हाइजेनबर्ग चित्र: Difference between revisions

From Vigyanwiki
(TEXT)
No edit summary
Line 130: Line 130:
* The original Heisenberg paper translated (although difficult to read, it contains an example for the anharmonic oscillator): Sources of Quantum mechanics B.L. Van Der Waerden [https://physicstoday.scitation.org/doi/10.1063/1.3035086]
* The original Heisenberg paper translated (although difficult to read, it contains an example for the anharmonic oscillator): Sources of Quantum mechanics B.L. Van Der Waerden [https://physicstoday.scitation.org/doi/10.1063/1.3035086]
* The computations for the hydrogen atom in the Heisenberg representation originally from a paper of Pauli [https://arxiv.org/ftp/arxiv/papers/1501/1501.05894.pdf]
* The computations for the hydrogen atom in the Heisenberg representation originally from a paper of Pauli [https://arxiv.org/ftp/arxiv/papers/1501/1501.05894.pdf]
{{Quantum mechanics topics}}
{{DEFAULTSORT:Heisenberg Picture}}[[Category: क्वांटम यांत्रिकी]] [[Category: वर्नर हाइजेनबर्ग]]  
{{DEFAULTSORT:Heisenberg Picture}}[[Category: क्वांटम यांत्रिकी]] [[Category: वर्नर हाइजेनबर्ग]]  



Revision as of 12:57, 7 March 2023

भौतिकी में, हाइजेनबर्ग चित्र या हाइजेनबर्ग प्रतिनिधित्व[1] क्वांटम यांत्रिकी का एक सूत्रीकरण (1925 में वर्नर हाइजेनबर्ग के कारण) है जिसमें प्रचालक (अवलोकन और अन्य) समय पर निर्भरता सम्मिलित करते हैं, लेकिन सदिश स्थिति समय-निरपेक्ष हैं, एक स्वेच्छाचारी निश्चित आधार सिद्धांत को दृढ़ता से अंतर्निहित करते है।

यह श्रोडिंगर चित्र के विपरीत है जिसमें प्रचालक स्थिर हैं, इसके बदले, और स्थिति समय के साथ विकसित होती हैं। समय-निर्भरता के संबंध में दो चित्र केवल एक आधार परिवर्तन से भिन्न होते हैं, जो सक्रिय और निष्क्रिय परिवर्तनों के मध्य के अंतर के सामान होते है। हाइजेनबर्ग चित्र एक स्वेच्छाचारी आधार पर मैट्रिक्स यांत्रिकी का सूत्रीकरण है, जिसमें हैमिल्टन आवश्यक रूप से विकर्ण नहीं है।

यह आगे एक तीसरे, मिश्रण, चित्र, अंतः क्रियात्मक चित्र को परिभाषित करने का कार्य करता है।

गणितीय विवरण

क्वांटम यांत्रिकी के हाइजेनबर्ग चित्र में अवस्था सदिश |ψ⟩ समय के साथ नहीं बदलते हैं, जबकि वेधशालाएँ A संतुष्ट करते हैं

जहां हाइजेनबर्ग और श्रोडिंगर चित्र में क्रमशः "H" और "S" लेबल देखे जा सकते हैं, H हैमिल्टनियन है और [·,·] दो प्रचालकों (इस मामले में H और A) के दिक्परिवर्तक को दर्शाता है। अपेक्षा मान लेने से स्वचालित रूप से एरेनफेस्ट प्रमेय उत्पन्न होता है, जो संगति नियम में चित्रित किया गया है।

स्टोन-वॉन न्यूमैन प्रमेय द्वारा, हाइजेनबर्ग चित्र और श्रोडिंगर चित्र एकात्मक रूप से समतुल्य हैं, हिल्बर्ट स्थान में केवल एक परिवर्तन सिद्धांत है। कुछ अर्थों में, वर्नर हाइजेनबर्ग चित्र समतुल्य श्रोडिंगर चित्र की तुलना में अधिक स्वाभाविक और सुविधाजनक है, विशेष रूप से सापेक्षतावादी सिद्धांतों के लिए है। हाइजेनबर्ग चित्र में लोरेंट्ज़ इनवेरिएंस प्रकट होते है, क्योंकि अवस्था सदिश समय या स्थान को अलग नहीं करते हैं।

इस दृष्टिकोण में शास्त्रीय भौतिकी के साथ अधिक प्रत्यक्ष समानता भी है: प्वासों ब्रेकेट द्वारा उपरोक्त दिक्परिवर्तक को सरलता से बदलकर, हाइजेनबर्ग समीकरण हैमिल्टनियन यांत्रिकी में एक समीकरण को कम कर देता है।

श्रोडिंगर समीकरण के लिए हाइजेनबर्ग समीकरण की समानता

शिक्षाशास्त्र के लिए, हाइजेनबर्ग चित्र को बाद के, लेकिन अधिक सामान्य, श्रोडिंगर चित्र से यहाँ प्रस्तुत किया गया है।

दिए गए श्रोडिंगर स्थिति |ψ(t)⟩ के लिए, एक प्रेक्षण मूल्य A का प्रेक्षणीय मूल्य, जो एक हर्मिटियन रैखिक प्रचालक है, द्वारा दिया गया है

