मैक्सवेल संबंध: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 43: Line 43:
जहां उनके प्राकृतिक तापीय एवं यांत्रिक चर के कार्यों के रूप में क्षमता [[आंतरिक ऊर्जा]] है <math>U(S, V)</math>, [[तापीय धारिता]] <math>H(S, P)</math>, [[हेल्महोल्ट्ज़ मुक्त ऊर्जा]] <math>F(T, V)</math>, एवं  [[गिब्स मुक्त ऊर्जा]] <math>G(T, P)</math>. इन संबंधों को स्मरण करने एवं प्राप्त करने के लिए उष्मा गतिकीय वर्ग को स्मरक के रूप में उपयोग किया जा सकता है। इन संबंधों की उपयोगिता उनके परिमाणात्मक एन्ट्रापी परिवर्तनों में निहित है, जो तापमान, आयतन एवं दबाव जैसी मापनीय मात्राओं के संदर्भ में प्रत्यक्ष रूप से मापने योग्य नहीं हैं।
जहां उनके प्राकृतिक तापीय एवं यांत्रिक चर के कार्यों के रूप में क्षमता [[आंतरिक ऊर्जा]] है <math>U(S, V)</math>, [[तापीय धारिता]] <math>H(S, P)</math>, [[हेल्महोल्ट्ज़ मुक्त ऊर्जा]] <math>F(T, V)</math>, एवं  [[गिब्स मुक्त ऊर्जा]] <math>G(T, P)</math>. इन संबंधों को स्मरण करने एवं प्राप्त करने के लिए उष्मा गतिकीय वर्ग को स्मरक के रूप में उपयोग किया जा सकता है। इन संबंधों की उपयोगिता उनके परिमाणात्मक एन्ट्रापी परिवर्तनों में निहित है, जो तापमान, आयतन एवं दबाव जैसी मापनीय मात्राओं के संदर्भ में प्रत्यक्ष रूप से मापने योग्य नहीं हैं।


संबंध का उपयोग करके प्रत्येक समीकरण को तत्पश्चात व्यक्त किया जा सकता हैI
संबंध का उपयोग करके प्रत्येक समीकरण को व्यक्त किया जा सकता हैI
<math display="block">\left(\frac{\partial y}{\partial x}\right)_z
<math display="block">\left(\frac{\partial y}{\partial x}\right)_z
=
=
Line 150: Line 150:
अंतर रूपों के विषय में वर्णन के रूप में, एवं इस समीकरण के [[बाहरी व्युत्पन्न]] को लें, हम प्राप्त करते हैं
अंतर रूपों के विषय में वर्णन के रूप में, एवं इस समीकरण के [[बाहरी व्युत्पन्न]] को लें, हम प्राप्त करते हैं
<math display="block"> 0 = dT \, dS - dP \, dV</math>
<math display="block"> 0 = dT \, dS - dP \, dV</math>
तब से <math> d(dU) = 0</math>. यह मौलिक पहचान की ओर ले जाता है
तब से <math> d(dU) = 0</math>. यह अकृत्रिम परिचय की ओर ले जाता है
<math display="block"> dP \, dV = dT \, dS. </math>
<math display="block"> dP \, dV = dT \, dS. </math>
इस पहचान का भौतिक अर्थ यह देखते हुए देखा जा सकता है कि दोनों पक्ष अतिसूक्ष्म कार्नोट चक्र में किए गए कार्य को लिखने की समान प्रविधि हैं। पहचान लिखने का की समान प्रविधि हैI
इस परिचय का भौतिक अर्थ यह देखते हुए देखा जा सकता है कि दोनों पक्ष अतिसूक्ष्म कार्नोट चक्र में किए गए कार्य को लिखने की समान प्रविधि हैं। परिचय लिखने का की समान प्रविधि हैI
<math display="block"> \frac{\partial(T,S)}{\partial(P,V)} = 1. </math>
<math display="block"> \frac{\partial(T,S)}{\partial(P,V)} = 1. </math>
मैक्सवेल संबंध अब सीधे अनुसरण करते हैं। उदाहरण के लिए,
मैक्सवेल संबंध अब सीधे अनुसरण करते हैं। उदाहरण के लिए,
Line 170: Line 170:
== सामान्य मैक्सवेल संबंध ==
== सामान्य मैक्सवेल संबंध ==


