चर परिवर्तन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
गणित में, चरों का परिवर्तन एक मूलभूत तकनीक है जिसका प्रयोग समस्याओं को हल करने के लिए किया जाता है जिसमें मूल [[चर (गणित)]] को अन्य चरों के कार्यों (गणित) में बदल दिया जाता है। जिससे समस्या हल हो सकती है, यह बेहतर समझी जाने वाली प्रक्रिया है।
गणित में, [[चरों]] का परिवर्तन एक मूलभूत तकनीक है जिसका उपयोग समस्याओं को सरल बनाने के लिए किया जाता है जिसमें मूल [[चर (गणित)|चर]] को अन्य चर के कार्यों से बदल दिया जाता है। उद्देश्य यह है कि जब नए चरों में व्यक्त किया जाता है, तो समस्या सरल हो सकती है, या बेहतर समझी जाने वाली समस्या के बराबर हो सकती है।


चरों का परिवर्तन एक संक्रिया है जो [[प्रतिस्थापन (बीजगणित)]] से संबंधित है। जबकि ये अलग-अलग क्षेत्र में हैं, जैसा कि [[श्रृंखला नियम]] को अलग-अलग [[प्रतिस्थापन द्वारा एकीकरण]] पर विचार कर सकते हैं।
चरों का परिवर्तन एक संक्रिया है जो [[प्रतिस्थापन (बीजगणित)|प्रतिस्थापन]] से संबंधित है। हालाँकि ये अलग-अलग संक्रिया बहुकार्य हैं, जैसा कि भेदभाव [[श्रृंखला नियम|(श्रृंखला नियम)]] या एकीकरण [[प्रतिस्थापन द्वारा एकीकरण|(प्रतिस्थापन द्वारा एकीकरण)]] पर विचार करते समय देखा जा सकता है।


चर परिवर्तन एक उदाहरण है। जो छठी डिग्री बहुपद की जड़ों को खोजने की समस्या में बदल जाता है।
उपयोगी चर परिवर्तन का एक बहुत ही सरल उदाहरण छठी डिग्री बहुपद की जड़ों को खोजने की समस्या में देखा जा सकता है,


:<math>x^6 - 9 x^3 + 8 = 0.</math>
:<math>x^6 - 9 x^3 + 8 = 0.</math>
मूल परिवर्तनवादी में छठी-डिग्री के बहुपद समीकरणों को हल करना सामान्यतः असंभव है (एबेल-रफिनी प्रमेय देखें)। जबकि यह विशेष समीकरण है।
रेडिकल के संदर्भ में छठी-डिग्री बहुपद समीकरणों को हल करना आम तौर पर असंभव है ([[एबेल-रफिनी प्रमेय]] देखें)। हालाँकि, यह विशेष समीकरण  
:<math>(x^3)^2-9(x^3)+8=0</math>
:<math>(x^3)^2-9(x^3)+8=0</math>
यह [[बहुपद अपघटन]] की एक साधारण स्थित है। जो एक नए चर को परिभाषित करके समीकरण को सरल बनाया जा सकता है। <math>u = x^3</math> द्वारा एक्स को प्रतिस्थापित करके <math>\sqrt[3]{u}</math> बहुपद में बदल दिया जाता है।
:लिखा जा सकता है,
:(यह [[बहुपद अपघटन]] का एक साधारण मामला है)। '''जो एक नए चर को परिभाषित करके समीकरण को सरल बनाया जा सकता''' है। <math>u = x^3</math> द्वारा एक्स को प्रतिस्थापित करके <math>\sqrt[3]{u}</math> बहुपद में बदल दिया जाता है।


:<math>u^2 - 9 u + 8 = 0 ,</math>
:<math>u^2 - 9 u + 8 = 0 ,</math>

Revision as of 12:21, 17 February 2023

गणित में, चरों का परिवर्तन एक मूलभूत तकनीक है जिसका उपयोग समस्याओं को सरल बनाने के लिए किया जाता है जिसमें मूल चर को अन्य चर के कार्यों से बदल दिया जाता है। उद्देश्य यह है कि जब नए चरों में व्यक्त किया जाता है, तो समस्या सरल हो सकती है, या बेहतर समझी जाने वाली समस्या के बराबर हो सकती है।

चरों का परिवर्तन एक संक्रिया है जो प्रतिस्थापन से संबंधित है। हालाँकि ये अलग-अलग संक्रिया बहुकार्य हैं, जैसा कि भेदभाव (श्रृंखला नियम) या एकीकरण (प्रतिस्थापन द्वारा एकीकरण) पर विचार करते समय देखा जा सकता है।

