सामान्य बंद (समूह सिद्धांत): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 13: Line 13:
उपसमूह <math>\operatorname{ncl}_G(S)</math> सेट  के माध्यम से समूह का सेट उत्पन्न कर रहा है <math>S^G=\{s^g : g\in G\} = \{g^{-1}sg : g\in G\}</math> के तत्वों के सभी संयुग्मन वर्ग की <math>S</math> में <math>G.</math>
उपसमूह <math>\operatorname{ncl}_G(S)</math> सेट  के माध्यम से समूह का सेट उत्पन्न कर रहा है <math>S^G=\{s^g : g\in G\} = \{g^{-1}sg : g\in G\}</math> के तत्वों के सभी संयुग्मन वर्ग की <math>S</math> में <math>G.</math>


इसलिए कोई भी लिख सकता है
इसलिए इसे ऐसी भी लिखा जा सकता है :
<math display="block">\operatorname{ncl}_G(S) = \{g_1^{-1}s_1^{\epsilon_1} g_1\dots g_n^{-1}s_n^{\epsilon_n}g_n : n \geq 0, \epsilon_i = \pm 1, s_i\in S, g_i \in G\}.</math>
<math display="block">\operatorname{ncl}_G(S) = \{g_1^{-1}s_1^{\epsilon_1} g_1\dots g_n^{-1}s_n^{\epsilon_n}g_n : n \geq 0, \epsilon_i = \pm 1, s_i\in S, g_i \in G\}.</math>
कोई भी सामान्य उपसमूह उसके सामान्य बंद होने के बराबर है। [[खाली सेट]] का संयुग्म बंद होना <math>\varnothing</math> [[तुच्छ उपसमूह]] है।<ref>{{cite book|last1=Rotman|first1=Joseph J.|title=An introduction to the theory of groups|series=Graduate Texts in Mathematics|date=1995|volume=148|publisher=[[Springer-Verlag]]|location=New York|isbn=0-387-94285-8|page=32|edition=Fourth|url=https://www.google.com/books/edition/_/7-bBoQEACAAJ?hl=en&sa=X&ved=2ahUKEwid46mc6MvwAhVDEVkFHV_MCBYQre8FMAB6BAgDEDI|mr=1307623|doi=10.1007/978-1-4612-4176-8}}</ref>
कोई भी सामान्य उपसमूह उसके सामान्य बंद होने के समान  होता है। [[खाली सेट]] का संयुग्म बंद होना <math>\varnothing</math> [[तुच्छ उपसमूह]] है।<ref>{{cite book|last1=Rotman|first1=Joseph J.|title=An introduction to the theory of groups|series=Graduate Texts in Mathematics|date=1995|volume=148|publisher=[[Springer-Verlag]]|location=New York|isbn=0-387-94285-8|page=32|edition=Fourth|url=https://www.google.com/books/edition/_/7-bBoQEACAAJ?hl=en&sa=X&ved=2ahUKEwid46mc6MvwAhVDEVkFHV_MCBYQre8FMAB6BAgDEDI|mr=1307623|doi=10.1007/978-1-4612-4176-8}}</ref>
 
साहित्य में सामान्य बंद करने के लिए कई अन्य नोटेशन का उपयोग किया जाता है, जिनमें सम्मलित हैं <math>\langle S^G\rangle,</math> <math>\langle S\rangle^G,</math> <math>\langle \langle S\rangle\rangle_G,</math> और <math>\langle\langle S\rangle\rangle^G.</math>
साहित्य में सामान्य बंद करने के लिए कई अन्य नोटेशन का उपयोग किया जाता है, जिनमें सम्मलित हैं <math>\langle S^G\rangle,</math> <math>\langle S\rangle^G,</math> <math>\langle \langle S\rangle\rangle_G,</math> और <math>\langle\langle S\rangle\rangle^G.</math>


