मौलिक ऊष्मागतिकी संबंध: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
यहाँ, U आंतरिक ऊर्जा है, T [[निरपेक्ष तापमान]] है, S एन्ट्रापी है, P [[दबाव]] है, और V [[आयतन]] है। | यहाँ, U आंतरिक ऊर्जा है, T [[निरपेक्ष तापमान]] है, S एन्ट्रापी है, P [[दबाव]] है, और V [[आयतन]] है। | ||
यह मौलिक ऊष्मागतिकी संबंध की अभिव्यक्ति है। इसे अन्य विधियों द्वारा विभिन्न चरों का उपयोग करके (जैसे [[थर्मोडायनामिक क्षमता| | यह मौलिक ऊष्मागतिकी संबंध की अभिव्यक्ति है। इसे अन्य विधियों द्वारा विभिन्न चरों का उपयोग करके (जैसे [[थर्मोडायनामिक क्षमता|ऊष्मागतिकी क्षमता]] का उपयोग करके) व्यक्त किया जा सकता है। उदाहरण के लिए, मौलिक संबंध को तापीय धारिता ''H'' के रूप में व्यक्त किया जा सकता है | ||
:<math> \mathrm{d}H = T\,\mathrm{d}S + V\,\mathrm{d}P\,</math> | :<math> \mathrm{d}H = T\,\mathrm{d}S + V\,\mathrm{d}P\,</math> | ||
Line 36: | Line 36: | ||
:<math>\mathrm{d}U = T\,\mathrm{d}S - P\,\mathrm{d}V\,</math> | :<math>\mathrm{d}U = T\,\mathrm{d}S - P\,\mathrm{d}V\,</math> | ||
यह समीकरण प्रतिवर्ती परिवर्तनों | यह समीकरण प्रतिवर्ती परिवर्तनों की स्थिति में प्राप्त किया गया है। चूँकि, ''U'', ''S'', और ''V'' ऊष्मागतिकी राज्य कार्य हैं जो केवल ऊष्मागतिकी प्रक्रिया के प्रारंभिक और अंतिम राज्यों पर निर्भर करता है, उपरोक्त संबंध अन्य-प्रतिवर्ती परिवर्तनों के लिए भी प्रस्तावित होता है। यदि रचना, अर्थात राशियाँ <math>n_{i}</math> समान तापमान और दबाव की प्रणाली में रासायनिक घटकों की संख्या भी परिवर्तित हो सकती है, उदा, रासायनिक प्रतिक्रिया के कारण मौलिक उष्मागतिकीय संबंध का सामान्यीकरण होता है: | ||
:<math>\mathrm{d}U = T\,\mathrm{d}S - P\,\mathrm{d}V\ + \sum_{i}\mu_{i}\,\mathrm{d}n_{i}\,</math> | :<math>\mathrm{d}U = T\,\mathrm{d}S - P\,\mathrm{d}V\ + \sum_{i}\mu_{i}\,\mathrm{d}n_{i}\,</math> | ||
Line 42: | Line 42: | ||
<math>\mu_{i}</math> h> प्रकार के कणों के संगत रासायनिक विभव हैं <math>i</math>. | <math>\mu_{i}</math> h> प्रकार के कणों के संगत रासायनिक विभव हैं <math>i</math>. | ||
यदि प्रणाली में केवल वॉल्यूम की तुलना में अधिक बाहरी पैरामीटर हैं जो बदल सकते हैं, मौलिक | यदि प्रणाली में केवल वॉल्यूम की तुलना में अधिक बाहरी पैरामीटर हैं जो बदल सकते हैं, मौलिक ऊष्मागतिकीसंबंध सामान्यीकरण करता है | ||
:<math>\mathrm{d}U = T\,\mathrm{d}S + \sum_{j}X_{j}\,\mathrm{d}x_{j} + \sum_{i}\mu_{i}\,\mathrm{d}n_{i}\,</math> | :<math>\mathrm{d}U = T\,\mathrm{d}S + \sum_{j}X_{j}\,\mathrm{d}x_{j} + \sum_{i}\mu_{i}\,\mathrm{d}n_{i}\,</math> | ||
Line 49: | Line 49: | ||
== सांख्यिकीय यांत्रिकी से संबंध == | == सांख्यिकीय यांत्रिकी से संबंध == | ||
मौलिक | मौलिक ऊष्मागतिकीसंबंध और सांख्यिकीय यांत्रिक सिद्धांत एक दूसरे से प्राप्त किए जा सकते हैं। | ||
