रेखीय गति: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:
{{Classical mechanics}}
{{Classical mechanics}}


रेखीय गति, जिसे सरल रेखीय गति भी कहा जाता है,<ref>Resnick, Robert and Halliday, David (1966), ''Physics'', Section 3-4</ref> [[रेखा (गणित)]] के साथ [[आयाम|आयामी]] [[गति (भौतिकी)]] है, और इस कारन केवल स्थानिक आयाम का उपयोग करके गणितीय रूप से वर्णित किया जा सकता है। रैखिक गति दो प्रकार की हो सकती है: समान रैखिक परिवर्तित होती गति, निरंतर [[वेग]] (शून्य [[त्वरण]]) के साथ; और गैर-समान रैखिक गति, जो चर वेग (गैर-शून्य त्वरण) के साथ होती है। [[बिंदु कण]] (बिंदु जैसी वस्तु) की रेखा के साथ गति को उसकी स्थिति द्वारा <math>x</math> वर्णित किया जा सकता है, किस [[समय-भिन्न प्रणाली]] के साथ <math>t</math> (समय)रैखिक गति का उदाहरण एथलीट है जो सीधे ट्रैक के साथ सौ मीटर की दूरी पर दौड़ रहा है।<ref name="auto">{{cite web |url=http://www.humankinetics.com/excerpts/excerpts/basic-mechanical-principles|title=Basic principles for understanding sport mechanics}}</ref>रेखीय गति सभी गतियों में सबसे बुनियादी है। न्यूटन के गति के प्रथम नियम के अनुसार, जिन वस्तुओं पर किसी भी [[शुद्ध बल]] का अनुभव नहीं होता है, वे निरंतर वेग के साथ सीधी रेखा में तब तक चलती रहेंगी जब तक कि वे शुद्ध बल के अधीन न हों। रोजमर्रा की परिस्थितियों में, [[गुरुत्वाकर्षण]] और घर्षण जैसे बाहरी बल किसी वस्तु को उसकी गति की दिशा के परिवर्तन का कारण बन सकते हैं, जिससे उसकी गति को रैखिक के रूप में वर्णित नहीं किया जा सकता है।<ref>{{cite web |url=http://industrialbearingresource.com/info-center/category/definitions.html |title=मोशन कंट्रोल रिसोर्स इंफो सेंटर|access-date=19 January 2011}}</ref>कोई रैखिक गति की तुलना सामान्य गति से कर सकता है। सामान्य गति में, कण की स्थिति और वेग को [[वेक्टर (ज्यामितीय)]] द्वारा वर्णित किया जाता है, जिसमें  परिमाण और दिशा होती है। रेखीय गति में, प्रणाली का वर्णन करने वाले सभी वैक्टर की दिशा समान और स्थिर होती है, जिसका अर्थ है कि वस्तुएं अक्ष के साथ चलती हैं और दिशा नहीं परिवर्तित होती है इसलिए ऐसी प्रणालियों के विश्लेषण को सम्मिलित वैक्टरों के दिशा घटकों की उपेक्षा करके और केवल [[परिमाण (गणित)]] सरल बनाया जा सकता है।<ref name="auto"/>
रेखीय गति, जिसे सरल रेखीय गति भी कहा जाता है,<ref>Resnick, Robert and Halliday, David (1966), ''Physics'', Section 3-4</ref> [[रेखा (गणित)]] के साथ [[आयाम|आयामी]] [[गति (भौतिकी)]] है, और इस कारन केवल स्थानिक आयाम का उपयोग करके गणितीय रूप से वर्णित किया जा सकता है। रैखिक गति दो प्रकार की हो सकती है: समान रैखिक परिवर्तित होती गति, निरंतर [[वेग]] (शून्य [[त्वरण]]) के साथ; और गैर-समान रैखिक गति, जो चर वेग (गैर-शून्य त्वरण) के साथ होती है। [[बिंदु कण]] (बिंदु जैसी वस्तु) की रेखा के साथ गति को उसकी स्थिति द्वारा <math>x</math> वर्णित किया जा सकता है, [[समय-भिन्न प्रणाली]] <math>t</math> (समय) के साथ है। रैखिक गति का उदाहरण धावक है जो सीधे रस्ते पे सौ मीटर की दूरी पर दौड़ रहा है।<ref name="auto">{{cite web |url=http://www.humankinetics.com/excerpts/excerpts/basic-mechanical-principles|title=Basic principles for understanding sport mechanics}}</ref>रेखीय गति सभी गतियों में आधार गति है। न्यूटन के गति के प्रथम नियम के अनुसार, जिन वस्तुओं पर किसी भी [[शुद्ध बल]] का अनुभव नहीं होता है, वे निरंतर वेग के साथ सीधी रेखा में तब तक चलती रहेंगी जब तक कि वे शुद्ध बल के अधीन न हों। सामान्य परिस्थितियों में, [[गुरुत्वाकर्षण]] और घर्षण जैसे बाहरी बल किसी वस्तु को उसकी गति की दिशा को परवर्तित करने का कारण बन सकते हैं, जिससे उसकी गति को रैखिक के रूप में वर्णित नहीं किया जा सकता है।<ref>{{cite web |url=http://industrialbearingresource.com/info-center/category/definitions.html |title=मोशन कंट्रोल रिसोर्स इंफो सेंटर|access-date=19 January 2011}}</ref>कोई रैखिक गति की तुलना सामान्य गति से कर सकता है। सामान्य गति में, कण की स्थिति और वेग को [[वेक्टर (ज्यामितीय)]] द्वारा वर्णित किया जाता है, जिसमें  परिमाण और दिशा होती है। रेखीय गति में, प्रणाली का वर्णन करने वाले सभी वैक्टर की दिशा समान और स्थिर होती है, जिसका अर्थ है कि वस्तुएं अक्ष के साथ चलती हैं और दिशा नहीं परिवर्तित होती है इसलिए ऐसी प्रणालियों के विश्लेषण को सम्मिलित वैक्टरों के दिशा घटकों की उपेक्षा करके केवल [[परिमाण (गणित)]] सरल बनाया जा सकता है।<ref name="auto"/>




