उदाहरण के लिए, हिल्बर्ट का नलस्टेलेंसज़ प्रमेय है जो बीजगणितीय ज्यामिति के लिए मौलिक है, और इसे क्रमविनिमेय बीजगणित के संदर्भ में कहा और सिद्ध किया गया है। इसी प्रकार, फ़र्मेट की अंतिम प्रमेय को प्राथमिक अंकगणित के संदर्भ में कहा गया है, जो क्रमविनिमेय बीजगणित का भाग है, किन्तु इसके प्रमाण में बीजगणितीय संख्या सिद्धांत और बीजगणितीय ज्यामिति दोनों के आन्तरिक परिणाम सम्मिलित हैं।

गैर-अनुवर्ती वलय अनुमान में अधिक भिन्न होते हैं, क्योंकि अधिक असामान्य व्यवहार उत्पन्न हो सकता है। चूँकि सिद्धांत अपने आप में विकसित हुआ है, नवीनतम प्रवृत्ति ने ज्यामितीय प्रचलन में गैर-अनुक्रमिक वलयों के कुछ वर्गों के सिद्धांत का निर्माण करके क्रमविनिमेय विकास को समानांतर करने का अनुरोध किया है जैसे कि वे (अस्तित्वहीन) 'गैर-अनुक्रमिक रिक्त स्थान पर फलन के वलय थे। यह प्रवृत्ति 1980 के दशक में गैर-अनुक्रमिक ज्यामिति के विकास और क्वांटम समूहों की खोज के साथ प्रारंभ हुई। इसने गैर-अनुविन्यस्त वलयों विशेषकर गैर-अनुविनिमेय नोथेरियन वलयों की उत्तम समझ उत्पन्न की है।[2]

वलय और मूलभूत अवधारणाओं और उनके गुणों की परिभाषा के लिए, वलय (गणित) देखें। वलय सिद्धांत में प्रयुक्त शब्दों की परिभाषाएं वलय सिद्धांत की शब्दावली में पाई जा सकती हैं।

क्रमविनिमेय वलयों

वलय को क्रमविनिमेय कहा जाता है यदि इसका गुणन क्रमविनिमेय है। क्रमविनिमेय वलय परिचित संख्या प्रणालियों के समान होता हैं, और क्रमविनिमेय वलय के लिए विभिन्न परिभाषाओं को पूर्णांकों के गुणों को औपचारिक रूप देने के लिए डिज़ाइन किया गया है। बीजगणितीय ज्यामिति में क्रमविनिमेय वलय भी महत्वपूर्ण हैं। क्रमविनिमेय वलय सिद्धांत में, संख्याओं को अधिकांश आदर्श (वलय सिद्धांत) द्वारा प्रतिस्थापित किया जाता है, और प्रधान आदर्श की परिभाषा अभाज्य संख्याओं के सार को पकड़ने की प्रयास करती है। अभिन्न डोमेन, गैर-तुच्छ क्रमविनिमेय वलय जहां कोई दो गैर-शून्य तत्व शून्य देने के लिए गुणा करते हैं, पूर्णांक की और गुण का सामान्यीकरण करते हैं और विभाज्यता का अध्ययन करने के लिए उचित क्षेत्र के रूप में कार्य करते हैं। प्रधान आदर्श डोमेन अभिन्न डोमेन हैं जिसमें प्रत्येक आदर्श को तत्व द्वारा उत्पन्न किया जा सकता है, जो पूर्णांकों द्वारा साझा की गई एक अन्य गुण है। यूक्लिडियन डोमेन अभिन्न डोमेन हैं जिनमें सबसे बड़ा सामान्य विभाजक किया जा सकता है। क्रमविनिमेय वलयों के महत्वपूर्ण उदाहरण बहुपद के वलयों और उनके कारक वलयों के रूप में बनाए जा सकते हैं। सारांश: यूक्लिडियन डोमेन ⊂ प्रमुख आदर्श डोमेनअद्वितीय गुणनखंड डोमेन ⊂ अभिन्न डोमेन ⊂ क्रमविनिमेय वलय।

