सामान्य बंद (समूह सिद्धांत): Difference between revisions
From Vigyanwiki
(Created page with "{{short description|Smallest normal group containing a set}} {{About|the normal closure of a subset of a group|the normal closure of a field extension|Normal closure (field th...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Smallest normal group containing a set}} | {{short description|Smallest normal group containing a set}} | ||
{{About| | {{About|एक समूह के एक सबसेट का सामान्य बंद होना|एक क्षेत्र विस्तार का सामान्य बंद होना|सामान्य बंद (क्षेत्र सिद्धांत)}} | ||
{{Group theory sidebar}} | {{Group theory sidebar}} | ||
[[समूह सिद्धांत]] में, एक [[सबसेट]] का सामान्य बंद होना <math>S</math> एक समूह की (गणित) <math>G</math> का सबसे छोटा [[सामान्य उपसमूह]] है <math>G</math> युक्त <math>S.</math> | [[समूह सिद्धांत]] में, एक [[सबसेट]] का सामान्य बंद होना <math>S</math> एक समूह की (गणित) <math>G</math> का सबसे छोटा [[सामान्य उपसमूह]] है <math>G</math> युक्त <math>S.</math> | ||
Line 7: | Line 7: | ||
== गुण और विवरण == | == गुण और विवरण == | ||
औपचारिक रूप से, यदि <math>G</math> | औपचारिक रूप से, यदि <math>G</math> समूह है और <math>S</math> का उपसमुच्चय है <math>G,</math> सामान्य बंद <math>\operatorname{ncl}_G(S)</math> का <math>S</math> के सभी सामान्य उपसमूहों का प्रतिच्छेदन है <math>G</math> युक्त <math>S</math>:<ref name=HEOB>{{cite book|title=Handbook of Computational Group Theory|author=Derek F. Holt|author2=Bettina Eick|author3=Eamonn A. O'Brien|publisher=CRC Press|year=2005|isbn=1-58488-372-3|page=[https://archive.org/details/handbookofcomput0000holt/page/14 14]|url=https://archive.org/details/handbookofcomput0000holt/page/14}}</ref> | ||
<math display="block">\operatorname{ncl}_G(S) = \bigcap_{S \subseteq N \triangleleft G} N.</math> | <math display="block">\operatorname{ncl}_G(S) = \bigcap_{S \subseteq N \triangleleft G} N.</math> | ||
सामान्य बंद <math>\operatorname{ncl}_G(S)</math> का सबसे छोटा सामान्य उपसमूह है <math>G</math> युक्त <math>S,</math><ref name="HEOB" />इस अर्थ में कि <math>\operatorname{ncl}_G(S)</math> के प्रत्येक सामान्य उपसमूह का उपसमुच्चय है <math>G</math> उसमें सम्मिलित है <math>S.</math> | सामान्य बंद <math>\operatorname{ncl}_G(S)</math> का सबसे छोटा सामान्य उपसमूह है <math>G</math> युक्त <math>S,</math><ref name="HEOB" />इस अर्थ में कि <math>\operatorname{ncl}_G(S)</math> के प्रत्येक सामान्य उपसमूह का उपसमुच्चय है <math>G</math> उसमें सम्मिलित है <math>S.</math> | ||
उपसमूह <math>\operatorname{ncl}_G(S)</math> सेट | |||
उपसमूह <math>\operatorname{ncl}_G(S)</math> सेट के माध्यम से समूह का सेट उत्पन्न कर रहा है <math>S^G=\{s^g : g\in G\} = \{g^{-1}sg : g\in G\}</math> के तत्वों के सभी संयुग्मन वर्ग की <math>S</math> में <math>G.</math> | |||
