चर परिवर्तन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{For|the concept in partial differential equations|Change of variables (PDE)}}
{{More citations needed|date=June 2019}}
{{Calculus|Differential}}
गणित में, चरों का परिवर्तन एक बुनियादी तकनीक है जिसका प्रयोग समस्याओं को सरल बनाने के लिए किया जाता है जिसमें मूल [[चर (गणित)]] को अन्य चरों के फलन (गणित) से बदल दिया जाता है। आशय है कि जब नए चरों में बदल दिया जाता है, तो समस्या सरल हो सकती है, या बेहतर समझी जाने वाली समस्या के बराबर हो सकती है।
गणित में, चरों का परिवर्तन एक बुनियादी तकनीक है जिसका प्रयोग समस्याओं को सरल बनाने के लिए किया जाता है जिसमें मूल [[चर (गणित)]] को अन्य चरों के फलन (गणित) से बदल दिया जाता है। आशय है कि जब नए चरों में बदल दिया जाता है, तो समस्या सरल हो सकती है, या बेहतर समझी जाने वाली समस्या के बराबर हो सकती है।


Line 9: Line 6:


:<math>x^6 - 9 x^3 + 8 = 0.</math>
:<math>x^6 - 9 x^3 + 8 = 0.</math>
मूल परिवर्तनवादी में छठी-डिग्री के बहुपद समीकरणों को हल करना आम तौर पर असंभव है (एबेल-रफिनी प्रमेय देखें)। जबकि यह विशेष समीकरण है।
मूल परिवर्तनवादी में छठी-डिग्री के बहुपद समीकरणों को हल करना सामान्यतः असंभव है (एबेल-रफिनी प्रमेय देखें)। जबकि यह विशेष समीकरण है।
:<math>(x^3)^2-9(x^3)+8=0</math>
:<math>(x^3)^2-9(x^3)+8=0</math>
यह [[बहुपद अपघटन]] की एक साधारण स्थित है। जो एक नए चर को परिभाषित करके समीकरण को सरल बनाया जा सकता है। <math>u = x^3</math>. द्वारा x को प्रतिस्थापित करके <math>\sqrt[3]{u}</math> बहुपद में बदल जाता है।
यह [[बहुपद अपघटन]] की एक साधारण स्थित है। जो एक नए चर को परिभाषित करके समीकरण को सरल बनाया जा सकता है। <math>u = x^3</math>. द्वारा x को प्रतिस्थापित करके <math>\sqrt[3]{u}</math> बहुपद में बदल जाता है।
Line 27: Line 24:
:<math>xy+x+y=71</math>
:<math>xy+x+y=71</math>
:<math>x^2y+xy^2=880</math>
:<math>x^2y+xy^2=880</math>
जहां <math>x</math> और <math>y</math> धनात्मक पूर्णांक हैं।<math>x>y</math>. (स्रोत: 1991 [[अमेरिकी आमंत्रण गणित परीक्षा]])
जहां <math>x</math> और <math>y</math> धनात्मक पूर्णांक हैं।<math>x>y</math>. (स्रोत: 1991 [[अमेरिकी आमंत्रण गणित परीक्षा|अमेरिकी साधारणंत्रण गणित परीक्षा]])