=== सांख्यिकीय यांत्रिक सिद्धांतों से व्युत्पत्ति === | === सांख्यिकीय यांत्रिक सिद्धांतों से व्युत्पत्ति === | ||
Line 57: | Line 57: | ||
:<math>S = k \log\left[\Omega\left(E\right)\right]\,</math> | :<math>S = k \log\left[\Omega\left(E\right)\right]\,</math> | ||
कहाँ <math>\Omega\left(E\right)</math> के मध्य छोटे से अंतराल में क्वांटम राज्यों की संख्या है <math>E</math> और <math>E +\delta E</math>. यहाँ <math>\delta E</math> मैक्रोस्कोपिक रूप से छोटा ऊर्जा अंतराल है जिसे स्थिर रखा जाता है। कड़ाई से बोलने का तात्पर्य है कि एंट्रॉपी की पसंद पर निर्भर करता है <math>\delta E</math>. चूँकि, | कहाँ <math>\Omega\left(E\right)</math> के मध्य छोटे से अंतराल में क्वांटम राज्यों की संख्या है <math>E</math> और <math>E +\delta E</math>. यहाँ <math>\delta E</math> मैक्रोस्कोपिक रूप से छोटा ऊर्जा अंतराल है जिसे स्थिर रखा जाता है। कड़ाई से बोलने का तात्पर्य है कि एंट्रॉपी की पसंद पर निर्भर करता है <math>\delta E</math>. चूँकि, ऊष्मागतिकीसीमा में (अर्थात असीम रूप से बड़े प्रणाली आकार की सीमा में), विशिष्ट एन्ट्रापी (एन्ट्रॉपी प्रति इकाई आयतन या प्रति इकाई द्रव्यमान) पर निर्भर नहीं करता है <math>\delta E</math>. एन्ट्रॉपी इस प्रकार अनिश्चितता का उपाय है कि प्रणाली किस क्वांटम राज्य में है, यह देखते हुए कि हम इसकी ऊर्जा को आकार के कुछ अंतराल में जानते हैं <math>\delta E</math>. | ||
प्रथम सिद्धांतों से मौलिक | प्रथम सिद्धांतों से मौलिक ऊष्मागतिकीसंबंध प्राप्त करना इस प्रकार यह साबित करना है कि एन्ट्रापी की उपरोक्त परिभाषा का अर्थ है कि प्रतिवर्ती प्रक्रियाओं के लिए हमारे पास: | ||
:<math>dS =\frac{\delta Q}{T}</math> | :<math>dS =\frac{\delta Q}{T}</math> | ||
Line 93: | Line 93: | ||
:<math>\left(\frac{\partial\log\left(\Omega\right)}{\partial x}\right)_E = \beta X +\left(\frac{\partial X}{\partial E} \right)_x\,</math> | :<math>\left(\frac{\partial\log\left(\Omega\right)}{\partial x}\right)_E = \beta X +\left(\frac{\partial X}{\partial E} \right)_x\,</math> | ||
प्रथम शब्द गहन है, अर्थात यह प्रणाली आकार के साथ पैमाना नहीं है। इसके विपरीत, अंतिम शब्द व्युत्क्रम प्रणाली के आकार के रूप में होता है और इस प्रकार | प्रथम शब्द गहन है, अर्थात यह प्रणाली आकार के साथ पैमाना नहीं है। इसके विपरीत, अंतिम शब्द व्युत्क्रम प्रणाली के आकार के रूप में होता है और इस प्रकार ऊष्मागतिकीसीमा में गायब हो जाता है। इस प्रकार हमने पाया है कि: | ||
:<math>\left(\frac{\partial S}{\partial x}\right)_{E} = \frac{X}{T}\,</math> | :<math>\left(\frac{\partial S}{\partial x}\right)_{E} = \frac{X}{T}\,</math> | ||
Line 106: | Line 106: | ||
:<math>dE = T \, dS - X \, dx</math> | :<math>dE = T \, dS - X \, dx</math> | ||