इसलिए कोई भी लिख सकता है | इसलिए कोई भी लिख सकता है | ||
<math display="block">\operatorname{ncl}_G(S) = \{g_1^{-1}s_1^{\epsilon_1} g_1\dots g_n^{-1}s_n^{\epsilon_n}g_n : n \geq 0, \epsilon_i = \pm 1, s_i\in S, g_i \in G\}.</math> | <math display="block">\operatorname{ncl}_G(S) = \{g_1^{-1}s_1^{\epsilon_1} g_1\dots g_n^{-1}s_n^{\epsilon_n}g_n : n \geq 0, \epsilon_i = \pm 1, s_i\in S, g_i \in G\}.</math> | ||
कोई भी सामान्य उपसमूह उसके सामान्य बंद होने के बराबर है। [[खाली सेट]] का संयुग्म बंद होना <math>\varnothing</math> [[तुच्छ उपसमूह]] है।<ref>{{cite book|last1=Rotman|first1=Joseph J.|title=An introduction to the theory of groups|series=Graduate Texts in Mathematics|date=1995|volume=148|publisher=[[Springer-Verlag]]|location=New York|isbn=0-387-94285-8|page=32|edition=Fourth|url=https://www.google.com/books/edition/_/7-bBoQEACAAJ?hl=en&sa=X&ved=2ahUKEwid46mc6MvwAhVDEVkFHV_MCBYQre8FMAB6BAgDEDI|mr=1307623|doi=10.1007/978-1-4612-4176-8}}</ref> | कोई भी सामान्य उपसमूह उसके सामान्य बंद होने के बराबर है। [[खाली सेट]] का संयुग्म बंद होना <math>\varnothing</math> [[तुच्छ उपसमूह]] है।<ref>{{cite book|last1=Rotman|first1=Joseph J.|title=An introduction to the theory of groups|series=Graduate Texts in Mathematics|date=1995|volume=148|publisher=[[Springer-Verlag]]|location=New York|isbn=0-387-94285-8|page=32|edition=Fourth|url=https://www.google.com/books/edition/_/7-bBoQEACAAJ?hl=en&sa=X&ved=2ahUKEwid46mc6MvwAhVDEVkFHV_MCBYQre8FMAB6BAgDEDI|mr=1307623|doi=10.1007/978-1-4612-4176-8}}</ref> | ||
साहित्य में सामान्य बंद करने के लिए कई अन्य नोटेशन का उपयोग किया जाता है, जिनमें | साहित्य में सामान्य बंद करने के लिए कई अन्य नोटेशन का उपयोग किया जाता है, जिनमें सम्मलित हैं <math>\langle S^G\rangle,</math> <math>\langle S\rangle^G,</math> <math>\langle \langle S\rangle\rangle_G,</math> और <math>\langle\langle S\rangle\rangle^G.</math> | ||
सामान्य बंद की अवधारणा के लिए दोहरी है {{em| | |||
सामान्य बंद की अवधारणा के लिए दोहरी है {{em|सामान्य इंटीरियर}} या {{em|[[सामान्य कोर]]}}, इसमें निहित सभी सामान्य उपसमूहों के सम्मलित होने के रूप में परिभाषित किया गया है <math>S.</math><ref>{{cite book|title=A Course in the Theory of Groups|volume=80|series=Graduate Texts in Mathematics|first=Derek J. S.|last=Robinson|publisher=[[Springer-Verlag]]|year=1996|isbn=0-387-94461-3|zbl=0836.20001|edition=2nd|page=16 }}</ref> | |||
== समूह प्रस्तुतियाँ == | == समूह प्रस्तुतियाँ == | ||
एक समूह के लिए <math>G</math> [[एक समूह की प्रस्तुति]] | एक समूह के लिए <math>G</math> [[एक समूह की प्रस्तुति]] के माध्यम से दिया गया <math>G=\langle S \mid R\rangle</math> जनरेटर के साथ <math>S</math> और [[रिपोर्टर]]्स को परिभाषित करना <math>R,</math> प्रेजेंटेशन नोटेशन का अर्थ है कि <math>G</math> [[भागफल समूह]] है <math>G = F(S) / \operatorname{ncl}_{F(S)}(R),</math> कहाँ <math>F(S)</math> पर एक निःशुल्क समूह है <math>S.</math><ref> | ||