== विस्थापन ==
== विस्थापन ==
{{main|Displacement (vector)}}
{{main|Displacement (vector)}}
वह गति जिसमें शरीर के सभी कण समान समय में समान [[दूरी]] तय करते हैं, उसे अनुवादकीय गति कहलाती है। सरलरेखीय गति, वक्रीय गति अनुवादकीय गतियाँ दो प्रकार की होती हैं। चूंकि रैखिक गति आयाम में गति है, किसी विशेष दिशा में किसी वस्तु द्वारा तय की गई दूरी [[विस्थापन (वेक्टर)]] के समान होती है।<ref>{{cite web |url=http://www.physicsclassroom.com/class/1dkin/u1l1c.cfm |title=Distance and Displacement}}</ref> विस्थापन की [[SI|SI(एसआई)]] इकाई [[मीटर]] है।<ref>{{cite web |url=http://www.chemie.fu-berlin.de/chemistry/general/si_en.h[https://www.sciencefactss.com/2023/01/what-is-linear-motion.html Linear Motion ]tml|title=SI Units}}</ref><ref name="auto1">{{cite web |url=http://www.iau.org/science/publications/proceedings_rules/units/|title=SI Units}}</ref> परन्तु <math> x_1</math> किसी वस्तु की प्रारंभिक स्थिति है और <math> x_2</math> अंतिम स्थिति है, तो गणितीय रूप से विस्थापन इस प्रकार दिया जाता है:
वह गति जिसमें शरीर के सभी कण समान समय में समान [[दूरी]] तय करते हैं,अनुवादकीय गति कहलाती है। सरलरेखीय गति, वक्रीय गति अनुवादकीय गतियाँ दो प्रकार की होती हैं। चूंकि रैखिक गति आयाम में गति है, किसी विशेष दिशा में किसी वस्तु द्वारा तय की गई दूरी [[विस्थापन (वेक्टर)]] के समान होती है।<ref>{{cite web |url=http://www.physicsclassroom.com/class/1dkin/u1l1c.cfm |title=Distance and Displacement}}</ref> विस्थापन की [[SI|SI(एसआई)]] इकाई [[मीटर]] है।<ref>{{cite web |url=http://www.chemie.fu-berlin.de/chemistry/general/si_en.h[https://www.sciencefactss.com/2023/01/what-is-linear-motion.html Linear Motion ]tml|title=SI Units}}</ref><ref name="auto1">{{cite web |url=http://www.iau.org/science/publications/proceedings_rules/units/|title=SI Units}}</ref> परन्तु <math> x_1</math> किसी वस्तु की प्रारंभिक स्थिति है और <math> x_2</math> अंतिम स्थिति है, तो गणितीय रूप से विस्थापन इस प्रकार दिया जाता है:
<math display="block"> \Delta x = x_2 - x_1 </math>
<math display="block"> \Delta x = x_2 - x_1 </math>
[[घूर्णी गति]] में विस्थापन के समतुल्य कोणीय विस्थापन <math> \theta </math> है जिसे[[ कांति ]]में मापा जाता है।
[[घूर्णी गति]] में विस्थापन के समतुल्य कोणीय विस्थापन <math> \theta </math> है जिसे[[ कांति ]]में मापा जाता है। किसी वस्तु का विस्थापन दूरी से अधिक नहीं हो सकता क्योंकि यह दूरी सबसे छोटी है। ऐसे व्यक्ति पर विचार करें जो प्रतिदिन कार्य पर जाने के लिए यात्रा करता है। अतः जब वह घर लौटता है तो विस्थापन शून्य होता है, क्योंकि व्यक्ति वहीं वापस आ जाता है जहां से उसने शुरू किया था, परन्तु तय की गई दूरी स्पष्ट रूप से शून्य नहीं है।
किसी वस्तु का विस्थापन दूरी से अधिक नहीं हो सकता क्योंकि यह दूरी भी है परन्तु सबसे छोटी है। ऐसे व्यक्ति पर विचार करें जो प्रतिदिन काम पर जाने के लिए यात्रा करता है। कुल मिलाकर विस्थापन जब वह घर लौटता है तो शून्य होता है, क्योंकि व्यक्ति वहीं वापस आ जाता है जहां से उसने शुरू किया था, परन्तु तय की गई दूरी स्पष्ट रूप से शून्य नहीं है।