इसे सामान्य रूप से हल करना बहुत कठिन नहीं है, लेकिन यह थोड़ा कठिन हो सकता है। जबकि, हम दूसरे समीकरण को फिर से लिख सकते हैं।<math>xy(x+y)=880</math>. प्रतिस्थापन बनाना <math>s=x+y</math> और <math>t=xy</math> प्रणाली को कम कर देता है तथा <math>s+t=71, st=880</math>. इसका समाधान देता है, <math>(s,t)=(16,55)</math> और <math>(s,t)=(55,16)</math>. पहले क्रमित युग्म का पिछला-प्रतिस्थापन हमें देता है। <math>x+y=16, xy=55, x>y</math>, जो समाधान देता है <math>(x,y)=(11,5).</math> दूसरी ओर जोड़ी को पिछला-प्रतिस्थापन करना होता है <math>x+y=55, xy=16, x>y</math>, जिसका कोई निराकरण नहीं है। इसलिए प्रणाली को हल करने वाला निराकरण है <math>(x,y)=(11,5)</math>.
इसे सामान्य रूप से हल करना बहुत कठिन नहीं है, लेकिन यह थोड़ा कठिन हो सकता है। जबकि, हम दूसरे समीकरण को फिर से लिख सकते हैं।<math>xy(x+y)=880</math>. प्रतिस्थापन बनाना <math>s=x+y</math> और <math>t=xy</math> प्रणाली को कम कर देता है तथा <math>s+t=71, st=880</math>. इसका समाधान देता है, <math>(s,t)=(16,55)</math> और <math>(s,t)=(55,16)</math>. पहले क्रमित युग्म का पिछला-प्रतिस्थापन हमें देता है। <math>x+y=16, xy=55, x>y</math>, जो समाधान देता है <math>(x,y)=(11,5).</math> दूसरी ओर जोड़ी को पिछला-प्रतिस्थापन करना होता है <math>x+y=55, xy=16, x>y</math>, जिसका कोई निराकरण नहीं है। इसलिए प्रणाली को हल करने वाला निराकरण है <math>(x,y)=(11,5)</math>.


== औपचारिक परिचय ==
== औपचारिक परिचय ==
<math>A</math>, <math>B</math> कई गुना है <math>\Phi: A \rightarrow B</math> एक हो <math>C^r</math>- के बीच भिन्नता है। <math>\Phi</math> एक <math>r</math> निरंतर अवकलनीय, विशेषण मानचित्र से <math>A</math> को <math>B</math> साथ <math>r</math> बार लगातार अवकलनीय प्रतिलोम से <math>B</math> को <math>A</math> यहाँ <math>r</math> कोई भी प्राकृतिक संख्या (या शून्य) हो सकती है, <math>\infty</math> या <math>\omega</math> ([[विश्लेषणात्मक कार्य]]) है।
<math>A</math>, <math>B</math> कई गुना है <math>\Phi: A \rightarrow B</math> एक हो <math>C^r</math>- के बीच भिन्नता है। <math>\Phi</math> एक <math>r</math> निरंतर अवकलनीय, विशेषण मानचित्र से <math>A</math> को <math>B</math> साथ <math>r</math> बार लगातार अवकलनीय प्रतिलोम से <math>B</math> को <math>A</math> यहाँ <math>r</math> कोई भी प्राकृतिक संख्या (या शून्य) हो सकती है, <math>\infty</math> या <math>\omega</math> ([[विश्लेषणात्मक कार्य]]) है।


नक्शा <math>\Phi</math> एक नियमित समन्वय या नियमित चर प्रतिस्थापन कहा जाता है, जहां नियमित रूप से संदर्भित होता है <math>C^r</math>- को <math>\Phi</math> आमतौर पर कोई लिखेगा <math>x = \Phi(y)</math> चर के प्रतिस्थापन को इंगित करने के लिए <math>x</math> चर द्वारा <math>y</math> के मान को प्रतिस्थापित करके <math>\Phi</math> में <math>y</math> की हर घटना के लिए <math>x</math> मान्य होगा।
नक्शा <math>\Phi</math> एक नियमित समन्वय या नियमित चर प्रतिस्थापन कहा जाता है, जहां नियमित रूप से संदर्भित होता है <math>C^r</math>- को <math>\Phi</math> सामान्यतः कोई लिखेगा <math>x = \Phi(y)</math> चर के प्रतिस्थापन को इंगित करने के लिए <math>x</math> चर द्वारा <math>y</math> के मान को प्रतिस्थापित करके <math>\Phi</math> में <math>y</math> की हर घटना के लिए <math>x</math> मान्य होगा।


== अन्य उदाहरण ==
== अन्य उदाहरण ==
Line 44: Line 41:


:जबकि यह वैज्ञानिकों <math>\displaystyle (x, y) = \Phi(r, \theta)</math> द्वारा दिए गए <math>\displaystyle \Phi(r,\theta) = (r \cos(\theta), r \sin(\theta)).</math>समीकरण हैं।
:जबकि यह वैज्ञानिकों <math>\displaystyle (x, y) = \Phi(r, \theta)</math> द्वारा दिए गए <math>\displaystyle \Phi(r,\theta) = (r \cos(\theta), r \sin(\theta)).</math>समीकरण हैं।
माना <math>\theta</math> ए के बाहर चलता है <math>2\pi</math>-लंबाई अंतराल, जैसे - <math>[0, 2\pi]</math>, वो नक्शा <math>\Phi</math> अब विशेषण नहीं है इसलिए, <math>\Phi</math> तक सीमित होना चाहिए, उदाहरण‌ <math>(0, \infty] \times [0, 2\pi)</math>. <math>r = 0</math> के लिए बहिष्कृत है <math>\Phi</math> <math>\theta</math> पर मैप किया जाएगा। फिर इसके द्वारा निर्धारित नई [[अभिव्यक्ति (गणित)]] मूल चर की सभी घटनाओं को प्रतिस्थापित करना <math>\Phi</math> और पहचान का उपयोग करना <math>\sin^2 x + \cos^2 x = 1</math>, हम सीखते हैं।
माना <math>\theta</math> ए के बाहर चलता है <math>2\pi</math>-लंबाई अंतराल, जैसे - <math>[0, 2\pi]</math>, वो नक्शा <math>\Phi</math> अब विशेषण नहीं है इसलिए, <math>\Phi</math> तक सीमित होना चाहिए, उदाहरण‌ <math>(0, \infty] \times [0, 2\pi)</math>. <math>r = 0</math> के लिए बहिष्कृत है <math>\Phi</math> <math>\theta</math> पर मैप किया जाएगा। फिर इसके द्वारा निर्धारित नई [[अभिव्यक्ति (गणित)]] मूल चर की सभी घटनाओं को प्रतिस्थापित करना <math>\Phi</math> और पहचान का उपयोग करना <math>\sin^2 x + \cos^2 x = 1</math>, हम सीखते हैं।


:<math>V(r, \theta) = r^2 \sqrt{ 1 - \frac{r^2 \cos^2 \theta}{r^2} } = r^2 \sqrt{1 - \cos^2 \theta} = r^2\left|\sin\theta\right|. </math>
:<math>V(r, \theta) = r^2 \sqrt{ 1 - \frac{r^2 \cos^2 \theta}{r^2} } = r^2 \sqrt{1 - \cos^2 \theta} = r^2\left|\sin\theta\right|. </math>
अब निराकरण आसानी से हो सकता हैं। <math>\sin(\theta) = 0</math>, इसलिए <math>\theta = 0</math> या <math>\theta = \pi</math> का विलोम <math>\Phi</math> दिखाता है कि यह बराबर है <math>y = 0</math> जबकि <math>x \not= 0</math> देख पाते हैं कि <math>y = 0</math> गायब हो जाता है।
अब निराकरण आसानी से हो सकता हैं। <math>\sin(\theta) = 0</math>, इसलिए <math>\theta = 0</math> या <math>\theta = \pi</math> का विलोम <math>\Phi</math> दिखाता है कि यह बराबर है <math>y = 0</math> जबकि <math>x \not= 0</math> देख पाते हैं कि <math>y = 0</math> गायब हो जाता है।


ध्यान दें, <math>r = 0</math> मूल भी एक निराकरण होता जबकि, यह मूल समस्या का निराकरण नहीं है। यहाँ की वस्तुनिष्ठता <math>\Phi</math> अत्यंत महत्वपूर्ण है।इसलिए निरपेक्ष मान समारोह हमेशा सकारात्मक होता है ( <math>x,y\in\reals</math>).
ध्यान दें, <math>r = 0</math> मूल भी एक निराकरण होता जबकि, यह मूल समस्या का निराकरण नहीं है। यहाँ की वस्तुनिष्ठता <math>\Phi</math> अत्यंत महत्वपूर्ण है।इसलिए निरपेक्ष मान समारोह हमेशा सकारात्मक होता है ( <math>x,y\in\reals</math>).