बीजगणितीय ज्यामिति

बीजगणितीय ज्यामिति कई प्रकार से क्रमविनिमेय बीजगणित की दर्पण प्रतिबिंब है। यह पत्राचार हिल्बर्ट के नलस्टेलेंसज़ के साथ प्रारंभ हुआ जो बीजगणितीय विविधता के बिंदुओं के बीच एक-से-पत्राचार स्थापित करता है, और इसकी समन्वय वलय के अधिकतम आदर्शों को स्थापित करता है। इस पत्राचार को संबंधित क्रमविनिमेय वलयों के बीजगणितीय गुणों में बीजगणितीय प्रकारों के अधिकांश ज्यामितीय गुणों के अनुवाद (और सिद्ध करने) के लिए विस्तारित और व्यवस्थित किया गया है। अलेक्जेंडर ग्रोथेंडिक ने बीजगणितीय प्रकारों के सामान्यीकरण, योजना (गणित) का प्रारंभ करके इसे पूरा किया, जिसे किसी भी क्रमविनिमेय वलय से बनाया जा सकता है।

अधिक त्रुटिहीन रूप से क्रमविनिमेय वलय के वलय का वर्णक्रम इसके प्रमुख आदर्शों का स्थान है जो जरिस्की टोपोलॉजी से सुसज्जित है, और वलयों के शीफ (गणित) के साथ संवर्धित है। ये वस्तुएं एफ़िन योजनाएं हैं (एफ़ाइन प्रकारों का सामान्यीकरण), और सामान्य योजना तब साथ ग्लूइंग (विशुद्ध रूप से बीजगणितीय विधियों द्वारा) प्राप्त की जाती है, ऐसी कई एफ़िन योजनाएं, एटलस (टोपोलॉजी) का चार्ट (टोपोलॉजी) को एक साथ ग्लूइंग करके कई गुना बनाने के तरीके के अनुरूप होती हैं।

गैरक्रमविनिमेय वलयों

अक्रमानुक्रमिक वलय कई प्रकार से आव्यूह (गणित) के वलयों से मिलते जुलते हैं। बीजगणितीय ज्यामिति के मॉडल के बाद, नवीनतम में गैर-अनुक्रमिक ज्यामिति को गैर-अनुक्रमिक वलयों के आधार पर परिभाषित करने का प्रयास किया गया है।

गैर-अनुवर्ती वलय और साहचर्य बीजगणित (अंगूठियां जो सदिश स्थान भी हैं) का अधिकांश अनुखंड के उनके श्रेणी सिद्धांत के माध्यम से अध्ययन किया जाता है। वलय पर अनुखंड (गणित) एबेलियन समूह (गणित) है जो वलय एंडोमोर्फिज्म की वलय के रूप में कार्य करता है, जिस प्रकार से क्षेत्र (गणित) के समान होता है (अभिन्न डोमेन जिसमें प्रत्येक गैर-शून्य तत्व उलटा होता है) वेक्टर रिक्त स्थान पर कार्य करें। गैर-अनुक्रमिक वलय के उदाहरण वर्ग आव्यूह (गणित) के वलय या अधिक सामान्यतः एबेलियन समूहों या अनुखंड के एंडोमोर्फिज्म के वलय और मोनॉइड वलयों द्वारा दिए जाते हैं।

प्रतिनिधित्व सिद्धांत

प्रतिनिधित्व सिद्धांत गणित की शाखा है जो गैर-क्रमविनिमेय वलयों पर भारी पड़ता है। यह वेक्टर रिक्त स्थान के रैखिक परिवर्तनों के रूप में उनके तत्व (सेट सिद्धांत) का प्रतिनिधित्व करके सार बीजगणित बीजगणितीय संरचनाओं का अध्ययन करता है, और अध्ययन करता है

इन अमूर्त बीजगणितीय संरचनाओं पर अनुखंड (गणित)। संक्षेप में, प्रतिनिधित्व अमूर्त बीजगणितीय वस्तु को आव्यूह (गणित) और आव्यूह जोड़ और आव्यूह गुणन के संदर्भ में बीजगणितीय संचालन द्वारा अपने तत्वों का वर्णन करके अधिक ठोस बनाता है, जो गैर-क्रमविनिमेय है। इस प्रकार के विवरण के लिए उत्तरदायी बीजगणितीय वस्तुओं में समूह (गणित), सहयोगी बीजगणित और झूठ बीजगणित सम्मिलित हैं। इनमें से सबसे प्रमुख (और ऐतिहासिक रूप से पहला) समूह प्रतिनिधित्व है, जिसमें समूह के तत्वों को व्युत्क्रम आव्यूह द्वारा इस प्रकार से दर्शाया जाता है कि समूह संचालन आव्यूह गुणन है।