{{cite book|last1=Lyndon|first1=Roger C.|author1-link=Roger Lyndon|last2=Schupp|first2=Paul E.|authorlink2=Paul Schupp|isbn=3-540-41158-5|mr=1812024|page=87|publisher=Springer-Verlag, Berlin|series=Classics in Mathematics|title=Combinatorial group theory|url=https://books.google.com/books?id=cOLrCAAAQBAJ|year=2001}} | {{cite book|last1=Lyndon|first1=Roger C.|author1-link=Roger Lyndon|last2=Schupp|first2=Paul E.|authorlink2=Paul Schupp|isbn=3-540-41158-5|mr=1812024|page=87|publisher=Springer-Verlag, Berlin|series=Classics in Mathematics|title=Combinatorial group theory|url=https://books.google.com/books?id=cOLrCAAAQBAJ|year=2001}} | ||
</ref> | </ref> |
Revision as of 22:52, 14 February 2023
बीजगणितीय संरचना → 'समूह सिद्धांत' समूह सिद्धांत |
---|
समूह सिद्धांत में, एक सबसेट का सामान्य बंद होना एक समूह की (गणित) का सबसे छोटा सामान्य उपसमूह है युक्त
गुण और विवरण
औपचारिक रूप से, यदि समूह है और का उपसमुच्चय है सामान्य बंद का के सभी सामान्य उपसमूहों का प्रतिच्छेदन है युक्त :[1]
सामान्य बंद का सबसे छोटा सामान्य उपसमूह है युक्त [1]इस अर्थ में कि के प्रत्येक सामान्य उपसमूह का उपसमुच्चय है उसमें सम्मिलित है
उपसमूह सेट के माध्यम से समूह का सेट उत्पन्न कर रहा है के तत्वों के सभी संयुग्मन वर्ग की में
इसलिए कोई भी लिख सकता है
कोई भी सामान्य उपसमूह उसके सामान्य बंद होने के बराबर है। खाली सेट का संयुग्म बंद होना तुच्छ उपसमूह है।[2]
साहित्य में सामान्य बंद करने के लिए कई अन्य नोटेशन का उपयोग किया जाता है, जिनमें सम्मलित हैं और
सामान्य बंद की अवधारणा के लिए दोहरी है सामान्य इंटीरियर या सामान्य कोर, इसमें निहित सभी सामान्य उपसमूहों के सम्मलित होने के रूप में परिभाषित किया गया है [3]
समूह प्रस्तुतियाँ
एक समूह के लिए एक समूह की प्रस्तुति के माध्यम से दिया गया जनरेटर के साथ और रिपोर्टर्स को परिभाषित करना प्रेजेंटेशन नोटेशन का अर्थ है कि भागफल समूह है कहाँ पर एक निःशुल्क समूह है [4]
संदर्भ
- ↑ 1.0 1.1 Derek F. Holt; Bettina Eick; Eamonn A. O'Brien (2005). Handbook of Computational Group Theory. CRC Press. p. 14. ISBN 1-58488-372-3.
- ↑ Rotman, Joseph J. (1995). An introduction to the theory of groups. Graduate Texts in Mathematics. Vol. 148 (Fourth ed.). New York: Springer-Verlag. p. 32. doi:10.1007/978-1-4612-4176-8. ISBN 0-387-94285-8. MR 1307623.
- ↑ Robinson, Derek J. S. (1996). A Course in the Theory of Groups. Graduate Texts in Mathematics. Vol. 80 (2nd ed.). Springer-Verlag. p. 16. ISBN 0-387-94461-3. Zbl 0836.20001.
- ↑ Lyndon, Roger C.; Schupp, Paul E. (2001). Combinatorial group theory. Classics in Mathematics. Springer-Verlag, Berlin. p. 87. ISBN 3-540-41158-5. MR 1812024.