=== भेदभाव ===
=== भेदभाव ===
{{Main|Chain rule}}
{{Main|श्रृंखला नियम}}
जटिल विभेदीकरण को आसान बनाने के लिए श्रृंखला के नियम का उपयोग किया जाता है। उदाहरण के लिए, व्युत्पन्न की गणना करने की समस्या पर विचार करें
जटिल विभेदीकरण को आसान बनाने के लिए श्रृंखला के नियम का उपयोग किया जाता है। उदाहरण के लिए, व्युत्पन्न की गणना करने की समस्या पर विचार करें


Line 67: Line 64:
\end{align}</math>
\end{align}</math>


समाकलन


{{Main|Integration by substitution}}
'''<big>समाकलन</big>'''
 
{{Main|प्रतिस्थापन द्वारा एकीकरण}}
 
जटिल समाकलों को अधिकतर चरों में बदलकर मूल्यांकन किया जा सकता है। यह [[प्रतिस्थापन नियम]] द्वारा सक्षम है और यह श्रृंखला नियम के अनुरूप है। [[जेकोबियन मैट्रिक्स और निर्धारक]] द्वारा दिए गए चर के परिवर्तन का उपयोग करके अलग- अलग अंग को सरल बनाकर कठिन इंटीग्रल को भी हल किया जा सकता है।<ref>{{cite book |first=Wilfred |last=Kaplan |author-link=Wilfred Kaplan |chapter=Change of Variables in Integrals |title=Advanced Calculus |location=Reading |publisher=Addison-Wesley |edition=Second |year=1973 |pages=269–275 }}</ref> जेकोबियन निर्धारक द्वारा दिए गए चर के संगत परिवर्तन का प्रयोग ध्रुवीय, बेलनाकार और गोलाकार समन्वय प्रणाली का आधार है।
जटिल समाकलों को अधिकतर चरों में बदलकर मूल्यांकन किया जा सकता है। यह [[प्रतिस्थापन नियम]] द्वारा सक्षम है और यह श्रृंखला नियम के अनुरूप है। [[जेकोबियन मैट्रिक्स और निर्धारक]] द्वारा दिए गए चर के परिवर्तन का उपयोग करके अलग- अलग अंग को सरल बनाकर कठिन इंटीग्रल को भी हल किया जा सकता है।<ref>{{cite book |first=Wilfred |last=Kaplan |author-link=Wilfred Kaplan |chapter=Change of Variables in Integrals |title=Advanced Calculus |location=Reading |publisher=Addison-Wesley |edition=Second |year=1973 |pages=269–275 }}</ref> जेकोबियन निर्धारक द्वारा दिए गए चर के संगत परिवर्तन का प्रयोग ध्रुवीय, बेलनाकार और गोलाकार समन्वय प्रणाली का आधार है।


=== विभेदक समीकरण ===
=== विभेदक समीकरण ===
विभेदीकरण और एकीकरण परिवर्तनशील प्रारंभिक कलन में पढ़ाए जाते हैं और चरणों को कभी भी पूरा किया जा सकता है।
विभेदीकरण और एकीकरण परिवर्तनशील प्रारंभिक कलन में पढ़ाए जाते हैं और चरणों को कभी भी पूरा किया जा सकता है।


समीकरणों पर विचार करते समय चर परिवर्तनों का बहुत व्यापक उपयोग स्पष्ट होता है, जहां श्रृंखला नियम का उपयोग करके स्वतंत्र चर को बदला जा सकता है या आश्रित चर को बदल दिया जाता है जिसके फलस्वरूप कुछ भेदभाव किया जाता है। विदेशी परिवर्तन, जैसे कि [[बिंदु परिवर्तन]] और [[संपर्क परिवर्तन]] बहुत जटिल हो सकते हैं लेकिन अधिक स्वतंत्रता की अनुमति देता है।
समीकरणों पर विचार करते समय चर परिवर्तनों का बहुत व्यापक उपयोग स्पष्ट होता है, जहां श्रृंखला नियम का उपयोग करके स्वतंत्र चर को बदला जा सकता है या आश्रित चर को बदल दिया जाता है जिसके फलस्वरूप कुछ भेदभाव किया जाता है। विदेशी परिवर्तन, जैसे कि [[बिंदु परिवर्तन]] और [[संपर्क परिवर्तन]] बहुत जटिल हो सकते हैं लेकिन अधिक स्वतंत्रता की अनुमति देता है।
Line 80: Line 79:


=== स्केन करना और भेजना ===
=== स्केन करना और भेजना ===
सबसे सरल परिवर्तन वेरिएबल्स को स्कैन करके भेजना होता है जो उन्हें नए वेरिएबल्स के साथ बदल देता है जो निरंतर मात्रा में फैले और स्थानांतरित होते हैं। भौतिक मापदंडों को समस्याओं से बाहर निकालने के लिए व्यावहारिक अनुप्रयोगों में यह बहुत आम है। इन के लिए डेरिवेटिव, परिवर्तन केवल परिणाम देता है।
सबसे सरल परिवर्तन वेरिएबल्स को स्कैन करके भेजना होता है जो उन्हें नए वेरिएबल्स के साथ बदल देता है जो निरंतर मात्रा में फैले और स्थानांतरित होते हैं। भौतिक मापदंडों को समस्याओं से बाहर निकालने के लिए व्यावहारिक अनुप्रयोगों में यह बहुत साधारण है। इन के लिए डेरिवेटिव, परिवर्तन केवल परिणाम देता है।


:<math>\frac{d^n y}{d x^n} = \frac{y_\text{scale}}{x_\text{scale}^n} \frac{d^n \hat y}{d \hat x^n}</math>
:<math>\frac{d^n y}{d x^n} = \frac{y_\text{scale}}{x_\text{scale}^n} \frac{d^n \hat y}{d \hat x^n}</math>
Line 87: Line 86:
:<math>x = \hat x x_\text{scale} + x_\text{shift}</math>
:<math>x = \hat x x_\text{scale} + x_\text{shift}</math>
:<math>y = \hat y y_\text{scale} + y_\text{shift}.</math>
:<math>y = \hat y y_\text{scale} + y_\text{shift}.</math>
यह श्रृंखला नियम और विभेदीकरण की रैखिकता के माध्यम से आसानी से दिखाई जा सकता है। भौतिक मापदंडों को समस्याओं से बाहर निकालने के लिए व्यावहारिक अनुप्रयोगों में यह परिवर्तन बहुत आम है, उदाहरण के लिए, सीमा मान समस्या,
यह श्रृंखला नियम और विभेदीकरण की रैखिकता के माध्यम से आसानी से दिखाई जा सकता है। भौतिक मापदंडों को समस्याओं से बाहर निकालने के लिए व्यावहारिक अनुप्रयोगों में यह परिवर्तन बहुत साधारण है, उदाहरण के लिए, सीमा मान समस्या,


:<math>\mu \frac{d^2 u}{d y^2} = \frac{d p}{d x} \quad ; \quad u(0) = u(L) = 0</math>
:<math>\mu \frac{d^2 u}{d y^2} = \frac{d p}{d x} \quad ; \quad u(0) = u(L) = 0</math>
Line 96: Line 95:


:<math>y = \hat y L \qquad \text{and} \qquad u = \hat u \frac{L^2}{\mu} \frac{d p}{d x}.</math>
:<math>y = \hat y L \qquad \text{and} \qquad u = \hat u \frac{L^2}{\mu} \frac{d p}{d x}.</math>
स्केलिंग कई कारणों से उपयोगी है। यह मापदंडों की संख्या को कम करके और समस्या को सरल बनाकर विश्लेषण को सरल बनाता है। उचित स्केलिंग वेरिएबल्स को सामान्य कर सकती है, जो उन्हें 0 से 1 जैसी एक इकाई रहित श्रेणी बनाती है। अंत में, यदि कोई समस्या संख्यात्मक निराकरण को अनिवार्य करती है, तो कम पैरामीटर, संगणनाओं की संख्या कम होती है।
स्केलिंग कई कारणों से उपयोगी है। यह मापदंडों की संख्या को कम करके और समस्या को सरल बनाकर विश्लेषण को सरल बनाता है। उचित स्केलिंग वेरिएबल्स को सामान्य कर सकती है, जो उन्हें 0 से 1 जैसी एक इकाई रहित श्रेणी बनाती है। अंत में, यदि कोई समस्या संख्यात्मक निराकरण को अनिवार्य करती है, तो कम पैरामीटर, संगणनाओं की संख्या कम होती है।