== वेग ==
== वेग ==
{{main|Velocity|Speed}}
{{main|Velocity|Speed}}
वेग समय के अंतराल के संबंध में एक दिशा में विस्थापन को संदर्भित करता है। इसे समय में परिवर्तन पर विस्थापन के परिवर्तन की दर के रूप में परिभाषित किया गया है।<ref>{{cite journal |url=http://physics.info/velocity |title=गति वेग| journal=The Physics Hypertextbook| year=2021 |last1=Elert|first1=Glenn}}</ref> वेग एक सदिश राशि है, जो गति की दिशा और परिमाण का प्रतिनिधित्व करती है। वेग के परिमाण को गति कहते हैं। गति SI(एसआई मात्रक<math> \text{m}\cdot \text{s}^{-1}, </math> अर्थात्  [[मीटर प्रति सेकंड]]<ref name="auto1"/>
वेग समय के अंतराल के संबंध में दिशा में विस्थापन को संदर्भित करता है। इसे समय में परिवर्तन पर विस्थापन के परिवर्तन की दर के रूप में परिभाषित किया गया है।<ref>{{cite journal |url=http://physics.info/velocity |title=गति वेग| journal=The Physics Hypertextbook| year=2021 |last1=Elert|first1=Glenn}}</ref> वेग सदिश राशि है, जो गति की दिशा और परिमाण का प्रतिनिधित्व करती है। वेग के परिमाण को गति कहते हैं। गति की SI(एसआई) मात्रक <math> \text{m}\cdot \text{s}^{-1}, </math> अर्थात्  [[मीटर प्रति सेकंड]] है।<ref name="auto1"/>




Line 31: Line 30:


=== तात्कालिक वेग ===
=== तात्कालिक वेग ===
औसत वेग के विपरीत, परिमित समय अंतराल में समग्र गति का वर्णन करते हुए, किसी वस्तु का तात्कालिक वेग समय में विशिष्ट बिंदु पर गति की स्थिति का वर्णन करता है। इसे समय अंतराल की लंबाई देकर परिभाषित किया गया है <math> \Delta t </math> शून्य की ओर प्रवृत्त होते हैं, अर्थात, वेग समय के कार्य के रूप में विस्थापन का समय व्युत्पन्न है।
औसत वेग के विपरीत, परिमित समय अंतराल में समग्र गति का वर्णन करते हुए, किसी वस्तु का तात्कालिक वेग समय में विशिष्ट बिंदु पर गति की स्थिति का वर्णन करता है। इसे समय अंतराल की लंबाई देकर परिभाषित किया गया है, <math> \Delta t </math> शून्य की ओर प्रवृत्त होते हैं, अर्थात, वेग समय के कार्य के रूप में विस्थापन का समय व्युत्पन्न है।


<math display="block">\mathbf{v} = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{x}}{\Delta t} = \frac {d\mathbf{x}}{dt}. </math>
<math display="block">\mathbf{v} = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{x}}{\Delta t} = \frac {d\mathbf{x}}{dt}. </math>
Line 60: Line 59:
== कीनेमेटीक्स के समीकरण ==
== कीनेमेटीक्स के समीकरण ==
{{main|Equations of motion}}
{{main|Equations of motion}}
निरंतर त्वरण के मामले में, चार भौतिक राशियों त्वरण, वेग, समय और विस्थापन को [[गति के समीकरण|गति के समीकरणों]] का उपयोग करके संबंधित किया जा सकता है<ref>{{cite web |url=http://www.quintic.com/education/Case%20Study%2013%20-%20Equations%20of%20Motion.pdf |title=Equations of motion}}</ref><ref>{{cite web |url=http://hyperphysics.phy-astr.gsu.edu/hbase/mot.html#motcon |title=Description of Motion in One Dimension}}</ref><ref>{{cite web |url=http://wearcam.org/absement/Derivatives_of_displacement.htm| title=What is derivatives of displacement?}}</ref>
निरंतर त्वरण के विषय में, चार भौतिक राशियों त्वरण, वेग, समय और विस्थापन को [[गति के समीकरण|गति के समीकरणों]] का उपयोग करके संबंधित किया जा सकता है<ref>{{cite web |url=http://www.quintic.com/education/Case%20Study%2013%20-%20Equations%20of%20Motion.pdf |title=Equations of motion}}</ref><ref>{{cite web |url=http://hyperphysics.phy-astr.gsu.edu/hbase/mot.html#motcon |title=Description of Motion in One Dimension}}</ref><ref>{{cite web |url=http://wearcam.org/absement/Derivatives_of_displacement.htm| title=What is derivatives of displacement?}}</ref>
<math display="block">\mathbf{V_{f}} = \mathbf{V_{i}} + \mathbf{a} t</math>
<math display="block">\mathbf{V_{f}} = \mathbf{V_{i}} + \mathbf{a} t</math>
<math display="block">\mathbf{d} = \mathbf{V_{i}} \mathbf{t} + \begin{matrix}\frac{1}{2}\end{matrix} \mathbf{a} \mathbf{t}^2 </math>
<math display="block">\mathbf{d} = \mathbf{V_{i}} \mathbf{t} + \begin{matrix}\frac{1}{2}\end{matrix} \mathbf{a} \mathbf{t}^2 </math>
Line 76: Line 75:
== परिपत्र गति के साथ सादृश्य ==
== परिपत्र गति के साथ सादृश्य ==
{{See also|List of equations in classical mechanics#Equations of motion (constant acceleration)}}
{{See also|List of equations in classical mechanics#Equations of motion (constant acceleration)}}
निम्न तालिका निश्चित अक्ष के विषय में कठोर शरीर के घूर्णन को संदर्भित करती है: <math>\mathbf s</math> चाप की लम्बाई है, <math>\mathbf r</math> अक्ष से किसी भी बिंदु की दूरी है, और <math>\mathbf{a}_\mathbf{t}</math> स्पर्शरेखा त्वरण है, जो त्वरण का घटक है जो गति के समानांतर है। इसके विपरीत, अभिकेन्द्रीय बल त्वरण, <math>\mathbf{a}_\mathbf{c}=v^2/r=\omega^2 r</math>, गति के लंबवत है। गति के समानांतर बल का घटक, या समतुल्य, अक्ष से जोड़ने वाली रेखा के लंबवत <math>\mathbf{F}_\perp</math> है। योग समाप्त हो गया <math>\mathbf j </math> से <math>1 </math> को <math> N</math> कण एवंआवेदन के बिंदु है।
निम्न तालिका निश्चित अक्ष के विषय में शरीर के घूर्णन को संदर्भित करती है: <math>\mathbf s</math> चाप की लम्बाई है, <math>\mathbf r</math> अक्ष से किसी भी बिंदु की दूरी है, और <math>\mathbf{a}_\mathbf{t}</math> स्पर्शरेखा त्वरण है, जो त्वरण का घटक है जो गति के समानांतर है। इसके विपरीत, अभिकेन्द्रीय बल त्वरण, <math>\mathbf{a}_\mathbf{c}=v^2/r=\omega^2 r</math>, गति के लंबवत है। गति के समानांतर बल का घटक, या समतुल्य, अक्ष से जोड़ने वाली रेखा के लंबवत <math>\mathbf{F}_\perp</math> है। योग समाप्त हो गया, <math>\mathbf j </math> से <math>1 </math> को <math> N</math> कण एवं आवेदन के बिंदु है।