कुछ प्रासंगिक प्रमेय

सामान्य

  • वलय के लिए समरूपता प्रमेय
  • नाकायमा की लेम्मा

संरचना प्रमेय

  • आर्टिन-वेडरबर्न प्रमेय अर्धसरल वलय की संरचना निर्धारित करता है
  • जैकबसन घनत्व प्रमेय प्राथमिक वलय की संरचना निर्धारित करता है
  • गोल्डी का प्रमेय सेमीप्राइम आदर्श गोल्डी वलय की संरचना निर्धारित करता है
  • ज़ारिस्की-सैमुअल प्रमेय क्रमविनिमेय प्रधान आदर्श वलय की संरचना निर्धारित करता है
  • हॉपकिंस-लेविट्ज़की प्रमेय नोथेरियन वलय के लिए आर्टिनियन वलय होने के लिए आवश्यक और पर्याप्त शर्तें देता है
  • मोरिटा सिद्धांत में प्रमेय निर्धारित होते हैं जब दो वलयों में समकक्ष अनुखंड श्रेणियां होती हैं
  • कार्टन-ब्रेयर-हुआ प्रमेय विभाजन के वलय की संरचना पर अंतर्दृष्टि देता है
  • वेडरबर्न की छोटी प्रमेय बताती है कि परिमित डोमेन (वलय सिद्धांत) क्षेत्र (गणित) हैं

अन्य

अंगूठियों की संरचनाएं और अपरिवर्तनीय

क्रमविनिमेय वलय का आयाम

इस खंड में, R क्रमविनिमेय वलय को दर्शाता है। R का क्रुल आयाम प्रधान आदर्शों की सभी श्रृंखलाओं की लंबाई n का सर्वोच्च है . यह पता चला है कि बहुपद वलय क्षेत्र पर k का आयाम n है। आयाम सिद्धांत के मौलिक प्रमेय में कहा गया है कि निम्नलिखित संख्याएं नोथेरियन स्थानीय वलय के लिए मेल खाती हैं:[3]

  • R का क्रुल आयाम।
  • जनरेटर की न्यूनतम संख्या -प्राथमिक आदर्श।
  • ग्रेडेड वलय का आयाम (समतुल्य रूप से, 1 प्लस इसके हिल्बर्ट बहुपद की मात्रा)।

क्रमविनिमेय वलय R को कैटेनरी वलय कहा जाता है यदि प्रधान आदर्शों के प्रत्येक जोड़े के लिए , प्रधान आदर्शों की परिमित श्रृंखला उपस्थित है यह इस अर्थ में अधिकतम है कि श्रृंखला में दो आदर्शों के बीच अतिरिक्त प्रधान आदर्श सम्मिलित करना असंभव है, और ऐसी सभी अधिकतम श्रृंखलाएँ और समान लंबाई हो। व्यावहारिक रूप से अनुप्रयोगों में दिखाई देने वाले सभी नोथेरियन वलय कैटेनरी हैं। रैटलिफ ने सिद्ध किया कि नोएथेरियन लोकल अभिन्न डोमेन आर कैटेनरी है यदि और केवल यदि हर प्रमुख आदर्श के लिए,

जहाँ की ऊँचाई (वलय सिद्धांत) है.[4]

यदि R अभिन्न डोमेन है जो अंतिम रूप से उत्पन्न k-बीजगणित है, तो इसका आयाम k के ऊपर इसके अंशों के क्षेत्र की श्रेष्ठता की मात्रा है। यदि S क्रमविनिमेय वलय R का अभिन्न विस्तार है, तो S और R का आयाम समान है।