=== संवेग बनाम वेग ===
=== संवेग बनाम वेग ===
Line 106: Line 105:
\end{align}
\end{align}
</math>
</math>
किसी दिए गए समारोह के लिए <math>H(x, v)</math> प्रतिस्थापन द्वारा द्रव्यमान को समाप्त किया जा सकता है <math>\Phi(p) = 1/m \cdot p</math>.
किसी दिए गए समारोह के लिए <math>H(x, v)</math> प्रतिस्थापन द्वारा द्रव्यमान को समाप्त किया जा सकता है <math>\Phi(p) = 1/m \cdot p</math>.
स्पष्ट रूप से यह एक विशेषण मानचित्र है <math>\mathbb{R}</math> को <math>\mathbb{R}</math>. प्रतिस्थापन के तहत <math>v = \Phi(p)</math> प्रणाली बन जाता है।
स्पष्ट रूप से यह एक विशेषण मानचित्र है <math>\mathbb{R}</math> को <math>\mathbb{R}</math>. प्रतिस्थापन के तहत <math>v = \Phi(p)</math> प्रणाली बन जाता है।


Line 118: Line 117:


=== लग्रंगियन यांत्रिकी ===
=== लग्रंगियन यांत्रिकी ===
{{Main|Lagrangian mechanics}}
{{Main|लगरंगिआन यांत्रिकी}}
<math>\varphi(t, x, v)</math>, [[आइजैक न्यूटन]] की [[गति के समीकरण]] इस प्रकार हैं _
<math>\varphi(t, x, v)</math>, [[आइजैक न्यूटन]] की [[गति के समीकरण]] इस प्रकार हैं _
:<math>m \ddot x = \varphi(t, x, v).</math>
:<math>m \ddot x = \varphi(t, x, v).</math>
लाग्रेंज ने कहा कि गति के ये समीकरण चर को मनमाने प्रतिस्थापन के तहत बदलते हैं <math>x = \Psi(t, y)</math>, <math>v = \frac{\partial \Psi(t, y)}{\partial t} + \frac{\partial\Psi(t, y)}{\partial y} \cdot w.</math>
लाग्रेंज ने कहा कि गति के ये समीकरण चर को मनमाने प्रतिस्थापन के तहत बदलते हैं <math>x = \Psi(t, y)</math>, <math>v = \frac{\partial \Psi(t, y)}{\partial t} + \frac{\partial\Psi(t, y)}{\partial y} \cdot w.</math>
उन्होंने पाया कि समीकरण
उन्होंने पाया कि समीकरण
:<math> \frac{ \partial{L} }{ \partial y} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial{L}}{\partial{w}} </math>
:<math> \frac{ \partial{L} }{ \partial y} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial{L}}{\partial{w}} </math>

Revision as of 14:54, 13 February 2023

गणित में, चरों का परिवर्तन एक बुनियादी तकनीक है जिसका प्रयोग समस्याओं को सरल बनाने के लिए किया जाता है जिसमें मूल चर (गणित) को अन्य चरों के फलन (गणित) से बदल दिया जाता है। आशय है कि जब नए चरों में बदल दिया जाता है, तो समस्या सरल हो सकती है, या बेहतर समझी जाने वाली समस्या के बराबर हो सकती है।

चरों का परिवर्तन एक संक्रिया है जो प्रतिस्थापन (बीजगणित) से संबंधित है। जबकि ये अलग-अलग कार्यवाही क्षेत्र हैं, जैसा कि भेदभाव (श्रृंखला नियम) या अलग-अलग प्रतिस्थापन द्वारा एकीकरण पर विचार करते समय देखा जा सकता है।

उपयोगी चर परिवर्तन का एक बहुत ही सरल उदाहरण है।जो छठी डिग्री बहुपद की जड़ों को खोजने की समस्या में बदल जाता है।

मूल परिवर्तनवादी में छठी-डिग्री के बहुपद समीकरणों को हल करना सामान्यतः असंभव है (एबेल-रफिनी प्रमेय देखें)। जबकि यह विशेष समीकरण है।

यह बहुपद अपघटन की एक साधारण स्थित है। जो एक नए चर को परिभाषित करके समीकरण को सरल बनाया जा सकता है। . द्वारा x को प्रतिस्थापित करके बहुपद में बदल जाता है।

दो निराकरण के साथ एक द्विघात समीकरण होती है।

मूल चर के संदर्भ में x को प्रतिस्थापित करके प्राप्त किया जाता है। जो बैक इन फॉर यू देता है।