=== मौलिक | === मौलिक ऊष्मागतिकीसंबंध से सांख्यिकीय यांत्रिक सिद्धांतों की व्युत्पत्ति === | ||
यह दिखाया गया है कि निम्नलिखित तीन अभिधारणाओं के साथ मौलिक | यह दिखाया गया है कि निम्नलिखित तीन अभिधारणाओं के साथ मौलिक ऊष्मागतिकीसंबंध<ref name="Gao2019">{{cite journal |last1= Gao |first1= Xiang |last2= Gallicchio |first2= Emilio |first3= Adrian |last3= Roitberg |date= 2019 |title= सामान्यीकृत बोल्ट्जमैन वितरण एकमात्र ऐसा वितरण है जिसमें गिब्स-शैनन एन्ट्रापी थर्मोडायनामिक एन्ट्रॉपी के बराबर होती है|url= https://aip.scitation.org/doi/abs/10.1063/1.5111333|journal= The Journal of Chemical Physics|volume= 151|issue= 3|pages= 034113|doi= 10.1063/1.5111333|pmid= 31325924 |arxiv= 1903.02121 |bibcode= 2019JChPh.151c4113G |s2cid= 118981017 |access-date= }}</ref> | ||
{{ordered list | {{ordered list | ||
| The probability density function is proportional to some function of the ensemble parameters and random variables. | | The probability density function is proportional to some function of the ensemble parameters and random variables. | ||
Line 145: | Line 145: | ||
d\left\langle E\right\rangle = \sum_i \frac{\partial}{\partial T} \left(\frac{f(E_i, T)}{Z}\right)\cdot E_i \cdot dT | d\left\langle E\right\rangle = \sum_i \frac{\partial}{\partial T} \left(\frac{f(E_i, T)}{Z}\right)\cdot E_i \cdot dT | ||
</math> | </math> | ||
मौलिक | मौलिक ऊष्मागतिकीसंबंध से, हमारे निकट है | ||
:<math> | :<math> |
Revision as of 17:54, 19 March 2023
थर्मोडायनामिक्स |
---|
ऊष्मागतिकी में, मौलिक ऊष्मागतिकी संबंध के चार मूलभूत समीकरण हैं जो प्रदर्शित करते हैं कि कैसे चार महत्वपूर्ण ऊष्मागतिकी मात्रा चर पर निर्भर करती हैं जिन्हें प्रयोगात्मक रूप से नियंत्रित और मापा जा सकता है। इस प्रकार, वे अनिवार्य रूप से स्थिति के समीकरण हैं, और मौलिक समीकरणों का उपयोग करते हुए, प्रायोगिक डेटा का उपयोग G (गिब्स मुक्त ऊर्जा) या H (तापीय धारिता) जैसी वांछित मात्राओं को निर्धारित करने के लिए किया जा सकता है।[1] संबंध सामान्यतः एन्ट्रॉपी में सूक्ष्म परिवर्तनों के संदर्भ में आंतरिक ऊर्जा में सूक्ष्म परिवर्तन के रूप में व्यक्त किया जाता है, और निम्न विधि से थर्मल संतुलन में बंद प्रणाली के लिए आयतन (ऊष्मागतिकी) के रूप में व्यक्त किया जाता है।
यहाँ, U आंतरिक ऊर्जा है, T निरपेक्ष तापमान है, S एन्ट्रापी है, P दबाव है, और V आयतन है।
यह मौलिक ऊष्मागतिकी संबंध की अभिव्यक्ति है। इसे अन्य विधियों द्वारा विभिन्न चरों का उपयोग करके (जैसे ऊष्मागतिकी क्षमता का उपयोग करके) व्यक्त किया जा सकता है। उदाहरण के लिए, मौलिक संबंध को तापीय धारिता H के रूप में व्यक्त किया जा सकता है
हेल्महोल्ट्ज़ मुक्त ऊर्जा F के रूप में
और गिब्स मुक्त ऊर्जा G के रूप में
- .