उपयोगी चर परिवर्तन का एक बहुत ही सरल उदाहरण छठी डिग्री बहुपद की जड़ों को खोजने की समस्या में देखा जा सकता है,

रेडिकल के संदर्भ में छठी-डिग्री बहुपद समीकरणों को हल करना आम तौर पर असंभव है (एबेल-रफिनी प्रमेय देखें)। हालाँकि, यह विशेष समीकरण

लिखा जा सकता है,
(यह बहुपद अपघटन का एक साधारण मामला है)। जो एक नए चर को परिभाषित करके समीकरण को सरल बनाया जा सकता है। द्वारा एक्स को प्रतिस्थापित करके बहुपद में बदल दिया जाता है।

दो निराकरणों के साथ एक द्विघात समीकरण होती है।

मूल चर के संदर्भ में एक्स को प्रतिस्थापित करके प्राप्त किया जाता है। जो बैक इन फॉर यू देता है।

जबकि वास्तविक समस्या निराकरण पर बल देती है।

वास्तविक संख्या निराकरण में रुचि रखता है, जिसका मूल समीकरण है।


सरल उदाहरण

समीकरणों की प्रणाली पर विचार करें-

जहां एक्स और वाई धनात्मक पूर्णांक हैं। एक्स>वाई

(स्रोत: 1991 अमेरिकी साधारणंत्रण गणित परीक्षा)

इसे सामान्य रूप से हल करना बहुत कठिन नहीं है, जबकि, हम दूसरे समीकरण को इस प्रकार लिख सकते हैं। जो और प्रणाली को कम कर देता है तथा इसका समाधान करता है। और पहले क्रमित युग्म का पिछला-प्रतिस्थापन हमें देता है। , हमें समाधान देता है दूसरी ओर हमें पिछला-प्रतिस्थापन करना होता है , जिसका कोई निराकरण नहीं है। इसलिए प्रणाली को हल करने वाला निराकरण है।

औपचारिक परिचय

ए, बी का कई गुना है थीटा:ए>बी के बीच भिन्नता है।थीटा एक आर निरंतर अवकलनीय, विशेषण मानचित्र से ए को बी के साथ और लगातार अवकलनीय प्रतिलोम में ए या बी तथाआर भी प्राकृतिक संख्या (या शून्य) हो सकती है, सिग्मा या ओमेगा (विश्लेषणात्मक कार्य) है।

नक्शा थीटा एक नियमित समन्वय या नियमित चर प्रतिस्थापन कहा जाता है, जहां नियमित रूप से हल है कि को सामान्यतः थीटा लिखा जा सकता है। चर के प्रतिस्थापन को इंगित करने के लिए एक्स चर द्वारा वाई के मान को प्रतिस्थापित करके थीटा में वाई की हर घटना के लिए एक्स मान्य होता है।

अन्य उदाहरण

समन्वय परिवर्तन

ध्रुवीय निर्देशांक को बदलने पर कुछ प्रणालियों को अधिक आसानी से हल किया जा सकता है। उदाहरण के लिए समीकरण पर विचार करें कि

यह किसी समस्या के संभावित ऊर्जा का फलन हो सकता है।तो वह प्रतिस्थापन का प्रयास कर सकता है।

जबकि यह वैज्ञानिकों द्वारा दिए गए समीकरण हैं।

माना ए के बाहर चलता है -लंबाई अंतराल, जैसे - , वो नक्शा के विशेषण में नहीं है इसलिए, तक सीमित होना चाहिए, उदाहरण‌ के लिए बहिष्कृत है पर मैप किया जाता है इसके इसके द्वारा निर्धारित नई अभिव्यक्ति (गणित) मूल चर की सभी घटनाओं को प्रतिस्थापित करना तथा का उपयोग करना , हम सीखते हैं।

जिससे निराकरण आसानी से हो सकता है , इसलिए या का विलोम दिखाता है कि यह बराबर है जबकि देख पाते हैं कि गायब हो जाता है।

ध्यान दें, एक मूल निराकरण होता है यहाँ की वस्तुनिष्ठता अत्यंत महत्वपूर्ण है।इसलिए निरपेक्ष मान समारोह हमेशा सकारात्मक होता है ( ).