सामान्य बंद की अवधारणा के लिए दोहरी है {{em|सामान्य इंटीरियर}} या {{em|[[सामान्य कोर]]}}, इसमें निहित सभी सामान्य उपसमूहों के सम्मलित होने के रूप में परिभाषित किया गया है <math>S.</math><ref>{{cite book|title=A Course in the Theory of Groups|volume=80|series=Graduate Texts in Mathematics|first=Derek J. S.|last=Robinson|publisher=[[Springer-Verlag]]|year=1996|isbn=0-387-94461-3|zbl=0836.20001|edition=2nd|page=16 }}</ref>
सामान्य बंद की अवधारणा के लिए दोहरी है {{em|सामान्य इंटीरियर}} या {{em|[[सामान्य कोर]]}}, इसमें निहित सभी सामान्य उपसमूहों के सम्मलित होने के रूप में परिभाषित किया गया है <math>S.</math><ref>{{cite book|title=A Course in the Theory of Groups|volume=80|series=Graduate Texts in Mathematics|first=Derek J. S.|last=Robinson|publisher=[[Springer-Verlag]]|year=1996|isbn=0-387-94461-3|zbl=0836.20001|edition=2nd|page=16 }}</ref>





Revision as of 21:49, 25 February 2023

समूह सिद्धांत में, समूह की (गणित) उपसमुच्चय का सामान्य संवरण युक्त

का सबसे छोटा सामान्य उपसमूह है ।

गुण और विवरण

औपचारिक रूप से, यदि समूह है और , का उपसमुच्चय है, तो सामान्य समापन का के सभी सामान्य उपसमूहों का प्रतिच्छेदन है युक्त :[1]

सामान्य बंद का सबसे छोटा सामान्य उपसमूह है युक्त [1]इस अर्थ में कि के प्रत्येक सामान्य उपसमूह का उपसमुच्चय है उसमें सम्मिलित है

उपसमूह सेट के माध्यम से समूह का सेट उत्पन्न कर रहा है के तत्वों के सभी संयुग्मन वर्ग की में

इसलिए इसे ऐसी भी लिखा जा सकता है :

कोई भी सामान्य उपसमूह उसके सामान्य बंद होने के समान होता है। खाली सेट का संयुग्म बंद होना तुच्छ उपसमूह है।[2]

साहित्य में सामान्य बंद करने के लिए कई अन्य नोटेशन का उपयोग किया जाता है, जिनमें सम्मलित हैं और

सामान्य बंद की अवधारणा के लिए दोहरी है सामान्य इंटीरियर या सामान्य कोर, इसमें निहित सभी सामान्य उपसमूहों के सम्मलित होने के रूप में परिभाषित किया गया है [3]



समूह प्रस्तुतियाँ

एक समूह के लिए एक समूह की प्रस्तुति के माध्यम से दिया गया जनरेटर के साथ और रिपोर्टर्स को परिभाषित करना प्रेजेंटेशन नोटेशन का अर्थ है कि भागफल समूह है जहाँ पर निःशुल्क समूह है [4]


संदर्भ

  1. 1.0 1.1 Derek F. Holt; Bettina Eick; Eamonn A. O'Brien (2005). Handbook of Computational Group Theory. CRC Press. p. 14. ISBN 1-58488-372-3.
  2. Rotman, Joseph J. (1995). An introduction to the theory of groups. Graduate Texts in Mathematics. Vol. 148 (Fourth ed.). New York: Springer-Verlag. p. 32. doi:10.1007/978-1-4612-4176-8. ISBN 0-387-94285-8. MR 1307623.
  3. Robinson, Derek J. S. (1996). A Course in the Theory of Groups. Graduate Texts in Mathematics. Vol. 80 (2nd ed.). Springer-Verlag. p. 16. ISBN 0-387-94461-3. Zbl 0836.20001.
  4. Lyndon, Roger C.; Schupp, Paul E. (2001). Combinatorial group theory. Classics in Mathematics. Springer-Verlag, Berlin. p. 87. ISBN 3-540-41158-5. MR 1812024.