ऊष्मागतिकी के प्रथम और दूसरे नियम
ऊष्मागतिकी का प्रथम नियम कहता है कि:
जहाँ और प्रणाली को इसके परिवेश द्वारा आपूर्ति की जाने वाली ऊष्मा की असीम मात्रा और क्रमशः प्रणाली द्वारा इसके परिवेश पर किए गए कार्य हैं।
ऊष्मागतिकी के दूसरे नियम के अनुसार हमारे निकट प्रतिवर्ती प्रक्रिया है:
इस प्रकार है:
इसे प्रथम कानून में प्रतिस्थापित करके, हमारे निकट है:
उत्क्रमणीय दबाव-मात्रा कार्य हो जो तंत्र द्वारा अपने परिवेश पर किया जाता है,
अपने निकट:
यह समीकरण प्रतिवर्ती परिवर्तनों की स्थिति में प्राप्त किया गया है। चूँकि, U, S, और V ऊष्मागतिकी राज्य कार्य हैं जो केवल ऊष्मागतिकी प्रक्रिया के प्रारंभिक और अंतिम राज्यों पर निर्भर करता है, उपरोक्त संबंध अन्य-प्रतिवर्ती परिवर्तनों के लिए भी प्रस्तावित होता है। यदि रचना, अर्थात राशियाँ समान तापमान और दबाव की प्रणाली में रासायनिक घटकों की संख्या भी परिवर्तित हो सकती है, उदा, रासायनिक प्रतिक्रिया के कारण मौलिक उष्मागतिकीय संबंध का सामान्यीकरण होता है:
h> प्रकार के कणों के संगत रासायनिक विभव हैं .
यदि प्रणाली में केवल वॉल्यूम की तुलना में अधिक बाहरी पैरामीटर हैं जो बदल सकते हैं, मौलिक ऊष्मागतिकीसंबंध सामान्यीकरण करता है
यहां ही बाहरी मापदंडों के अनुरूप सामान्यीकृत बल हैं . (दबाव के साथ प्रयुक्त ऋणात्मक चिन्ह असामान्य है और उत्पन्न होता है क्योंकि दबाव संकुचित तनाव का प्रतिनिधित्व करता है जो आयतन को कम करता है। अन्य सामान्यीकृत बल अपने संयुग्मित विस्थापन को बढ़ाते हैं।)
सांख्यिकीय यांत्रिकी से संबंध
मौलिक ऊष्मागतिकीसंबंध और सांख्यिकीय यांत्रिक सिद्धांत एक दूसरे से प्राप्त किए जा सकते हैं।
सांख्यिकीय यांत्रिक सिद्धांतों से व्युत्पत्ति
उपरोक्त व्युत्पत्ति ऊष्मागतिकीके प्रथम और दूसरे नियम का उपयोग करती है। ऊष्मागतिकीका प्रथम नियम अनिवार्य रूप से ऊष्मा की परिभाषा है, अर्थात ऊष्मा एक प्रणाली की आंतरिक ऊर्जा में परिवर्तन है जो कि प्रणाली के बाहरी मापदंडों के परिवर्तन के कारण नहीं होती है।
चूँकि , ऊष्मागतिकीका दूसरा नियम एन्ट्रापी के लिए एक परिभाषित संबंध नहीं है। ऊर्जा की मात्रा युक्त पृथक प्रणाली की एंट्रॉपी की मौलिक परिभाषा है:
कहाँ के मध्य छोटे से अंतराल में क्वांटम राज्यों की संख्या है और . यहाँ मैक्रोस्कोपिक रूप से छोटा ऊर्जा अंतराल है जिसे स्थिर रखा जाता है। कड़ाई से बोलने का तात्पर्य है कि एंट्रॉपी की पसंद पर निर्भर करता है . चूँकि, ऊष्मागतिकीसीमा में (अर्थात असीम रूप से बड़े प्रणाली आकार की सीमा में), विशिष्ट एन्ट्रापी (एन्ट्रॉपी प्रति इकाई आयतन या प्रति इकाई द्रव्यमान) पर निर्भर नहीं करता है . एन्ट्रॉपी इस प्रकार अनिश्चितता का उपाय है कि प्रणाली किस क्वांटम राज्य में है, यह देखते हुए कि हम इसकी ऊर्जा को आकार के कुछ अंतराल में जानते हैं .