{|class="wikitable unsortable" style="text-align:center; font-size:90%;"
{|class="wikitable unsortable" style="text-align:center; font-size:90%;"
Line 87: Line 86:
|-
|-
| विस्थापन = <math> \mathbf{x} </math>
| विस्थापन = <math> \mathbf{x} </math>
| कोणीयविस्थापन = <math> \theta </math>
| कोणीय विस्थापन = <math> \theta </math>
|<math> \theta = \mathbf{s}/\mathbf{r}</math>
|<math> \theta = \mathbf{s}/\mathbf{r}</math>
|-
|-
|-
|-
| वेग= <math> \mathbf{v} </math>
| वेग= <math> \mathbf{v} </math>
| कोणीयवेग = <math> \omega </math>
| कोणीय वेग = <math> \omega </math>
| <math> \omega= \mathbf{v}/\mathbf{r}</math>
| <math> \omega= \mathbf{v}/\mathbf{r}</math>
|-
|-

Revision as of 09:04, 11 March 2023

रेखीय गति, जिसे सरल रेखीय गति भी कहा जाता है,[1] रेखा (गणित) के साथ आयामी गति (भौतिकी) है, और इस कारन केवल स्थानिक आयाम का उपयोग करके गणितीय रूप से वर्णित किया जा सकता है। रैखिक गति दो प्रकार की हो सकती है: समान रैखिक परिवर्तित होती गति, निरंतर वेग (शून्य त्वरण) के साथ; और गैर-समान रैखिक गति, जो चर वेग (गैर-शून्य त्वरण) के साथ होती है। बिंदु कण (बिंदु जैसी वस्तु) की रेखा के साथ गति को उसकी स्थिति द्वारा वर्णित किया जा सकता है, समय-भिन्न प्रणाली (समय) के साथ है। रैखिक गति का उदाहरण धावक है जो सीधे रस्ते पे सौ मीटर की दूरी पर दौड़ रहा है।[2]रेखीय गति सभी गतियों में आधार गति है। न्यूटन के गति के प्रथम नियम के अनुसार, जिन वस्तुओं पर किसी भी शुद्ध बल का अनुभव नहीं होता है, वे निरंतर वेग के साथ सीधी रेखा में तब तक चलती रहेंगी जब तक कि वे शुद्ध बल के अधीन न हों। सामान्य परिस्थितियों में, गुरुत्वाकर्षण और घर्षण जैसे बाहरी बल किसी वस्तु को उसकी गति की दिशा को परवर्तित करने का कारण बन सकते हैं, जिससे उसकी गति को रैखिक के रूप में वर्णित नहीं किया जा सकता है।[3]कोई रैखिक गति की तुलना सामान्य गति से कर सकता है। सामान्य गति में, कण की स्थिति और वेग को वेक्टर (ज्यामितीय) द्वारा वर्णित किया जाता है, जिसमें परिमाण और दिशा होती है। रेखीय गति में, प्रणाली का वर्णन करने वाले सभी वैक्टर की दिशा समान और स्थिर होती है, जिसका अर्थ है कि वस्तुएं अक्ष के साथ चलती हैं और दिशा नहीं परिवर्तित होती है इसलिए ऐसी प्रणालियों के विश्लेषण को सम्मिलित वैक्टरों के दिशा घटकों की उपेक्षा करके केवल परिमाण (गणित) सरल बनाया जा सकता है।[2]