बारीकी से संबंधित अवधारणाएं गहराई (वलय सिद्धांत) और वैश्विक आयाम की हैं। सामान्य तौर पर, यदि R नोथेरियन स्थानीय वलय है, तो R की गहराई R के आयाम से कम या उसके बराबर है। जब समानता होती है, तो R को कोहेन-मैकाले वलय कहा जाता है। नियमित स्थानीय वलय कोहेन-मैकाले वलय का उदाहरण है। यह सेर्रे का प्रमेय है कि R नियमित स्थानीय वलय है यदि और केवल यदि इसका परिमित वैश्विक आयाम है और उस स्थिति में वैश्विक आयाम R का क्रुल आयाम है। इसका महत्व यह है कि वैश्विक आयाम समरूप बीजगणित धारणा है .

मोरिता तुल्यता

दो वलय R, S को मोरिटा समतुल्य कहा जाता है यदि R पर बाएँ अनुखंड की श्रेणी S के ऊपर बाएँ अनुखंड की श्रेणी के बराबर है। वास्तविक में, दो क्रमविनिमेय वलय जो मोरिटा समतुल्य हैं, तुल्यकारी होना चाहिए, इसलिए धारणा नहीं जोड़ती है क्रमविनिमेय वलयों के श्रेणी सिद्धांत में कुछ भी नया। चूँकि, क्रमविनिमेय वलय मोरिटा गैरक्रमविनिमेय वलयों के बराबर हो सकते हैं, इसलिए मोरिटा समानता आइसोमोर्फिज्म की तुलना में मोटे हैं। बीजगणितीय टोपोलॉजी और कार्यात्मक विश्लेषण में मोरिटा तुल्यता विशेष रूप से महत्वपूर्ण है।

वलय और पिकार्ड समूह पर पूरी प्रकार से उत्पन्न प्रोजेक्टिव अनुखंड

मान लीजिए कि R क्रमविनिमेय वलय है और आर पर सूक्ष्म रूप से उत्पन्न प्रक्षेपी अनुखंड के आइसोमोर्फिज्म वर्गों का सेट; चलो भी उपसमुच्चय जिसमें स्थिर रैंक n वाले उपसमुच्चय होते हैं। (अनुखंड एम का रैंक निरंतर कार्य है.[5] सामान्यतः Pic(R) द्वारा निरूपित किया जाता है। यह एबेलियन समूह है जिसे आर का पिकार्ड समूह कहा जाता है।[6] यदि R, R के अंशों F के क्षेत्र के साथ अभिन्न डोमेन है, तो समूहों का त्रुटिहीन क्रम है:[7]

जहाँ R के भिन्नात्मक आदर्शों का समुच्चय है। यदि R नियमित वलय डोमेन है (अर्थात, किसी भी प्रमुख आदर्श पर नियमित), तो Pic(R) वास्तविक में R का विभाजक वर्ग समूह है।[8]

उदाहरण के लिए, यदि R प्रमुख आदर्श डोमेन है, तो Pic(R) लुप्त हो जाता है। बीजगणितीय संख्या सिद्धांत में, R को पूर्णांकों का वलय माना जाएगा, जो Dedekind है और इस प्रकार नियमित है। यह इस प्रकार है कि Pic(R) परिमित समूह (वर्ग संख्या की परिमितता) है जो PID होने से पूर्णांकों के वलय के विचलन को मापता है।

कोई समूह को पूरा करने पर भी विचार कर सकता है; इसका परिणाम क्रमविनिमेय वलय K0(R) होता है। ध्यान दें कि K0(R) = K0(S) यदि दो क्रमविनिमेय वलयोंर, एस मोरिटा समकक्ष हैं।