जबकि वास्तविक समस्या निराकरण पर बल देती है।

वास्तविक संख्या निराकरण में रुचि रखता है, यह मूल समीकरण है।


सरल उदाहरण

समीकरणों की प्रणाली पर विचार करें

जहां और धनात्मक पूर्णांक हैं।. (स्रोत: 1991 अमेरिकी साधारणंत्रण गणित परीक्षा)

इसे सामान्य रूप से हल करना बहुत कठिन नहीं है, लेकिन यह थोड़ा कठिन हो सकता है। जबकि, हम दूसरे समीकरण को फिर से लिख सकते हैं।. प्रतिस्थापन बनाना और प्रणाली को कम कर देता है तथा . इसका समाधान देता है, और . पहले क्रमित युग्म का पिछला-प्रतिस्थापन हमें देता है। , जो समाधान देता है दूसरी ओर जोड़ी को पिछला-प्रतिस्थापन करना होता है , जिसका कोई निराकरण नहीं है। इसलिए प्रणाली को हल करने वाला निराकरण है .

औपचारिक परिचय

, कई गुना है एक हो - के बीच भिन्नता है। एक निरंतर अवकलनीय, विशेषण मानचित्र से को साथ बार लगातार अवकलनीय प्रतिलोम से को यहाँ कोई भी प्राकृतिक संख्या (या शून्य) हो सकती है, या (विश्लेषणात्मक कार्य) है।

नक्शा एक नियमित समन्वय या नियमित चर प्रतिस्थापन कहा जाता है, जहां नियमित रूप से संदर्भित होता है - को सामान्यतः कोई लिखेगा चर के प्रतिस्थापन को इंगित करने के लिए चर द्वारा के मान को प्रतिस्थापित करके में की हर घटना के लिए मान्य होगा।

अन्य उदाहरण

समन्वय परिवर्तन

ध्रुवीय निर्देशांक को बदलने पर कुछ प्रणालियों को अधिक आसानी से हल किया जा सकता है। उदाहरण के लिए समीकरण पर विचार करें कि

यह किसी समस्या के संभावित ऊर्जा का फलन हो सकता है। यदि किसी को तुरंत निराकरण नहीं दिखता है, तो वह प्रतिस्थापन का प्रयास कर सकता है।

जबकि यह वैज्ञानिकों द्वारा दिए गए समीकरण हैं।

माना ए के बाहर चलता है -लंबाई अंतराल, जैसे - , वो नक्शा अब विशेषण नहीं है इसलिए, तक सीमित होना चाहिए, उदाहरण‌ . के लिए बहिष्कृत है पर मैप किया जाएगा। फिर इसके द्वारा निर्धारित नई अभिव्यक्ति (गणित) मूल चर की सभी घटनाओं को प्रतिस्थापित करना और पहचान का उपयोग करना , हम सीखते हैं।

अब निराकरण आसानी से हो सकता हैं। , इसलिए या का विलोम दिखाता है कि यह बराबर है जबकि देख पाते हैं कि गायब हो जाता है।

ध्यान दें, मूल भी एक निराकरण होता जबकि, यह मूल समस्या का निराकरण नहीं है। यहाँ की वस्तुनिष्ठता अत्यंत महत्वपूर्ण है।इसलिए निरपेक्ष मान समारोह हमेशा सकारात्मक होता है ( ).

भेदभाव

जटिल विभेदीकरण को आसान बनाने के लिए श्रृंखला के नियम का उपयोग किया जाता है। उदाहरण के लिए, व्युत्पन्न की गणना करने की समस्या पर विचार करें

, तब


समाकलन

जटिल समाकलों को अधिकतर चरों में बदलकर मूल्यांकन किया जा सकता है। यह प्रतिस्थापन नियम द्वारा सक्षम है और यह श्रृंखला नियम के अनुरूप है। जेकोबियन मैट्रिक्स और निर्धारक द्वारा दिए गए चर के परिवर्तन का उपयोग करके अलग- अलग अंग को सरल बनाकर कठिन इंटीग्रल को भी हल किया जा सकता है।[1] जेकोबियन निर्धारक द्वारा दिए गए चर के संगत परिवर्तन का प्रयोग ध्रुवीय, बेलनाकार और गोलाकार समन्वय प्रणाली का आधार है।