विस्थापन

वह गति जिसमें शरीर के सभी कण समान समय में समान दूरी तय करते हैं,अनुवादकीय गति कहलाती है। सरलरेखीय गति, वक्रीय गति अनुवादकीय गतियाँ दो प्रकार की होती हैं। चूंकि रैखिक गति आयाम में गति है, किसी विशेष दिशा में किसी वस्तु द्वारा तय की गई दूरी विस्थापन (वेक्टर) के समान होती है।[4] विस्थापन की SI(एसआई) इकाई मीटर है।[5][6] परन्तु किसी वस्तु की प्रारंभिक स्थिति है और अंतिम स्थिति है, तो गणितीय रूप से विस्थापन इस प्रकार दिया जाता है:

घूर्णी गति में विस्थापन के समतुल्य कोणीय विस्थापन है जिसेकांति में मापा जाता है। किसी वस्तु का विस्थापन दूरी से अधिक नहीं हो सकता क्योंकि यह दूरी सबसे छोटी है। ऐसे व्यक्ति पर विचार करें जो प्रतिदिन कार्य पर जाने के लिए यात्रा करता है। अतः जब वह घर लौटता है तो विस्थापन शून्य होता है, क्योंकि व्यक्ति वहीं वापस आ जाता है जहां से उसने शुरू किया था, परन्तु तय की गई दूरी स्पष्ट रूप से शून्य नहीं है।

वेग

वेग समय के अंतराल के संबंध में दिशा में विस्थापन को संदर्भित करता है। इसे समय में परिवर्तन पर विस्थापन के परिवर्तन की दर के रूप में परिभाषित किया गया है।[7] वेग सदिश राशि है, जो गति की दिशा और परिमाण का प्रतिनिधित्व करती है। वेग के परिमाण को गति कहते हैं। गति की SI(एसआई) मात्रक अर्थात् मीटर प्रति सेकंड है।[6]


औसत वेग

किसी गतिमान पिंड का औसत वेग उसके कुल विस्थापन को प्रारंभिक बिंदु से अंतिम बिंदु तक किसी पिंड तक पहुंचने के लिए आवश्यक कुल समय से विभाजित किया जाता है। यह यात्रा की जाने वाली दूरी के लिए अनुमानित वेग है। गणितीय रूप से, यह इस प्रकार दिया जाता है:[8][9]

जहाँ:

  • वह समय है जब वस्तु स्थिति में थी और
  • वह समय है जब वस्तु स्थिति में थी स्थिति में थी

औसत वेग का परिमाण औसत गति कहलाती है।

तात्कालिक वेग

औसत वेग के विपरीत, परिमित समय अंतराल में समग्र गति का वर्णन करते हुए, किसी वस्तु का तात्कालिक वेग समय में विशिष्ट बिंदु पर गति की स्थिति का वर्णन करता है। इसे समय अंतराल की लंबाई देकर परिभाषित किया गया है, शून्य की ओर प्रवृत्त होते हैं, अर्थात, वेग समय के कार्य के रूप में विस्थापन का समय व्युत्पन्न है।

तात्कालिक वेग का परिमाण तात्कालिक गति कहलाती है।

त्वरण

त्वरण को समय के संबंध में वेग के परिवर्तन की दर के रूप में परिभाषित किया गया है। त्वरण विस्थापन का दूसरा व्युत्पन्न है अर्थात त्वरण दो बार समय के संबंध में स्थिति को भिन्न करके या समय के संबंध में वेग को भिन्न करके पाया जा सकता है।[10] त्वरण की SI(एसआई) इकाई या मीटर प्रति सेकंड है।[6]