गैर-अनुवर्ती वलय की संरचना

क्रमविनिमेय वलय की तुलना में अक्रमानुक्रमिक वलय की संरचना अधिक जटिल होती है। उदाहरण के लिए, ऐसे सरल वलय वलय उपस्थित हैं जिनमें कोई गैर-तुच्छ उचित (दो तरफा) आदर्श नहीं होते हैं, फिर भी गैर-तुच्छ उचित बाएं या दाएं आदर्श होते हैं। क्रमविनिमेय वलयों के लिए विभिन्न अचर उपस्थित हैं, चूँकि गैरक्रमविनिमेय वलयों के इनवेरिएंट्स को खोजना कठिन है। उदाहरण के रूप में, वलय का नील-कट्टरपंथी, सभी शून्य-शक्तिशाली तत्वों का सेट, अनिवार्य रूप से आदर्श नहीं है, जब तक कि वलय क्रमविनिमेय न होता हैं। विशेष रूप से, सभी की वलय में सभी निलपोटेंट तत्वों का सेट n × n डिवीजन वलय पर मेट्रिसेस कभी भी आदर्श नहीं बनाते हैं, चाहे डिवीजन वलय को चुना गया हो। चूँकि, गैर-अनुक्रमिक वलयों के लिए परिभाषित निराडिकल के अनुरूप हैं, जो क्रमविनिमेयिटी ग्रहण करने पर नीलरेडिकल के साथ मेल खाते हैं।

वलय के जैकबसन कट्टरपंथी की अवधारणा; अर्थात्, वलय के ऊपर सरल अनुखंड राइट (लेफ्ट) अनुखंड के ऑल राइट (लेफ्ट) एनीहिलेटर (वलय सिद्धांत) का इंटरसेक्शन उदाहरण है। तथ्य यह है कि जैकबसन रेडिकल को वलय में सभी अधिकतम दाएं (बाएं) आदर्शों के प्रतिच्छेदन के रूप में देखा जा सकता है, यह दर्शाता है कि वलय की आंतरिक संरचना इसके अनुखंड द्वारा कैसे परिलक्षित होती है। यह भी तथ्य है कि वलय में सभी अधिकतम दाएं आदर्शों का प्रतिच्छेदन, सभी वलयों के संदर्भ में, वलय में सभी अधिकतम बाएं आदर्शों के प्रतिच्छेदन के समान है; चाहे वलय क्रमविनिमेय हो।

गणित में अपनी सर्वव्यापकता के कारण गैर-अनुक्रमिक वलय अनुसंधान का सक्रिय क्षेत्र हैं। उदाहरण के लिए, एन-बाय-एन आव्यूह (गणित) की वलय ज्यामिति, भौतिकी और गणित के कई हिस्सों में प्राकृतिक होने के अतिरिक्त गैर-अनुक्रमिक है। अधिक सामान्यतः, एबेलियन समूहों के एंडोमोर्फिज्म वलयों संभवतः ही कभी कम्यूटिव होते हैं, सबसे सरल उदाहरण क्लेन चार-समूह की एंडोमोर्फिज्म वलय है।

सबसे प्रसिद्ध कड़ाई से गैर-अनुवर्ती वलय में से चतुष्कोण है।

अनुप्रयोग

संख्या क्षेत्र के पूर्णांकों की वलय


बीजगणितीय प्रकार का निर्देशांक वलय

यदि एक्स एफ़िन बीजगणितीय विविधता है, तो एक्स पर सभी नियमित कार्यों का सेट वलय बनाता है जिसे एक्स की समन्वय वलय कहा जाता है। अनुमानित विविधता के लिए, समान वलय होती है जिसे सजातीय समन्वय वलय कहा जाता है। वे अंगूठियां अनिवार्य रूप से वैसी ही चीजें हैं जैसे प्रकारें: वे अनिवार्य रूप से अनोखे तरीके से मेल खाती हैं। इसे या तो हिल्बर्ट के नलस्टेलेंसैट्ज या योजना-सैद्धांतिक निर्माण (अर्थात्, स्पेक और प्रोज) के माध्यम से देखा जा सकता है।

आक्रमणकारियों की वलय

मौलिक अपरिवर्तनीय सिद्धांत में मूलभूत (और संभवतः सबसे मौलिक) प्रश्न बहुपद वलय में बहुपदों को खोजना और उनका अध्ययन करना है जो V पर परिमित समूह (या अधिक सामान्यतः रिडक्टिव) G की कार्रवाई के अनुसार अपरिवर्तनीय हैं। मुख्य उदाहरण सममित कार्यों की वलय है: सममित बहुपद बहुपद हैं जो चर के क्रमपरिवर्तन के अनुसार अपरिवर्तनीय हैं। सममित बहुपदों का मूलभूत प्रमेय बताता है कि यह वलय है जहाँ प्राथमिक सममित बहुपद हैं।