प्रथम सिद्धांतों से मौलिक ऊष्मागतिकीसंबंध प्राप्त करना इस प्रकार यह साबित करना है कि एन्ट्रापी की उपरोक्त परिभाषा का अर्थ है कि प्रतिवर्ती प्रक्रियाओं के लिए हमारे पास:
सांख्यिकीय यांत्रिकी की मूलभूत धारणा यह है कि सभी विशेष ऊर्जा पर राज्य समान रूप से होने की संभावना है। यह हमें ब्याज की सभी ऊष्मागतिकीमात्रा निकालने की अनुमति देता है। तापमान को इस प्रकार परिभाषित किया गया है:
यह परिभाषा माइक्रोकैनोनिकल पहनावा से प्राप्त की जा सकती है, जो निरंतर संख्या में कणों की प्रणाली है, स्थिर मात्रा है और जो अपने पर्यावरण के साथ ऊर्जा का आदान-प्रदान नहीं करती है। मान लीजिए कि प्रणाली में कुछ बाहरी पैरामीटर x है, जिसे बदला जा सकता है। सामान्यतः, प्रणाली के आइजेनस्टेट्स का ऊर्जा परिचय x पर निर्भर करेगा। क्वांटम यांत्रिकी के एडियाबेटिक प्रमेय के अनुसार, प्रणाली के हैमिल्टनियन के असीम रूप से धीमे परिवर्तन की सीमा में, प्रणाली ऊर्जा ईजेनस्टेट में रहेगा और इस प्रकार ऊर्जा ईजेनस्टेट की ऊर्जा में परिवर्तन के अनुसार अपनी ऊर्जा को बदल देगा।
बाहरी पैरामीटर x के संगत सामान्यीकृत बल, X को इस प्रकार परिभाषित किया गया है यदि x को dx राशि से बढ़ाया जाता है, तो प्रणाली द्वारा किया जाने वाला कार्य है। उदाहरण के लिए, यदि x आयतन है, तो X दाब है। प्रणाली के लिए सामान्यीकृत बल जिसे ऊर्जा ईजेनस्टेट में जाना जाता है द्वारा दिया गया है:
चूंकि प्रणाली अंतराल के भीतर किसी भी ऊर्जा ईजेनस्टेट में हो सकता है , हम उपरोक्त अभिव्यक्ति की अपेक्षा मूल्य के रूप में प्रणाली के लिए सामान्यीकृत बल को परिभाषित करते हैं:
औसत का मूल्यांकन करने के लिए, हम विभाजन करते हैं ऊर्जा eigenstates गिनती के द्वारा उनमें से कितने के लिए मूल्य है के मध्य की सीमा में और . इस नंबर पर कॉल कर रहा हूँ , अपने पास:
सामान्यीकृत बल को परिभाषित करने वाला औसत अब लिखा जा सकता है:
हम इसे निरंतर ऊर्जा E पर x के संबंध में एन्ट्रापी के व्युत्पन्न से संबंधित कर सकते हैं। मान लीजिए हम x को x + dx में बदलते हैं। तब बदल जाएगा क्योंकि ऊर्जा eigenstates x पर निर्भर करती है, जिसके कारण ऊर्जा eigenstates के मध्य की सीमा में या बाहर जाने के लिए और . आइए फिर से उस ऊर्जा पर ध्यान केंद्रित करें जिसके लिए ईजेनस्टेट्स के मध्य की सीमा में है और . चूंकि ये ऊर्जा eigenstates Y dx द्वारा ऊर्जा में वृद्धि करती हैं, ऐसे सभी ऊर्जा eigenstates जो अंतराल में हैं E − Y dx से E तक E के नीचे E से ऊपर E तक जाते हैं।
ऐसी ऊर्जा का पता चलता है। अगर , ये सभी ऊर्जा eigenstates के मध्य की सीमा में चले जाएंगे और और बढ़ाने में योगदान देता है . ऊर्जा की संख्या जो नीचे से चलती है ऊपर के द्वारा दिया गया है . के अंतर
इस प्रकार वृद्धि में शुद्ध योगदान है . ध्यान दें कि यदि Y dx से बड़ा है नीचे से स्थानांतरित होने वाली ऊर्जा स्वदेशी होगी ऊपर के . दोनों में गिने जाते हैं और , इसलिए उपरोक्त अभिव्यक्ति उस स्थिति में भी मान्य है।