श्रोडिंगर चित्र में, स्थिति |ψ(t)⟩ समय t स्थिति |ψ(0)⟩ से समय 0 पर एकात्मक समय-विकास प्रचालक, U(t) द्वारा संबंधित है,
हाइजेनबर्ग चित्र में, सभी अवस्था सदिश को उनके प्रारंभिक मूल्यों |ψ(0)⟩ पर स्थिर माना जाता है, जबकि प्रचालक समय के अनुसार विकसित होते हैं
समय-विकास प्रचालक के लिए श्रोडिंगर समीकरण है
जहां H हैमिल्टनियन है और ħ समानीत हुई प्लैंक स्थिरांक है और i के समान है।

अब यह इस प्रकार है

जहां उत्पाद नियम के अनुसार अवकलन किया गया था। ध्यान दें कि उपरोक्त अंतिम पंक्ति में दिखाई देने वाला हैमिल्टनियन हाइजेनबर्ग H(t) है, जो श्रोडिंगर हैमिल्टनियन से भिन्न हो सकता है।

उपरोक्त समीकरण का एक महत्वपूर्ण विशेष प्रकरण प्राप्त होता है यदि हैमिल्टनियन समय के साथ भिन्न नहीं होता है। तब समय-विकास संचालक को इस रूप में लिखा जा सकता है

इसलिए,
और,
यहाँ A/∂t प्रारंभिक A का समय अवकलज है, परिभाषित A(t) प्रचालक नहीं। अंतिम समीकरण मान्य है क्योंकि exp(−i H t/ħ) H के साथ आवागमन करता है।

उपरोक्त परिभाषित A(t) द्वारा समीकरण हल किया गया है, जैसा मानक प्रचालक तत्समक के उपयोग से स्पष्ट है,

जिसका तात्पर्य है
यह संबंध शास्त्रीय यांत्रिकी के लिए भी है, उपरोक्त की शास्त्रीय सीमा, पॉसों कोष्ठक और दिक्परिवर्तक के मध्य समानता को देखते हुए,
शास्त्रीय यांत्रिकी में, A के लिए कोई स्पष्ट समय निर्भरता नहीं है,
तो फिर से A(t) के लिए अभिव्यक्ति t = 0 के आसपास टेलर विस्तार है।

वास्तव में, स्वेच्छाचारी ढंग से दृढ़ हिल्बर्ट स्थान आधार |ψ(0)⟩ दृश्य से पीछे कम हो गया है, और केवल विशिष्ट अपेक्षाओं के मूल्यों या वेधशालाओं के मैट्रिक्स अवयव को लेने के अंतिम चरण पर विचार किया जाता है।

दिक्परिवर्तक संबंध

प्रचालकों की समय पर निर्भरता के कारण दिक्परिवर्तक संबंध श्रोडिंगर चित्र से भिन्न दिख सकते हैं। उदाहरण के लिए, प्रचालकों x(t1), x(t2), p(t1) और p(t2) पर विचार करें। उन प्रचालकों का समय विकास प्रणाली के हैमिल्टनियन पर निर्भर करता है। एक आयामी प्रसंवादी दोलक को ध्यान में रखते हुए,

स्थिति और संवेग संचालकों का विकास इसके द्वारा दिया गया है:
दोनों समीकरणों का एक बार फिर अवकलन करना और उन्हें उचित प्रारंभिक शर्तों के साथ हल करना,
ओर जाता है
प्रत्यक्ष संगणना अधिक सामान्य दिक्परिवर्तक संबंध उत्पन्न करता है,
के लिए, सभी चित्रों में मान्य मानक विहित रूपांतरण संबंधों को आसानी से पुनर्प्राप्त करता है।

सभी चित्रों में विकास की संक्षिप्त तुलना

एक समय-स्वतंत्र हैमिल्टनियन HS के लिए, जहां H0,S मुक्त हैमिल्टनियन है,

Evolution Picture ()
of: Schrödinger (S) Heisenberg (H) Interaction (I)
Ket state constant
Observable constant
Density matrix constant

यह भी देखें

  • ब्रा-केट अंकन
  • अन्योन्यक्रिया चित्र
  • श्रोडिंगर चित्र
  • हाइजेनबर्ग-लैंगविन समीकरण
  • अवस्था स्थान सूत्रीकरण

संदर्भ

  1. "हाइजेनबर्ग प्रतिनिधित्व". Encyclopedia of Mathematics. Retrieved 3 September 2013.


बाहरी संबंध

  • Pedagogic Aides to Quantum Field Theory Click on the link for Chap. 2 to find an extensive, simplified introduction to the Heisenberg picture.
  • Some expanded derivations and an example of the harmonic oscillator in the Heisenberg picture [1]
  • The original Heisenberg paper translated (although difficult to read, it contains an example for the anharmonic oscillator): Sources of Quantum mechanics B.L. Van Der Waerden [2]
  • The computations for the hydrogen atom in the Heisenberg representation originally from a paper of Pauli [3]