यदि औसत त्वरण है और समय अंतराल पर वेग में परिवर्तन है फिर गणितीय रूप से

तात्कालिक त्वरण सीमा है, जैसा अनुपात के शून्य तक पहुँचता है और , अर्थात,


जर्क

त्वरण के परिवर्तन की दर, विस्थापन के तीसरे व्युत्पन्न को (जर्क) झटके के रूप में जाना जाता है।[11] झटके (जर्क) की SI इकाई है है, यूके में झटके को झटका भी कहा जाता है।

जौन्स

झटके के परिवर्तन की दर, विस्थापन के चौथे व्युत्पन्न को उछाल के रूप में जाना जाता है।[11]जौन्स की SI इकाई है जिसे मीटर प्रति क्वार्टिक सेकंड के रूप में उच्चारित किया जा सकता है।

कीनेमेटीक्स के समीकरण

निरंतर त्वरण के विषय में, चार भौतिक राशियों त्वरण, वेग, समय और विस्थापन को गति के समीकरणों का उपयोग करके संबंधित किया जा सकता है[12][13][14]

यहाँ,

  • प्रारंभिक वेग है
  • अंतिम वेग है
  • त्वरण है
  • विस्थापन है
  • समय है

इन संबंधों को रेखांकन द्वारा प्रदर्शित किया जा सकता है। विस्थापन समय ग्राफ पर रेखा का ढलान वेग का प्रतिनिधित्व करता है। वेग समय ग्राफ़ का ढाल त्वरण देता है जबकि वेग समय ग्राफ़ के अंतर्गत क्षेत्र विस्थापन देता है। त्वरण बनाम समय के ग्राफ के अंतर्गत क्षेत्र वेग में परिवर्तन के समान है।

परिपत्र गति के साथ सादृश्य

निम्न तालिका निश्चित अक्ष के विषय में शरीर के घूर्णन को संदर्भित करती है: चाप की लम्बाई है, अक्ष से किसी भी बिंदु की दूरी है, और स्पर्शरेखा त्वरण है, जो त्वरण का घटक है जो गति के समानांतर है। इसके विपरीत, अभिकेन्द्रीय बल त्वरण, , गति के लंबवत है। गति के समानांतर बल का घटक, या समतुल्य, अक्ष से जोड़ने वाली रेखा के लंबवत है। योग समाप्त हो गया, से को कण एवं आवेदन के बिंदु है।

रेखीय गति और घूर्णी गति के बीच सादृश्य[15]
रेखीय गति घूर्णी गति परिभाषित समीकरण
विस्थापन = कोणीय विस्थापन =
वेग= कोणीय वेग =
त्वरण= कोणीय त्वरण=
द्रव्यमान = जड़ता का क्षण =
बल = टॉर्क =
गति= कोणीय गति=
गतिज ऊर्जा = गतिज ऊर्जा =

निम्न तालिका व्युत्पन्न एसआई इकाइयों में सादृश्य दर्शाती है:

यह भी देखें

संदर्भ

  1. Resnick, Robert and Halliday, David (1966), Physics, Section 3-4
  2. 2.0 2.1 "Basic principles for understanding sport mechanics".
  3. "मोशन कंट्रोल रिसोर्स इंफो सेंटर". Retrieved 19 January 2011.
  4. "Distance and Displacement".
  5. Linear Motion %5dtml "SI Units". {{cite web}}: Check |url= value (help)
  6. 6.0 6.1 6.2 "SI Units".
  7. Elert, Glenn (2021). "गति वेग". The Physics Hypertextbook.
  8. "Average speed and average velocity".
  9. "Average Velocity, Straight Line".
  10. "त्वरण". Archived from the original on 2011-08-08.
  11. 11.0 11.1 "What is the term used for the third derivative of position?".
  12. "Equations of motion" (PDF).
  13. "Description of Motion in One Dimension".
  14. "What is derivatives of displacement?".
  15. "Linear Motion vs Rotational motion" (PDF).


अग्रिम पठन

  • Resnick, Robert and Halliday, David (1966), Physics, Chapter 3 (Vol I and II, Combined edition), Wiley International Edition, Library of Congress Catalog Card No. 66-11527
  • Tipler P.A., Mosca G., "Physics for Scientists and Engineers", Chapter 2 (5th edition), W. H. Freeman and company: New York and Basing stoke, 2003.


बाहरी संबंध

Media related to Linear movement at Wikimedia Commons