उपरोक्त अभिव्यक्ति को ई के संबंध में व्युत्पन्न के रूप में व्यक्त करना और वाई पर योग करना अभिव्यक्ति उत्पन्न करता है:
का लघुगणक व्युत्पन्न एक्स के संबंध में इस प्रकार दिया गया है:
प्रथम शब्द गहन है, अर्थात यह प्रणाली आकार के साथ पैमाना नहीं है। इसके विपरीत, अंतिम शब्द व्युत्क्रम प्रणाली के आकार के रूप में होता है और इस प्रकार ऊष्मागतिकीसीमा में गायब हो जाता है। इस प्रकार हमने पाया है कि:
इसके साथ मिलाकर
देता है:
जिसे हम इस प्रकार लिख सकते हैं:
मौलिक ऊष्मागतिकीसंबंध से सांख्यिकीय यांत्रिक सिद्धांतों की व्युत्पत्ति
यह दिखाया गया है कि निम्नलिखित तीन अभिधारणाओं के साथ मौलिक ऊष्मागतिकीसंबंध[2]
- The probability density function is proportional to some function of the ensemble parameters and random variables.
- Thermodynamic state functions are described by ensemble averages of random variables.
- The entropy as defined by Gibbs entropy formula matches with the entropy as defined in classical thermodynamics.
सांख्यिकीय यांत्रिकी के सिद्धांत के निर्माण के लिए पर्याप्त है बिना किसी प्राथमिक संभाव्यता के।
उदाहरण के लिए, बोल्ट्जमैन वितरण को प्राप्त करने के लिए, हम माइक्रोस्टेट की प्रायिकता घनत्व मानते हैं i संतुष्ट करता है . सामान्यीकरण कारक (विभाजन समारोह) इसलिए है
एन्ट्रापी इसलिए द्वारा दिया जाता है
अगर हम तापमान बदलते हैं T द्वारा dT प्रणाली के आयतन को स्थिर रखते हुए, एन्ट्रापी का परिवर्तन संतुष्ट करता है
कहाँ
ध्यान में रख कर
अपने पास
मौलिक ऊष्मागतिकीसंबंध से, हमारे निकट है
जब से हमने रखा V परेशान करते समय स्थिर T, अपने निकट . उपरोक्त समीकरणों को मिलाकर, हमारे निकट है
भौतिकी के नियम सार्वभौमिक होने चाहिए, अर्थात उपरोक्त समीकरण मनमाना प्रणालियों के लिए होना चाहिए, और ऐसा होने का एकमात्र तरीका है
वह है
यह दिखाया गया है कि उपरोक्त औपचारिकता में तीसरे अभिधारणा को निम्नलिखित द्वारा प्रतिस्थापित किया जा सकता है:[3]
- At infinite temperature, all the microstates have the same probability.
चूँकि , गणितीय व्युत्पत्ति बहुत अधिक जटिल होगी।
संदर्भ
- ↑ "मौलिक समीकरणों के विभेदक रूप". Chemistry LibreTexts (in English). 2 October 2013.
- ↑ Gao, Xiang; Gallicchio, Emilio; Roitberg, Adrian (2019). "सामान्यीकृत बोल्ट्जमैन वितरण एकमात्र ऐसा वितरण है जिसमें गिब्स-शैनन एन्ट्रापी थर्मोडायनामिक एन्ट्रॉपी के बराबर होती है". The Journal of Chemical Physics. 151 (3): 034113. arXiv:1903.02121. Bibcode:2019JChPh.151c4113G. doi:10.1063/1.5111333. PMID 31325924. S2CID 118981017.
- ↑ Gao, Xiang (March 2022). "एनसेंबल थ्योरी का गणित". Results in Physics. 34: 105230. Bibcode:2022ResPh..3405230G. doi:10.1016/j.rinp.2022.105230. S2CID 221978379.