भेदभाव

जटिल विभेदीकरण को आसान बनाने के लिए श्रृंखला के नियम का उपयोग किया जाता है। उदाहरण के लिए, व्युत्पन्न की गणना करने की समस्या पर विचार करें

, तब

समाकलन

जटिल समाकलों को अधिकतर चरों में बदलकर मूल्यांकन किया जा सकता है। यह प्रतिस्थापन नियम द्वारा सक्षम है और यह श्रृंखला नियम के अनुरूप है। जेकोबियन मैट्रिक्स और निर्धारक द्वारा दिए गए चर के परिवर्तन का उपयोग करके अलग- अलग अंग को सरल बनाकर कठिन इंटीग्रल को भी हल किया जा सकता है।[1] जेकोबियन निर्धारक द्वारा दिए गए चर के संगत परिवर्तन का प्रयोग ध्रुवीय, बेलनाकार और गोलाकार समन्वय प्रणाली का आधार है।

विभेदक समीकरण

विभेदीकरण और एकीकरण परिवर्तनशील प्रारंभिक कलन में पढ़े जाते हैं और चरणों को कभी भी पूरा कर सकते हैं।

समीकरणों पर विचार करते समय चर परिवर्तनों का बहुत व्यापक उपयोग स्पष्ट होता है, जहां श्रृंखला नियम का उपयोग करके स्वतंत्र चर को बदला जा सकता है या आश्रित चर को बदल दिया जाता है जिसके फलस्वरूप कुछ भेदभाव किया जाता है। विदेशी परिवर्तन, जैसे कि बिंदु परिवर्तन और संपर्क परिवर्तन बहुत कठिन हो सकते हैं जो स्वतंत्रता की अनुमति देता है।

परिवर्तन को एक सामान्य रूप से एक समस्या में प्रतिस्थापित किया जाता है और समस्या को सरल बनाने के तरीके पैरामीटर द्वारा चुने जाते हैं।

स्केन करना और भेजना

सबसे सरल परिवर्तन सत्यापन योग स्कैन करके भेजना होता है जो उन्हें नए सत्यापन के साथ बदल देता है जो निरंतर मात्रा में फैले और स्थानांतरित होते हैं। तथा भौतिक मापदंडों की समस्याओं से बाहर निकलने के लिए व्यावहारिक अनुप्रयोगों में यह बहुत साधारण होते हैं। इन के लिए व्यूत्पन्न, परिवर्तन केवल परिणाम देता है।

तब

यह श्रृंखला नियम और विभेदीकरण की रैखिकता के माध्यम से आसानी से दिखाई जा सकती है। भौतिक मापदंडों की समस्याओं से बाहर निकालने के लिए व्यावहारिक अनुप्रयोगों में यह परिवर्तन हुआ उदाहरण के लिए, सीमा मान समस्या

दूरी सिग्मा द्वारा अलग की गई सपाट ठोस दीवारों के बीच समानांतर द्रव प्रवाह का वर्णन म्यू करता है और दाब प्रवणता, दोनों स्थिरांक चरों को स्केल करके समस्या बन जाता है।

जब

स्केलिंग कई कारणों से उपयोगी है यह मापदंडों की संख्या को कम करके और समस्या को सरल बनाकर विश्लेषण को सरल बनाता है। जो उचित स्केलिंग वेरिएबल्स को सामान्य कर सकती है, जो 0 से 1 इकाई रहित श्रेणी बनाती है। अंत में यदि कोई समस्या संख्यात्मक निराकरण को अनिवार्य करती है, तो पैरामीटर की संख्या कम होती है।

संवेग बनाम वेग

समीकरणों की एक प्रणाली पर विचार करें-

किसी दिए गए चर को प्रतिस्थापन द्वारा समाप्त किया जा सकता है स्पष्ट रूप से यह एक विशेषण मानचित्र आर को आर प्रतिस्थापन के तहत वी = थीटा प्रणाली कहा जाता है।


लग्रंजियन यांत्रिकी

, आइजैक न्यूटन की गति के समीकरण इस प्रकार हैं _

लंग्रजियन ने कहा कि गति के ये समीकरण चर को अपने ढ़ंग से बदलते हैं , उन्होंने पाया कि समीकरण

न्यूटन के समीकरणों के बराबर जहाँ टी स्थितिज ऊर्जा वी गतिज ऊर्जा है।

जब प्रतिस्थापन को चुना जाता है तो प्रणाली की समरूपता और बाधाओं के कार्टेशियन निर्देशांक में न्यूटन के समीकरणों की तुलना में इन समीकरणों को हल करना बहुत आसान है।

यह भी देखें

संदर्भ

  1. Kaplan, Wilfred (1973). "Change of Variables in Integrals". Advanced Calculus (Second ed.). Reading: Addison-Wesley. pp. 269–275.