इतिहास

क्रमविनिमेय वलय सिद्धांत बीजगणितीय संख्या सिद्धांत, बीजगणितीय ज्यामिति और अपरिवर्तनीय सिद्धांत में उत्पन्न हुआ। इन विषयों के विकास के केंद्र बीजगणितीय संख्या क्षेत्रों और बीजगणितीय कार्य क्षेत्रों में पूर्णांकों के वलय और दो या दो से अधिक चरों में बहुपदों के वलय थे। अअनुक्रमणीय वलय सिद्धांत जटिल संख्याओं को विभिन्न हाइपरकॉम्प्लेक्स संख्या प्रणालियों में विस्तारित करने के प्रयासों के साथ प्रारंभ हुआ। क्रमविनिमेय और गैरक्रमविनिमेय वलयों के सिद्धांतों की उत्पत्ति 19वीं शताब्दी की प्रारंभ में हुई थी, चूँकि उनकी परिपक्वता 20वीं शताब्दी के तीसरे दशक में ही प्राप्त हुई थी।

अधिक त्रुटिहीन रूप से, विलियम रोवन हैमिल्टन ने चतुष्कोणों और द्विभाजकों को; जेम्स कॉकल (वकील) ने टेसरीन और कोक्वाटरनियन ने प्रस्तुत किए; और विलियम किंग्डन क्लिफोर्ड विभाजन-द्विभाजित के उत्साही थे, जिसे उन्होंने बीजगणितीय मोटर्स कहा था। विषय विशेष गणितीय संरचना प्रकारों में विभाजित होने से पहले इन गैर-अनुसूचित बीजगणित, और गैर-सहयोगी झूठ बीजगणित का सार्वभौमिक बीजगणित के अन्दर अध्ययन किया गया था। पुनर्संगठन का संकेत अनुखंड के प्रत्यक्ष योग # बीजीय संरचना का वर्णन करने के लिए बीजगणित के प्रत्यक्ष योग का उपयोग था।

जोसेफ वेडरबर्न (1908) और एमिल आर्टिन (1928) द्वारा आव्यूह वलय के साथ विभिन्न अतिमिश्र संख्याओं की पहचान की गई थी। वेडरबर्न की संरचना प्रमेयों को क्षेत्र पर परिमित-आयामी बीजगणित के लिए तैयार किया गया था चूँकि आर्टिन ने उन्हें आर्टिनियन वलयों के लिए सामान्यीकृत किया था।

1920 में, एमी नोथेर ने डब्ल्यू शमीडलर के सहयोग से आदर्श सिद्धांत के बारे में पेपर प्रकाशित किया जिसमें उन्होंने आदर्श (वलय सिद्धांत) को वलय (गणित) में परिभाषित किया। अगले वर्ष उसने (गणितीय) आदर्शों के संबंध में आरोही श्रृंखला स्थितियों का विश्लेषण करते हुए, वलयबेरेइचेन में आइडियलथोरी नामक ऐतिहासिक पत्र प्रकाशित किया। विख्यात बीजगणित इरविंग कपलान्स्की ने इस कार्य को क्रांतिकारी कहा;[9] प्रकाशन ने नोथेरियन वलय शब्द को जन्म दिया, और कई अन्य गणितीय वस्तुओं को नोएदरियन (बहुविकल्पी) कहा जाता है।[9][10]


टिप्पणियाँ

  1. Ring theory may include also the study of rngs.
  2. Goodearl & Warfield (1989).
  3. Matsumura 1989, Theorem 13.4
  4. Matsumura 1989, Theorem 31.4
  5. Weibel 2013, Ch I, Definition 2.2.3
  6. Weibel 2013, Definition preceding Proposition 3.2 in Ch I
  7. Weibel 2013, Ch I, Proposition 3.5
  8. Weibel 2013, Ch I, Corollary 3.8.1
  9. 9.0 9.1 Kimberling 1981, p. 18.
  10. Dick, Auguste (1981), Emmy Noether: 1882–1935, translated by Blocher, H. I., Birkhäuser, ISBN 3-7643-3019-8, p. 44–45.


संदर्भ