उपरोक्त केवल मैक्सवेल संबंध नहीं हैं। जब वॉल्यूम कार्य के अतिरिक्त अन्य प्राकृतिक चरों को सम्मिलित करने वाली अन्य कार्य प्रतिज्ञा पर विचार किया जाता है या जब [[कण संख्या]] को प्राकृतिक चर के रूप में सम्मिलित किया जाता है, तो मैक्सवेल के अन्य संबंध स्पष्ट हो जाते हैं। उदाहरण के लिए, यदि हमारे पास एकल-घटक गैस है, तो कणों की संख्या N भी उपरोक्त चार थर्मोडायनामिक क्षमता का प्राकृतिक चर है। दबाव एवं कण संख्या के संबंध में तापीय धारिता के लिए मैक्सवेल संबंध तब होगा:
उपरोक्त केवल मैक्सवेल संबंध नहीं हैं। जब आयतन कार्य के अतिरिक्त अन्य प्राकृतिक चरों को सम्मिलित करने वाली अन्य कार्य प्रतिज्ञा पर विचार किया जाता है या जब [[कण संख्या]] को प्राकृतिक चर के रूप में सम्मिलित किया जाता है, तो मैक्सवेल के अन्य संबंध स्पष्ट हो जाते हैं। उदाहरण के लिए, यदि हमारे पास एकल-घटक गैस है, तो कणों की संख्या N भी उपरोक्त चार थर्मोडायनामिक क्षमता का प्राकृतिक चर है। दबाव एवं कण संख्या के संबंध में तापीय धारिता के लिए मैक्सवेल संबंध तब होगा:


<math display="block">
<math display="block">

Revision as of 18:57, 24 March 2023

मैक्सवेल संबंधों के मध्य पथ दिखाने वाला फ्लो चार्ट। दबाव है, तापमान, आयतन, एन्ट्रापी, ताप विस्तार प्रसार गुणांक, संपीड्यता, निरंतर मात्रा में ताप क्षमता, निरंतर दबाव पर ताप क्षमता।

मैक्सवेल के संबंध ऊष्मप्रवैगिकी में समीकरणों का समूह हैं जो दूसरे व्युत्पन्न की समरूपता से एवं ऊष्मप्रवैगिकी क्षमता की परिभाषाओं से व्युत्पन्न हैं। इन संबंधों का नाम उन्नीसवीं दशक के भौतिक विज्ञानी जेम्स क्लर्क मैक्सवेल के नाम पर रखा गया है।

समीकरण

मैक्सवेल संबंधों की संरचना निरंतर कार्यों के लिए दूसरे व्युत्पन्न के मध्य समानता का वर्णन है। यह इस तथ्य से सीधे अनुसरण करता है कि दो चरों के विश्लेषणात्मक कार्य के विभेदन का क्रम अप्रासंगिक है (श्वार्ज़ प्रमेय)। मैक्सवेल संबंधों के स्थिति में माना जाने वाला कार्य थर्मोडायनामिक क्षमता है एवं एवं हमारे पास उस क्षमता के लिए दो भिन्न-भिन्न प्राकृतिक चर हैंI

श्वार्ज प्रमेय (सामान्य)

जहां आंशिक व्युत्पन्न को अन्य सभी प्राकृतिक चरों के साथ स्थिर रखा जाता है। प्रत्येक थर्मोडायनामिक क्षमता के लिए हैं संभावित मैक्सवेल संबंध जहां उस क्षमता के लिए प्राकृतिक चरों की संख्या है।

चार सबसे सरल मैक्सवेल संबंध

चार सबसे सरल मैक्सवेल संबंध, उनके तापीय प्राकृतिक चर (तापमान , या एन्ट्रॉपी ) एवं उनके यांत्रिक प्राकृतिक चर (दबाव , या मात्रा ):

मैक्सवेल के संबंध (सामान्य)

जहां उनके प्राकृतिक तापीय एवं यांत्रिक चर के कार्यों के रूप में क्षमता आंतरिक ऊर्जा है , तापीय धारिता , हेल्महोल्ट्ज़ मुक्त ऊर्जा , एवं गिब्स मुक्त ऊर्जा . इन संबंधों को स्मरण करने एवं प्राप्त करने के लिए उष्मा गतिकीय वर्ग को स्मरक के रूप में उपयोग किया जा सकता है। इन संबंधों की उपयोगिता उनके परिमाणात्मक एन्ट्रापी परिवर्तनों में निहित है, जो तापमान, आयतन एवं दबाव जैसी मापनीय मात्राओं के संदर्भ में प्रत्यक्ष रूप से मापने योग्य नहीं हैं।

संबंध का उपयोग करके प्रत्येक समीकरण को व्यक्त किया जा सकता हैI

जिसे कभी-कभी मैक्सवेल संबंध भी कहा जाता है।

व्युत्पत्ति

मैक्सवेल संबंध सरल आंशिक विभेदन नियमों पर आधारित होते हैं, विशेष रूप से कुल अवकलन एवं दूसरे क्रम के आंशिक अवकलनो के मूल्यांकन की समरूपता होती है।

व्युत्पत्ति

मैक्सवेल संबंध की व्युत्पत्ति के विभेदक रूपों से निकाली जा सकती है थर्मोडायनामिक क्षमता:
आंतरिक ऊर्जा का विभेदक रूप U हैI