विभेदक समीकरण

विभेदीकरण और एकीकरण परिवर्तनशील प्रारंभिक कलन में पढ़ाए जाते हैं और चरणों को कभी भी पूरा किया जा सकता है।

समीकरणों पर विचार करते समय चर परिवर्तनों का बहुत व्यापक उपयोग स्पष्ट होता है, जहां श्रृंखला नियम का उपयोग करके स्वतंत्र चर को बदला जा सकता है या आश्रित चर को बदल दिया जाता है जिसके फलस्वरूप कुछ भेदभाव किया जाता है। विदेशी परिवर्तन, जैसे कि बिंदु परिवर्तन और संपर्क परिवर्तन बहुत जटिल हो सकते हैं लेकिन अधिक स्वतंत्रता की अनुमति देता है।

परिवर्तन को एक सामान्य रूप से एक समस्या में प्रतिस्थापित किया जाता है और समस्या को सरल बनाने के तरीके के साथ चुने गए पैरामीटर इस प्रकार हैं।

स्केन करना और भेजना

सबसे सरल परिवर्तन वेरिएबल्स को स्कैन करके भेजना होता है जो उन्हें नए वेरिएबल्स के साथ बदल देता है जो निरंतर मात्रा में फैले और स्थानांतरित होते हैं। भौतिक मापदंडों को समस्याओं से बाहर निकालने के लिए व्यावहारिक अनुप्रयोगों में यह बहुत साधारण है। इन के लिए डेरिवेटिव, परिवर्तन केवल परिणाम देता है।

तब

यह श्रृंखला नियम और विभेदीकरण की रैखिकता के माध्यम से आसानी से दिखाई जा सकता है। भौतिक मापदंडों को समस्याओं से बाहर निकालने के लिए व्यावहारिक अनुप्रयोगों में यह परिवर्तन बहुत साधारण है, उदाहरण के लिए, सीमा मान समस्या,

दूरी δ द्वारा अलग की गई सपाट ठोस दीवारों के बीच समानांतर द्रव प्रवाह का वर्णन करता है μ चिपचिपापन है और दाब प्रवणता, दोनों स्थिरांक चरों को स्केल करके समस्या बन जाती है।

जब

स्केलिंग कई कारणों से उपयोगी है। यह मापदंडों की संख्या को कम करके और समस्या को सरल बनाकर विश्लेषण को सरल बनाता है। उचित स्केलिंग वेरिएबल्स को सामान्य कर सकती है, जो उन्हें 0 से 1 जैसी एक इकाई रहित श्रेणी बनाती है। अंत में, यदि कोई समस्या संख्यात्मक निराकरण को अनिवार्य करती है, तो कम पैरामीटर, संगणनाओं की संख्या कम होती है।

संवेग बनाम वेग

समीकरणों की एक प्रणाली पर विचार करें

किसी दिए गए समारोह के लिए प्रतिस्थापन द्वारा द्रव्यमान को समाप्त किया जा सकता है . स्पष्ट रूप से यह एक विशेषण मानचित्र है को . प्रतिस्थापन के तहत प्रणाली बन जाता है।


लग्रंगियन यांत्रिकी

, आइजैक न्यूटन की गति के समीकरण इस प्रकार हैं _

लाग्रेंज ने कहा कि गति के ये समीकरण चर को मनमाने प्रतिस्थापन के तहत बदलते हैं , उन्होंने पाया कि समीकरण

समारोह के लिए न्यूटन के समीकरणों के बराबर हैं जहाँ T गतिज ऊर्जा और V स्थितिज ऊर्जा है।

जब प्रतिस्थापन को अच्छी तरह से चुना जाता है उदाहरण के लिए प्रणाली की समरूपता और बाधाओं का शोषण कार्टेशियन निर्देशांक में न्यूटन के समीकरणों की तुलना में इन समीकरणों को हल करना बहुत आसान है।

यह भी देखें

संदर्भ

  1. Kaplan, Wilfred (1973). "Change of Variables in Integrals". Advanced Calculus (Second ed.). Reading: Addison-Wesley. pp. 269–275.