यह समीकरण परस्पर t प्रपत्र का कुल अंतर एवं कुल व्युत्पन्न होता हैI
इसे किसी भी रूप के समीकरण के लिए दिखाया जा सकता है,
जिससे
विचार करें, समीकरण . अब हम इसे तत्काल निरूपित सकते हैं
चूंकि हम यह भी जानते हैं कि निरन्तर दूसरे व्युत्पन्न वाले कार्यों के लिए, मिश्रित आंशिक व्युत्पन्न समान हैं (दूसरे व्युत्पन्न की समरूपता) जो, है
इसलिए हम इसे देख सकते हैं
एवं इसलिए वह

हेल्महोल्ट्ज़ मुक्त ऊर्जा से मैक्सवेल संबंध की व्युत्पत्ति

हेल्महोल्ट्ज़ मुक्त ऊर्जा का विभेदक रूप है

दूसरे व्युत्पन्न की समरूपता से
एवं इसलिए वह
अन्य दो मैक्सवेल संबंधों को एन्थैल्पी के विभेदक रूप से प्राप्त किया जा सकता है एवं गिब्स मुक्त ऊर्जा का विभेदक रूप समान प्रविधि से, अतः उपरोक्त सभी मैक्सवेल संबंध गिब्स समीकरण में से किसी अनुसरण करते हैं।

Extended derivation

ऊष्मप्रवैगिकी के प्रथम एवं दूसरे नियम का संयुक्त रूप,

 

 

 

 

(Eq.1)

U, S, एवं V राज्य कार्य हैं। LET,

उन्हें स्थानापन्न करें समीकरण नोट,समीकरण 1 में मिलता है,

के रूप में भी लिखा है,
dx एवं dy के गुणांक की तुलना करने पर हमें यह प्राप्त होता है
द्वारा उपरोक्त समीकरणों को भिन्न करना y, x क्रमानुसार

 

 

 

 

(Eq.2)

एवं

 

 

 

 

(Eq.3)

U, S, एवं V स्थिर अंतर हैं, इसलिए

घटाना समीकरण नोट एवं समीकरण नोट समीकरण.3 में मिलता है
नोट: उपरोक्त को मैक्सवेल के थर्मोडायनामिकल संबंध के लिए सामान्य अभिव्यक्ति कहा जाता है.

मैक्सवेल का प्रथम सम्बन्ध
अनुमति x = S एवं y = V मिलता है
मैक्सवेल का दूसरा संबंध
अनुमति x = T एवं y = V मिलता है
मैक्सवेल का तीसरा संबंध
अनुमति x = S एवं y = P मिलता है
मैक्सवेल का चौथा संबंध
अनुमति x = T एवं y = P मिलता है
मैक्सवेल का पांचवां संबंध
अनुमति x = P एवं y = V
मैक्सवेल का छठा संबंध
अनुमति x = T एवं y = S मिलता है

व्युत्पत्ति पर आधारित व्युत्पत्ति

यदि हम ऊष्मप्रवैगिकी के प्रथम नियम को देखें,

अंतर रूपों के विषय में वर्णन के रूप में, एवं इस समीकरण के बाहरी व्युत्पन्न को लें, हम प्राप्त करते हैं
तब से . यह अकृत्रिम परिचय की ओर ले जाता है
इस परिचय का भौतिक अर्थ यह देखते हुए देखा जा सकता है कि दोनों पक्ष अतिसूक्ष्म कार्नोट चक्र में किए गए कार्य को लिखने की समान प्रविधि हैं। परिचय लिखने का की समान प्रविधि हैI
मैक्सवेल संबंध अब सीधे अनुसरण करते हैं। उदाहरण के लिए,
महत्वपूर्ण चरण अंतिम चरण है। मैक्सवेल के अन्य संबंध इसी प्रकार से चलते हैं। उदाहरण के लिए,


सामान्य मैक्सवेल संबंध

उपरोक्त केवल मैक्सवेल संबंध नहीं हैं। जब आयतन कार्य के अतिरिक्त अन्य प्राकृतिक चरों को सम्मिलित करने वाली अन्य कार्य प्रतिज्ञा पर विचार किया जाता है या जब कण संख्या को प्राकृतिक चर के रूप में सम्मिलित किया जाता है, तो मैक्सवेल के अन्य संबंध स्पष्ट हो जाते हैं। उदाहरण के लिए, यदि हमारे पास एकल-घटक गैस है, तो कणों की संख्या N भी उपरोक्त चार थर्मोडायनामिक क्षमता का प्राकृतिक चर है। दबाव एवं कण संख्या के संबंध में तापीय धारिता के लिए मैक्सवेल संबंध तब होगा:

जहाँ μ रासायनिक क्षमता है। इसके अतिरिक्त, सामान्यतः उपयोग किए जाने वाले चार के अतिरिक्त अन्य थर्मोडायनामिक क्षमताएं भी हैं, एवं इनमें से प्रत्येक क्षमता से मैक्सवेल संबंधों का उपसमुच्चय निकलेगा। उदाहरण के लिए, भव्य क्षमता उत्पत्ति होती हैI[1]


यह भी देखें

संदर्भ

  1. "थर्मोडायनामिक क्षमताएं" (PDF). University of Oulu. Archived (PDF) from the original on 19 December 2022.